Optimization Strategies for Responsivity Control of Microgel Assisted Lab-On-Fiber Optrodes(317 views visite)(PDF public pubblico204 views visite) Giaquinto M, Micco A, Aliberti A, Bobeico E, La Ferrara V, Ruvo M, Ricciardi A, Cusano A
Optoelectronics Group, Department of Engineering, University of Sannio, I-82100 Benevento, Italy. martino.giaquinto@unisannio.it. ENEA, Portici Research Center, P. le E. Fermi 1, Portici, I-80055 Napoli, Italy. eugenia.bobeico@enea.it. Institute of Biostructure and Bioimaging, National Research Council, I-80143 Napoli, Italy. menotti.ruvo@unina.it.
References Riferimenti: Vaiano, P., Carotenuto, B., Pisco, M., Ricciardi, A., Quero, G., Consales, M., Crescitelli, A., Cusano, A., Lab on fiber technology for biological sensing applications (2016) Laser Photonics Rev, 10, pp. 922-96
Cusano, A., Consales, M., Crescitelli, A., Ricciardi, A., (2015) Lab-On-Fiber Technology, 56. , Springer: Berlin, Germany
Consales, M., Ricciardi, A., Crescitelli, A., Esposito, E., Cutolo, A., Cusano, A., Lab-on-fiber technology: Toward multifunctional optical nanoprobes (2012) ACS Nano, 6, pp. 3163-3170
Ricciardi, A., Consoles, M., Quero, G., Crescitelli, A., Esposito, E., Cusano, A., Versatile optical fiber nanoprobes: From plasmonic biosensors to polarization-sensitive devices (2014) ACS Photonics, 1, pp. 69-78
Ricciardi, A., Aliberti, A., Giaquinto, M., Micco, A., Cusano, A., Microgel Photonics: A Breathing Cavity onto Optical Fiber Tip (2015) Proceedings of the 24Th International Conference on Optical Fibre Sensors, , Curitiba, Brazil, 28 September–2 October 2015
SPIE: Bellingham, WA, USA
Ricciardi, A., Consales, M., Quero, G., Crescitelli, A., Esposito, E., Cusano, A., Lab-on-fiber devices as an all around platform for sensing (2013) Opt. Fiber Technol., 19, pp. 772-784
Kostovski, G., Stoddart, P.R., Mitchell, A., The optical fiber tip: An inherently light-coupled microscopic platform for micro-and nanotechnologies (2014) Adv. Mater., 26, pp. 3798-3820
Pelton, R., Hoare, T., Microgels and their synthesis: An introduction (2011) Microgel Suspensions: Fundamentals and Applications, 1, pp. 1-32. , John Wiley & Sons: Hoboken, NJ, USA
Plamper, F.A., Richtering, W., Functional microgels and microgel systems (2017) Accounts Chem. Res., 50, pp. 131-140
Wei, M.L., Gao, Y.F., Li, X., Serpe, M.J., Stimuli-responsive polymers and their applications (2017) Polym. Chem., 8, pp. 127-143
Aliberti, A., Ricciardi, A., Giaquinto, M., Micco, A., Bobeico, E., la Ferrara, V., Ruvo, M., Cusano, A., Microgel assisted lab-on-fiber optrode (2017) Sci. Rep., 7, p. 14459
Giaquinto, M., Ricciardi, A., Aliberti, A., Micco, A., Bobeico, E., Ruvo, M., Cusano, A., Light-microgel interaction in resonant nanostructures (2018) Sci. Rep., , under review
Jiang, Y., Chen, J., Deng, C., Suuronen, E.J., Zhong, Z., Click hydrogels, microgels and nanogels: Emerging platforms for drug delivery and tissue engineering (2014) Biomaterials, 35, pp. 4969-4985
Oh, J.K., Drumright, R., Siegwart, D.J., Matyjaszewski, K., The development of microgels/nanogels for drug delivery applications (2008) Prog. Polym. Sci., 33, pp. 448-477
Schmidt, S., Zeiser, M., Hellweg, T., Duschl, C., Fery, A., Möhwald, H., Adhesion and mechanical properties of pnipam microgel films and their potential use as switchable cell culture substrates (2010) Adv. Funct. Mater., 20, pp. 3235-3243
Islam, M.R., Ahiabu, A., Li, X., Serpe, M.J., Poly (N-isopropylacrylamide) microgel-based optical devices for sensing and biosensing (2014) Sensors, 14, pp. 8984-8995
Nerapusri, V., Keddie, J.L., Vincent, B., Bushnak, I.A., Swelling and deswelling of adsorbed microgel monolayers triggered by changes in temperature, pH, and electrolyte concentration (2006) Langmuir, 22, pp. 5036-5041
Serpe, M.J., Jones, C.D., Lyon, L.A., Layer-by-layer deposition of thermoresponsive microgel thin films (2003) Langmuir, 19, pp. 8759-8764
Schmidt, S., Motschmann, H., Hellweg, T., von Klitzing, R., Thermoresponsive surfaces by spin-coating of PNIPAM-co-PAA microgels: A combined AFM and ellipsometry study (2008) Polymer, 49, pp. 749-756
Sorrell, C.D., Lyon, L.A., Deformation controlled assembly of binary microgel thin films (2008) Langmuir, 24, pp. 7216-7222
Schmidt, S., Hellweg, T., von Klitzing, R., Packing density control in P (NIPAM-co-AAc) microgel monolayers: Effect of surface charge, pH, and preparation technique (2008) Langmuir, 24, pp. 12595-12602
Tsuji, S., Kawaguchi, H., Colored thin films prepared from hydrogel microspheres (2005) Langmuir, 21, pp. 8439-8442
Sakai, T., Takeoka, Y., Seki, T., Yoshida, R., Organized monolayer of thermosensitive microgel beads prepared by double-template polymerization (2007) Langmuir, 23, pp. 8651-8654
South, A.B., Whitmire, R.E., Garcia, A.J., Lyon, L.A., Centrifugal deposition of microgels for the rapid assembly of nonfouling thin films (2009) ACS Appl. Mater. Interfaces, 1, pp. 2747-2754
Singh, N., Bridges, A.W., García, A.J., Lyon, L.A., Covalent tethering of functional microgel films onto poly (Ethylene terephthalate) surfaces (2007) Biomacromolecules, 8, pp. 3271-3275
Meng, Z., Cho, J.K., Debord, S., Breedveld, V., Lyon, L.A., Crystallization behavior of soft, attractive microgels (2007) J. Phys. Chem. B, 111, pp. 6992-6997
Sorrell, C.D., Carter, M.C., Serpe, M.J., A “paint-on” protocol for the facile assembly of uniform microgel coatings for color tunable etalon fabrication (2011) ACS Appl. Mater. Interfaces, 3, pp. 1140-1147
Hu, L., Serpe, M.J., The influence of deposition solution pH and ionic strength on the quality of poly (N-isopropylacrylamide) microgel-based thin films and etalons (2013) ACS Appl. Mater. Interfaces, 5, pp. 11977-11983
Sorrell, C.D., Serpe, M.J., Reflection order selectivity of color-tunable poly(N-isopropylacrylamide) microgel based etalons (2011) Adv. Mater., 23, pp. 4088-4092
Lu, Y., Drechsler, M., Charge-induced self-assembly of 2-dimensional thermosensitive microgel particle patterns (2009) Langmuir, 25, pp. 13100-13105
Iori, F., Corni, S., Di Felice, R., Unraveling the interaction between histidine side chain and the Au(111) surface: A DFT study (2008) J. Phys. Chem. C, 112, pp. 13540-13545
Yin, X., Hoffman, A.S., Stayton, P.S., Poly (N-isopropylacrylamide-co-propylacrylic acid) copolymers that respond sharply to temperature and pH (2006) Biomacromolecules, 7, pp. 1381-1385
Wang, B., Xu, X.-D., Wang, Z.-C., Cheng, S.-X., Zhang, X.-Z., Zhuo, R.-X., Synthesis and properties of pH and temperature sensitive P (NIPAAm-co-DMAEMA) hydrogels (2008) Colloids Surf. B Biointerfaces, 64, pp. 34-41
Aguilar, M., San Román, J., Introduction to smart polymers and their applications (2014) Smart Polymers and Their Applications, pp. 1-11. , Elsevier: New York, NY, USA
Optimization Strategies for Responsivity Control of Microgel Assisted Lab-On-Fiber Optrodes
Integrating multi-responsive polymers such as microgels onto optical fiber tips, in a controlled fashion, enables unprecedented functionalities to Lab-on-fiber optrodes. The creation of a uniform microgel monolayer with a specific coverage factor is crucial for enhancing the probes responsivity to a pre-defined target parameter. Here we report a reliable fabrication strategy, based on the dip coating technique, for the controlled realization of microgel monolayer onto unconventional substrates, such as the optical fiber tip. The latter was previously covered by a plasmonic nanostructure to make it sensitive to superficial environment changes. Microgels have been prepared using specific Poly(N-isopropylacrylamide)-based monomers that enable bulky size changes in response to both temperature and pH variations. The formation of the microgel monolayer is efficiently controlled through the selection of suitable operating pH, temperature and concentration of particle dispersions used during the dipping procedure. The effect of each parameter has been evaluated, and the validity of our procedure is confirmed by means of both morphological and optical characterizations. We demonstrate that when the coverage factor exceeds 90%, the probe responsivity to microgels swelling/collapsing is significantly improved. Our study opens new paradigms for the development of engineered microgels assisted Lab-on-Fiber probes for biochemical applications.
Optimization Strategies for Responsivity Control of Microgel Assisted Lab-On-Fiber Optrodes
No results. Nessun risultato.
Optimization Strategies for Responsivity Control of Microgel Assisted Lab-On-Fiber Optrodes
7 Records (5 escludendo Abstract e Conferenze). Impact factor totale: 13.103 (12.145 escludendo Abstract e Conferenze). Impact factor a 5 anni totale: 14.646 (13.799 escludendo Abstract e Conferenze).
Last modified by Ultima modifica di Gennaro Angrisano on in data Sunday 12 July 2020, 13:14:41 317 views visite. Last view on Ultima visita in data Friday 26 February 2021, 10:40:07