Dipartimento di Scienze Chimiche, Università di Catania, Viale Andrea Doria 6, 95125 Catania, Italy Scuola Superiore di Catania, Università di Catania, Via S. Paolo 73, Catania, Italy Istituto Biostrutture e Bioimmagini, CNR, Viale A. Doria 6, Catania, Italy
References Riferimenti: Whitesides, G.M., (2006) Nature, 442, pp. 368-37
D'Agata, R., Grasso, G., Spoto, G., (2008) Open Spectr. J., 1, pp. 1-9
Homola, J., (2008) Chem. Rev., 108, pp. 462-493
Shumaker-Parry, J.S., Campbell, C.T., (2004) Anal. Chem., 76, pp. 907-917
Arena, G., Contino, A., Longo, E., Sgarlata, C., Spoto, G., Zito, V., (2004) Chem. Commun., 16, pp. 1812-1813
Wark, A.W., Lee, H.J., Corn, R.M., (2008) Handbook of Surface Plasmon Resonance, pp. 246-274. , Schasfoort R.B.M., and Tudos A.J. (Eds), The Royal Society of Chemistry
Shinohara, Y., Kim, F., Shimizu, M., Goto, M., Tosu, M., Hasegawa, Y., (1994) Eur. J. Biochem., 223, pp. 189-194
Whitesides, G. M., (2006) Nature, 442, pp. 368-37
Squires, T. M., Quake, S. R., (2005) Rev. Mod. Phys., 77, pp. 977-1026
Liang, X., Chou, S. Y., (2008) Nano Lett., 8, pp. 1472-1476
Jung, S. Y., Liu, Y., Collier, C. P., (2008) Langmuir, 24, pp. 4439-4442
Kastrup, C. J., Boedicker, J. Q., Pomerantsev, A. P., Moayeri, M., Bian, Y., Pompano, R. R., Kline, T. R., Leppla, S. H., (2008) Nat. Chem. Biol., 4, pp. 742-750
The, S. Y., Lin, R., Hung, L. H., Lee, A. P., (2008) Lab Chip, 8, pp. 198-220
Taylor, J. D., Linman, M. J., Wilkop, T., Cheng, Q., (2009) Anal. Chem., 81, pp. 1146-1153
Shumaker-Parry, J. S., Campbell, C. T., (2004) Anal. Chem., 76, pp. 907-917
Wark, A. W., Lee, H. J., Corn, R. M., (2008) Handbook of Surface Plasmon Resonance, pp. 246-274. , Schasfoort R. B. M., and Tudos A. J. (Eds), The Royal Society of Chemistry
Lee, H. J., Wark, A. W., Corn, R. M., (2006) Langmuir, 22, pp. 5241-5250
Ober, R. J., Ward, E. S., (1999) Anal. Biochem., 271, pp. 70-80
Wheeler, A. R., Chah, S., Whelan, R. J., Zare, R. N., (2004) Sens. Actuators, B, 98, pp. 208-214
Lee, H. J., Goodrich, T. T., Corn, R. M., (2001) Anal. Chem., 73, pp. 5525-5531
Kamholz, A. E., Schilling, E. A., Yager, P., (2001) Biophys. J., 80, pp. 1967-1972
Nelson, B. P., Frutos, A. G., Brockman, J. M., Corn, R. M., (1999) Anal. Chem., 71, pp. 3928-3934
Oshannessy, D. J., Brighamburke, M., Soneson, K. K., Hensley, P., Brooks, I., (1993) Anal. Biochem., 212, pp. 457-468
Komath, S. S., Kavithab, M., Swamy, M. J., (2006) Org. Biomol. Chem., 4, pp. 973-988
Myszka, D. G., Morton, T. A., (1998) Trends Biochem. Sci., 23, pp. 149-150
Pyo, H. -B., Shin, Y. -B., Kim, M. -G., Yoon, H. C., (2005) Langmuir, 21, pp. 166-171
Culbertson, C. T., Jacobson, S. C., Ramsey, J. M., (2002) Talanta, 56, pp. 365-373
Morton, T. A., Myszka, D. G., Chaiken, I. M., (1995) Anal. Biochem., 227, pp. 176-185
Microfluidic networks for surface plasmon resonance imaging real-time kinetics experiments
The coupling of microfluidic devices with surface plasmon resonance imaging (SPRI) has emerged in recent years as a novel approach for the simultaneous monitoring of interactions of biomolecules arrayed onto gold Substrates. In order to minimize a variety of effects which affect the final determination of kinetic parameters (non-specific interactions above all), difficult choices of appropriate references are often encountered in carrying out SPRI investigations. A common solution to these problems consists of laborious experimental setup involving the use of specially designed microchannels and tedious manipulation of the gold substrate that often produces surface degradation. In this work, a discussion about appropriate choice of references in SPRI measurements is opened and the use of alternative microfluidic patterns coupled to the SPRI system is proposed as a solution to the above mentioned problems. Specifically, a Y-shaped SPRI flow cell has been constructed from masters in polyvinyl chloride and it has been identified as one of the most suitable experimental approach for obtaining appropriate referencing during SPRI experiments. The experimental set up has been tested in a real time study of the interaction between the Datura Stramonium Agglutinin and the asialofetuin and the obtained results demonstrate the suitability of such microfluidic network in SPRI investigations. (C) 2009 Elsevier B.V. All rights reserved.
Microfluidic networks for surface plasmon resonance imaging real-time kinetics experiments
No results. Nessun risultato.
Microfluidic networks for surface plasmon resonance imaging real-time kinetics experiments
10 Records (9 escludendo Abstract e Conferenze). Impact factor totale: 31.411 (29.597 escludendo Abstract e Conferenze). Impact factor a 5 anni totale: 33.873 (32.054 escludendo Abstract e Conferenze).
Last modified by Ultima modifica di Marco Comerci on in data Sunday 12 July 2020, 13:15:01 229 views visite. Last view on Ultima visita in data Thursday 04 February 2021, 13:54:37