Free-Energy Profile for CO Binding to Separated Chains of Human and Trematomus newnesi Hemoglobin: Insights from Molecular Dynamics Simulations and Perturbed Matrix Method
Free-Energy Profile for CO Binding to Separated Chains of Human and Trematomus newnesi Hemoglobin: Insights from Molecular Dynamics Simulations and Perturbed Matrix Method(259 views visite) Merlino A, Vergara A, Sica F, Aschi M, Amadei A, Di Nola A, Mazzarella L
J Phys Chem B (ISSN: 1520-6106, 1520-5207, 1520-5207electronic), 2010 May 27; 114(20): 7002-7008.
Keywords Parole chiave: Binding Energy, Dissociation, Free Energy, Hemoglobin, Molecular Dynamics, Porphyrins, Rate Constants, Biochemical Reactions, Co Complexes, Common Dynamics, Data Support, Dynamic Property, Energy Profile, Experimental Data, Kinetic Constant, Molecular Dynamics Simulations, Perturbed Matrix Methods, Structural Differences, Reaction Kinetics,
Affiliations Affiliazioni: *** IBB - CNR ***
Dipartimento di Chimica, University of Naples Federico II, Complesso Universitario Monte S. Angelo, Via Cinthia, I-80126 Naples, Italy Istituto di Biostrutture e Bioimmagini, CNR, Via Mezzocannone 16, I-80134 Naples, Italy Dipartimento di Scienze e Tecnologie Chimiche, University of Rome Tor Vergata, Via della Ricerca scientifica 1, I-00133 Roma, Italy
References Riferimenti: Perutz, M., (1970) Nature (London), 228, p. 73
Mueser, T.C., Rogers, P.H., Arnone, A., (2000) Biochemistry, 39, p. 15353
Schumacher, M.A., Dixon, M.M., Kluger, R., Jones, R.T., Brennan, R.G., (1995) Nature, 375, p. 84
Schumacher, M.A., Zheleznova, E.E., Poundstone, K.S., Kluger, R., Jones, R.T., Brennan, R.G., (1997) Proc. Natl. Acad. Sci. U.S.A., 94, p. 7841
Tame, J.R.H., (1999) Trends Biochem. Sci., 24, p. 372
Sanna, M.T., Razynska, A., Karavitis, M., Koley, A.P., Friedman, F.K., Russu, I.M., Brinigar, W.S., Fronticelli, C., (1997) J. Biol. Chem., 272, p. 3478
Bucci, E., Fronticelli, C., (1971) Biochim. Biophys. Acta, 243, p. 170
Waks, M., Yip, Y.K., Beychok, S., (1973) J. Biol. Chem., 248, p. 6462
Yamaguchi, T., Pang, J., Reddy, K.S., Witkowska, H.E., Surrey, S., Adachi, K., (1996) J. Biol. Chem., 271, p. 26677
Sugita, Y., (1975) J. Biol. Chem., 250, p. 1251
Asakura, T., Adachi, K., Sono, M., Friedman, S., Schwartz, E., (1974) Biochem. Biophys. Res. Commun., 57, p. 780
Brunori, M., Noble, R.W., Antonini, E., Wyman, J., (1966) J. Biol. Chem., 241, p. 5238
Noble, R.W., Gibson, Q.H., Brunori, M., Antonini, E., Wyman, J., (1969) J. Biol. Chem., 244, p. 3905
Gibson, Q.H., Ikeda-Saito, M., Yonetani, T., (1985) J. Biol. Chem., 260, p. 14126
Geraci, G., Parkhurst, L.J., Gibson, Q.H., (1969) J. Biol. Chem., 244, p. 4664
Sharma, V.S., Bandyopadhyay, D., Berjis, M., Rifkind, J., Boss, G.R., (1991) J. Biol. Chem., 266, p. 24492
Olson, J.S., Rohlfs, R.J., Gibson, Q.H., (1987) J. Biol. Chem., 262, p. 12930
Hernan, R.A., Sligar, S.G., (1995) J. Biol. Chem., 270, p. 26257
Yokoyama, T., Chong, K.T., Miyazaki, G., Morimoto, H., Shih, D.T.B., Unzai, S., Tame, J.R.H., Park, S.-Y., (2004) J. Biol. Chem., 279, p. 28632
Amadei, A., D'Alessandro, M., Aschi, M., (2004) J. Phys. Chem. B, 108, p. 16250
Alcantara, R.E., Xu, C., Spiro, T.G., Guallar, V., (2007) Proc. Natl. Acad. Sci. U.S.A., 104, p. 18451
Ma, J.G., Laberge, M., Song, X.Z., Jentzen, W., Jia, S.L., Zhang, J., Vanderkooi, J.M., Shelnutt, J.A., (1998) Biochemistry, 37, p. 5118
Amadei, A., D'Abramo, M., Daidone, I., D'Alessandro, M., Di Nola, A., Aschi, M., (2007) Theor. Chem. Acc., 117, p. 637
Vergara, A., Vitagliano, L., Verde, C., Di Prisco, G., Mazzarella, L., (2008) Methods Enzymol., 436, p. 425
Vitagliano, L., Bonomi, G., Riccio, A., Di Prisco, G., Smulevich, G., Mazzarella, L., (2004) Eur. J. Biochem., 271, p. 1651
Riccio, A., Vitagliano, L., Di Prisco, G., Zagari, A., Mazzarella, L., (2002) Proc. Natl. Acad. Sci. U.S.A., 99, p. 9801
Vitagliano, L., Vergara, A., Bonomi, G., Merlino, A., Verde, C., Di Prisco, G., Howes, B.D., Mazzarella, L., (2008) J. Am. Chem. Soc., 130, p. 10527
Merlino, A.V.L., Howes, B.D., Verde, C., Di Prisco, G., Smulevich, G., Sica, F., Vergara, A., (2009) Biopolymers., 91, p. 1117
Chothia, C., Lesk, A.M., (1980) Protein Folding, Proc. Conf. Ger. Biochem. Soc., 28th, p. 63
Bashford, D., Chothia, C., Lesk, A.M., (1987) J. Mol. Biol., 196, p. 199
Van Der Spoel, D., Lindahl, E., Hess, B., Groenhof, G., Mark, A.E., Berendsen, H.J., (2005) J. Comput. Chem., 26, p. 1701
Park, S.-Y., Yokoyama, T., Shibayama, N., Shiro, Y., Tame, J.R.H., (2006) J. Mol. Biol., 360, p. 690
Mazzarella, L., D'Avino, R., Di Prisco, G., Savino, C., Vitagliano, L., Moody, P.C.E., Zagari, A., (1999) J. Mol. Biol., 287, p. 897
Berendsen, H.J.C., Postma, J.P.M., Van Gusteren, W.F., Hermans, J., (1981) Dordrecht: Reidel, p. 331
Kerwin, B.A., Looker, D.G., Hess, E., Revilla-Sharp, P., Akers, M.J., (1997) Book of Abstracts, 213th ACS National Meeting, , San Francisco, April 13-17, I&EC
Darden, T., York, D., Pedersen, L., (1993) J. Chem. Phys., p. 10089
Amadei, A., Ceruso, M.A., Di Nola, A., (1999) Proteins, 36, p. 419
Merlino, A., Vitagliano, L., Ceruso, M.A., Di Nola, A., Mazzarella, L., (2002) Biopolymers, 65, p. 274
Ceruso, M.A., Amadei, A., Di Nola, A., (1999) Protein Sci., 8, p. 147
Merlino, A., Ceruso, M.A., Vitagliano, L., Mazzarella, L., (2005) Biophys. J., 88, p. 2003
Amadei, A., De Groot, B.L., Ceruso, M.A., Paci, M., Di Nola, A., Berendsen, H.J., (1999) Proteins, 35, p. 283
Savino, C.M.A., Draghi, F., Johnson, K.A., Sciara, G., Brunori, M., Vallone, B., (2009) Biopolymers, 91, p. 1097
Cohen, J., Braun, R., Schulten, K., (2006) Biophys. J., 91, p. 1844
Cohen, J., K., S., (2007) Biophys. J., 93, p. 3591
Mathews, A.J., Rohlfs, R.J., Olson, J.S., Tame, J., Renaud, J.P., Nagai, K., (1989) J. Biol. Chem., 264, p. 16573
Kaca, W., Roth, R.I., Vandegriff, K.D., Chen, G.C., Kuypers, F.A., Winslow, R.M., Levin, J., (1995) Biochemistry, 34, p. 11176
Giacometti, G.M., Brunori, M., Antonini, E., Di Iorio, E.E., Winterhalter, K.H., (1980) J. Biol. Chem., 255, p. 6160
Mueser, T. C., Rogers, P. H., Arnone, A., (2000) Biochemistry, 39, p. 15353
Schumacher, M. A., Dixon, M. M., Kluger, R., Jones, R. T., Brennan, R. G., (1995) Nature, 375, p. 84
Schumacher, M. A., Zheleznova, E. E., Poundstone, K. S., Kluger, R., Jones, R. T., Brennan, R. G., (1997) Proc. Natl. Acad. Sci. U. S. A., 94, p. 7841
Tame, J. R. H., (1999) Trends Biochem. Sci., 24, p. 372
Sanna, M. T., Razynska, A., Karavitis, M., Koley, A. P., Friedman, F. K., Russu, I. M., Brinigar, W. S., Fronticelli, C., (1997) J. Biol. Chem., 272, p. 3478
Waks, M., Yip, Y. K., Beychok, S., (1973) J. Biol. Chem., 248, p. 6462
Noble, R. W., Gibson, Q. H., Brunori, M., Antonini, E., Wyman, J., (1969) J. Biol. Chem., 244, p. 3905
Gibson, Q. H., Ikeda-Saito, M., Yonetani, T., (1985) J. Biol. Chem., 260, p. 14126
Sharma, V. S., Bandyopadhyay, D., Berjis, M., Rifkind, J., Boss, G. R., (1991) J. Biol. Chem., 266, p. 24492
Olson, J. S., Rohlfs, R. J., Gibson, Q. H., (1987) J. Biol. Chem., 262, p. 12930
Hernan, R. A., Sligar, S. G., (1995) J. Biol. Chem., 270, p. 26257
Alcantara, R. E., Xu, C., Spiro, T. G., Guallar, V., (2007) Proc. Natl. Acad. Sci. U. S. A., 104, p. 18451
Ma, J. G., Laberge, M., Song, X. Z., Jentzen, W., Jia, S. L., Zhang, J., Vanderkooi, J. M., Shelnutt, J. A., (1998) Biochemistry, 37, p. 5118
Boechi, L., Ma ez, P. A., Luque, F. J., Marti, M. A., Estrin, D. A., (2010) Proteins, 78, p. 962
Merlino, A. V. L., Howes, B. D., Verde, C., Di Prisco, G., Smulevich, G., Sica, F., Vergara, A., (2009) Biopolymers., 91, p. 1117
Park, S. -Y., Yokoyama, T., Shibayama, N., Shiro, Y., Tame, J. R. H., (2006) J. Mol. Biol., 360, p. 690
Berendsen, H. J. C., Postma, J. P. M., Van Gusteren, W. F., Hermans, J., (1981) Dordrecht: Reidel, p. 331
Kerwin, B. A., Looker, D. G., Hess, E., Revilla-Sharp, P., Akers, M. J., (1997) Book of Abstracts, 213th ACS National Meeting, , San Francisco, April 13-17, I&EC
Ceruso, M. A., Amadei, A., Di Nola, A., (1999) Protein Sci., 8, p. 147
(2004) Gaussian 03, , revision C. 02
Schmidt, K. K. B. M. W., Boatz, J. A., Elbert, S. T., Gordon, M. S., Jensen, J. H., Koseki, S., Matsunaga, N., Montgomery, J. A., (1993) J. Comput. Chem., 14, p. 1347
Lee, C. Y. W., Parr, R. G., (1988) Phys. Rev. B, 37, p. 785
Hay, P. J., Wadt, W. R., (1985) J. Chem. Phys., 82, p. 270
Song, X. J., Yuan, Y., Simplaceanu, V., Sahu, S. C., Ho, N. T., Ho, C., (2007) Biochemistry, 46, p. 6795
Savino, C. M. A., Draghi, F., Johnson, K. A., Sciara, G., Brunori, M., Vallone, B., (2009) Biopolymers, 91, p. 1097
Mathews, A. J., Rohlfs, R. J., Olson, J. S., Tame, J., Renaud, J. P., Nagai, K., (1989) J. Biol. Chem., 264, p. 16573
Kaca, W., Roth, R. I., Vandegriff, K. D., Chen, G. C., Kuypers, F. A., Winslow, R. M., Levin, J., (1995) Biochemistry, 34, p. 11176
Giacometti, G. M., Brunori, M., Antonini, E., Di Iorio, E. E., Winterhalter, K. H., (1980) J. Biol. Chem., 255, p. 6160
Free-Energy Profile for CO Binding to Separated Chains of Human and Trematomus newnesi Hemoglobin: Insights from Molecular Dynamics Simulations and Perturbed Matrix Method
The free-energy profile and the classical kinetics of the heme carbomonoxide binding-unbinding reaction have been derived by means of a theoretical method for the separated chains of human (HbA) and Trematomus newnesi major component (HbTn) hemoglobin. The results reveal that the alpha- and beta-chains of HbA have similar values of kinetic constants for the dissociation of the Fe-CO state, in agreement with experimental data. Comparisons of the present findings with the data obtained for the alpha- and beta-chains of HbTn and with theoretical and experimental results previously collected on myoglobin provide a detailed picture of this important biochemical reaction in globins. The sequence and structural differences among the globins are not reflected in meaningful variations in the rate of CO dissociation. These data support the conclusion that the differences observed for the reaction with CO of globins, if any, involve the rate of ligand migration to the solvent, rather than the Fe-CO complex formation/rupture. Furthermore, our results agree with the recent discovery that globin family proteins exhibit common dynamics, thus confirming the observation that the dynamic properties of proteins are strongly related to their overall architecture.
Free-Energy Profile for CO Binding to Separated Chains of Human and Trematomus newnesi Hemoglobin: Insights from Molecular Dynamics Simulations and Perturbed Matrix Method
Free-Energy Profile for CO Binding to Separated Chains of Human and Trematomus newnesi Hemoglobin: Insights from Molecular Dynamics Simulations and Perturbed Matrix Method
Aloj L, Aurilio M, Rinaldi V, D'Ambrosio L, Tesauro D, Peitl PK, Maina T, Mansi R, Von Guggenberg E, Joosten L, Sosabowski JK, Breeman WA, De Blois E, Koelewijn S, Melis M, Waser B, Beetschen K, Reubi JC, De Jong M * The EEE project(387 visite) Proc Int Cosm Ray Conf Icrc Universidad Nacional Autonoma De Mexico, 2007; 5(HEPART2): 977-980. Impact Factor:0 DettagliEsporta in BibTeXEsporta in EndNote
314 Records (305 escludendo Abstract e Conferenze). Impact factor totale: 1282.366 (1225.75 escludendo Abstract e Conferenze). Impact factor a 5 anni totale: 1375.777 (1295.801 escludendo Abstract e Conferenze).
Last modified by Ultima modifica di Marco Comerci on in data Sunday 12 July 2020, 13:15:00 259 views visite. Last view on Ultima visita in data Thursday 04 February 2021, 8:04:17