Keywords Parole chiave: Not available. Non disponibili.
Affiliations Affiliazioni: *** IBB - CNR ***
Optoelectronics Group, Department of Engineering, University of Sannio, I-82100, Benevento, Italy. ENEA, Portici Research Center, P.le E. Fermi 1, I-80055 Portici, Napoli, Italy. Institute of Biostructure and Bioimaging, National Research Council, I-80143, Napoli, Italy.
References Riferimenti: Pelton, R., Hoare, T., Microgels and their synthesis: An introduction (2011) Microgel Suspensions: Fundamentals and Applications, 1, pp. 1-3
Hendrickson, G.R., Smith, M.H., South, A.B., Lyon, L.A., Design of multiresponsive hydrogel particles and assemblies (2010) Advanced Functional Materials, 20, pp. 1697-1712
Hendrickson, G.R., Lyon, L.A., Bioresponsive hydrogels for sensing applications (2009) Soft Matter, 5, pp. 29-35
Hoare, T., Pelton, R., Highly pH and temperature responsive microgels functionalized with vinylacetic acid (2004) Macromolecules, 37, pp. 2544-2550
Debord, J.D., Lyon, L.A., Synthesis and characterization of pH-responsive copolymer microgels with tunable volume phase transition temperatures (2003) Langmuir, 19, pp. 7662-7664
Jochum, F.D., Theato, P., Temperature- A nd light-responsive smart polymer materials (2013) Chem Soc Rev, 42, pp. 7468-7483
Plamper, F.A., Richtering, W., Functional Microgels and Microgel Systems (2017) Accounts Chem Res, 50, pp. 131-140
Buenger, D., Topuz, F., Groll, J., Hydrogels in sensing applications (2012) Prog Polym Sci, 37, pp. 1678-1719
Wei, M.L., Gao, Y.F., Li, X., Serpe, M.J., Stimuli-responsive polymers and their applications (2017) Polym Chem-UK, 8, pp. 127-143
Sorrell, C.D., Serpe, M.J., Glucose sensitive poly (N-isopropylacrylamide) microgel based etalons (2012) Anal Bioanal Chem, 402, pp. 2385-2393
Islam, M.R., Serpe, M.J., Polyelectrolyte mediated intra and intermolecular crosslinking in microgel-based etalons for sensing protein concentration in solution (2013) Chem Commun, 49, pp. 2646-2648
Islam, M.R., Ahiabu, A., Li, X., Serpe, M.J., Poly (N-isopropylacrylamide) microgel-based optical devices for sensing and biosensing (2014) Sensors-Basel, 14, pp. 8984-8995
Tsuji, S., Kawaguchi, H., Colored thin films prepared from hydrogel microspheres (2005) Langmuir, 21, pp. 8439-8442
Nerapusri, V., Keddie, J.L., Vincent, B., Bushnak, I.A., Swelling and deswelling of adsorbed microgel monolayers triggered by changes in temperature, pH, and electrolyte concentration (2006) Langmuir, 22, pp. 5036-5041
Serpe, M.J., Jones, C.D., Lyon, L.A., Layer-by-layer deposition of thermoresponsive microgel thin films (2003) Langmuir, 19, pp. 8759-8764
South, A.B., Whitmire, R.E., Garcia, A.J., Lyon, L.A., Centrifugal deposition of microgels for the rapid assembly of nonfoulingthin films (2009) Acs Appl Mater Inter, 1, pp. 2747-2754
Giaquinto, M., Microgel photonics and lab on fiber technology for advanced label free fiber optic nanoprobes (2016) Proc Spie, p. 9916
Aliberti, A., Microgel assisted lab-on-fiber optrode (2017) Sci Rep-UK, p. 7
Ricciardi, A., Aliberti, A., Giaquinto, M., Micco, A., Cusano, A., Microgel Photonics: A breathing cavity onto optical fiber tip (2015) Proc Spie, p. 9634
Carotenuto, B., Optical guidance systems for epidural space identification (2017) Ieee J Sel Top Quant, p. 23
Pelton, R., Adv. Colloids Interface Sci (2000), 85, pp. 1-33
Aulasevich, A., Optical waveguide spectroscopy for the investigation of protein-functionalized hydrogel films (2009) Macromol Rapid Comm, 30, pp. 872-877
Burmistrova, A., Steitz, R., Von Klitzing, R., Temperature response of pnipam derivatives at planar surfaces: Comparison between polyelectrolyte multilayers and adsorbed microgels (2010) Chemphyschem, 11, pp. 3571-3579
Li, H., (2009) In Smart Hydrogel Modelling, pp. 57-114. , Springer
Gupta, D.K., Karthickeyan, D., Tata, B.V.R., Ravindran, T.R., Temperature-driven volume phase transition of a single stimuli-responsive microgel particle using optical tweezers (2016) Colloid Polym Sci, 294, pp. 1901-1908
Howe, A.J., Howe, A.M., Routh, A.F., The viscosity of dilute poly(N-isopropylacrylamide) dispersions (2011) J Colloid Interf Sci, 357, pp. 300-307
Romeo, G., Imperiali, L., Kim, J.W., Fernandez-Nieves, A., Weitz, D.A., Origin of de-swelling and dynamics of dense ionic microgel suspensions (2012) J Chem Phys, 136
Consales, M., Lab-on-fiber technology: Toward multifunctional optical nanoprobes (2012) Acs Nano, 6, pp. 3163-3170. , 22401595
Ricciardi, A., Versatile optical fiber nanoprobes: From plasmonic biosensors to polarization-sensitive devices (2014) Acs Photonics, 1, pp. 69-78
Cusano, A., Consales, M., Crescitelli, A., Ricciardi, A., (2015) Lab-on-fiber Technology, 56. , Springer
Ricciardi, A., Lab-on-fiber technology: A new vision for chemical and biological sensing (2015) Analyst, 140, pp. 8068-8079. , 2015Ana.140.8068R 26514109
Vaiano, P., Lab on fiber technology for biological sensing applications (2016) Laser Photonics Rev, 10, pp. 922-961
Micco, A., Ricciardi, A., Pisco, M., La Ferrara, V., Cusano, A., Optical fiber tip templating using direct focused ion beam milling (2015) Sci Rep-UK, p. 5
Dahlin, A.B., Wittenberg, N.J., Hoök, F., Oh, S.-H., Promises and challenges of nanoplasmonic devices for refractometric biosensing (2013) Nanophotonics, 2, pp. 83-101
Spackova, B., Wrobel, P., Bockova, M., Homola, J., Optical biosensors based on plasmonic nanostructures: A review (2016) P IEEE, 104, pp. 2380-2408
Giaquinto, M., Ricciardi, A., Cutolo, A., Cusano, A., Lab-on-fiber plasmonic probes for ultrasound detection: A comparative study (2016) J Lightwave Technol, 34, pp. 5189-5198
Zhang, Z.Y., Zhao, P., Lin, P., Sun, F.G., Thermo-optic coefficients of polymers for optical waveguide applications (2006) Polymer, 47, pp. 4893-4896
Kamikawachi, R.C., Determination of thermo-optic coefficient in liquids with fiber Bragg grating refractometer (2008) Opt Commun, 281, pp. 621-625
Horecha, M., Ordered surface structures from PNIPAM-based loosely packed microgel particles (2010) Soft Matter, 6, pp. 5980-5992
Plunkett, K.N., Zhu, X., Moore, J.S., Leckband, D.E., PNIPAM chain collapse depends on the molecular weight and grafting density (2006) Langmuir, 22, pp. 4259-4266
Schmidt, S., Motschmann, H., Hellweg, T., Von Klitzing, R., Thermoresponsive surfaces by spin-coating of PNIPAM-co-PAA microgels: A combined AFM and ellipsometry study (2008) Polymer, 49, pp. 749-756
Wiedemair, J., In-situ AFM studies of the phase-transition behavior of single thermoresponsive hydrogel particles (2007) Langmuir, 23, pp. 130-137
Palik, E.D., (1998) Handbook of Optical Constants of Solids, 3. , Academic press
Malitson, I., Interspecimen comparison of the refractive index of fused silica (1965) Josa, 55, pp. 1205-1209
Light-microgel interaction in resonant nanostructures
Vitiello M, Finamore E, Falanga A, Raieta K, Cantisani M, Galdiero F, Pedone C, Galdiero M, Galdiero S * Fusion in Coq(399 visite) Lecture Notes In Computer Science (ISSN: 0302-9743, 0302-974335404636319783540463634, 0302-974335402975459783540297543), 2001; 2178LNCS: 583-596. Impact Factor:0.415 DettagliEsporta in BibTeXEsporta in EndNote
432 Records (412 escludendo Abstract e Conferenze). Impact factor totale: 1691.937 (1633.808 escludendo Abstract e Conferenze). Impact factor a 5 anni totale: 1771.121 (1706.06 escludendo Abstract e Conferenze).
Last modified by Ultima modifica di Giuseppina De Rosa on in data Sunday 12 July 2020, 13:14:41 282 views visite. Last view on Ultima visita in data Friday 26 February 2021, 10:54:16