A State-Specific Pcm Td-Dft Method For Equilibrium And Non-Equilibrium Excited State Calculations In Solution(248 views visite) Improta R, Barone V, Scalmani G, Frisch MJ
Keywords Parole chiave: Not available. Non disponibili.
Affiliations Affiliazioni: *** IBB - CNR ***
Dipartimento di Chimica, Università Federico II, Complesso Monte S. Angelo, via Cintia, I-80126 Napoli, Italy and Istituto di Biostrutture e Bioimmagini-CNR, via Mezzocannone 16, 80134 Napoli, Italy Giovanni Scalmani and Michael J. Frisch Gaussian, Inc., Wallingford, Connecticut 06492 a)Electronic mail: robimp@unina.it
References Riferimenti: 1. Structure and Dynamics of Electronic Excited States, edited by J. Laane, H. Takahashi, and A. D. Bandrauk (Springer, Berlin, 1998); Google Scholar
Excited States and Photo-Chemistry of Organic Molecules, edited by M. Klessinger and J. Michl (VCH, New York, 1995). Google Scholar
2. C. H. Wang, Spectroscopy of Condensed Media (Academic, New York, 1985); Google Scholar
G.R. Fleming Chemical Applications of Ultrafast Spectroscopy (Oxford University, New York, 1986). Google Scholar
3. A. Dreuw and M. Head-Gordon, Chem. Rev. (Washington, D.C.) https://doi.org/10.1021/cr0505627 105, 4009 (2005); Google Scholar
K. Andersson and B. O. Roos, in Modern Electronic Structure Theory, edited by D. R. Yarkony (World Scientific, New York, 1995), Vol. 1, p. 55. Google ScholarCrossref, CAS
4. S. Miertuš, E. Scrocco, and J. Tomasi, Chem. Phys. https://doi.org/10.1016/0301-0104(81)85090-2 55, 117 (1981); Google Scholar
J. Tomasi and M. Persico, Chem. Rev. (Washington, D.C.) https://doi.org/10.1021/cr00031a013 94, 2027 (1994); Google Scholar
C. Amovilli, V. Barone, R. Cammi, E. Cances, M. Cossi, B. Mennucci, C. S. Pomelli, and J. Tomasi, Adv. Quantum Chem. 32, 227 (1998); Google Scholar
J. Tomasi, B. Mennucci, and R. Cammi, Chem. Rev. (Washington, D.C.) https://doi.org/10.1021/cr9904009 105, 2999 (2005). Google ScholarCrossref, CAS
5. R. Improta and V. Barone, Chem. Rev. (Washington, D.C.) https://doi.org/10.1021/cr960085f 104, 1231 (2004); Google Scholar
I. Ciofini, V. Barone, and C. Adamo, J. Chem. Phys. https://doi.org/10.1063/1.1791031 121, 6710 (2004); Google Scholar
P. Cimino and V. Barone, THEOCHEM 729, 1 (2005); Google Scholar
M. Pavone, P. Cimino, F. De Angelis, and V. Barone, J. Am. Chem. Soc. 128, 4338 (2006). Google ScholarScitation, CAS
6. M. Cossi, V. Barone, R. Cammi, and J. Tomasi, Chem. Phys. Lett. https://doi.org/10.1016/0009-2614(96)00349-1 255, 327 (1996); Google Scholar
R. Cammi, B. Mennucci, and J. Tomasi, J. Phys. Chem. A https://doi.org/10.1021/jp991564w 103, 9100 (1999). Google ScholarCrossref, CAS
7. O. Cristiansen and K. V. Mikkelsen, J. Chem. Phys. https://doi.org/10.1063/1.478026 110, 1365 (1999); Google Scholar
8. B. Mennucci, R. Cammi, and J. Tomasi, J. Chem. Phys. https://doi.org/10.1063/1.476878 109, 2798 (1998). Google ScholarScitation, CAS
9. B. Mennucci, A. Toniolo, and C. Cappelli, J. Chem. Phys. https://doi.org/10.1063/1.480048 111, 7197 (1999). Google ScholarScitation, CAS
10. M. Cossi and V. Barone, J. Chem. Phys. https://doi.org/10.1063/1.480808 112, 2427 (2000). Google ScholarScitation, CAS
11. M. Cossi, V. Barone, and M. A. Robb, J. Chem. Phys. https://doi.org/10.1063/1.479788 111, 5295 (1999). Google ScholarScitation, CAS
12. M. Cossi and V. Barone, J. Chem. Phys. https://doi.org/10.1063/1.1394921 115, 4708 (2001). Google ScholarScitation, CAS
13. R. Cammi, B. Mennucci, and J. Tomasi, J. Phys. Chem. A https://doi.org/10.1021/jp000156l 104, 5631 (2000). Google ScholarCrossref, CAS
14. M. Caricato, B. Mennucci, J. Tomasi, F. Ingrosso, R. Cammi, S. Corni, and G. Scalmani, J. Chem. Phys. https://doi.org/10.1063/1.2183309 124, 124520 (2006). Google ScholarScitation
15. J. B. Foresman, M. Head-Gordon, J. A. Pople, and M. J. Frisch, J. Phys. Chem. https://doi.org/10.1021/j100180a030 96, 135 (1992). Google ScholarCrossref, CAS
16. M. Petersilka, U. J. Gossmann, and E. K. U. Gross, Phys. Rev. Lett. https://doi.org/10.1103/PhysRevLett.76.1212 76, 1212 (1996); Google Scholar
M. K. Casida, in Recent Advances in Density Functional Methods, edited by D. P. Chong (World Scientific, Singapore, 1995), pt. 1. Google ScholarCrossref, CAS
17. C. Adamo and V. Barone, Chem. Phys. Lett. https://doi.org/10.1016/S0009-2614(99)01113-6 314, 152 (1999); Google Scholar
18. F. Aquilante, V. Barone, and B. O. Roos, J. Chem. Phys. https://doi.org/10.1063/1.1625363 119, 12323 (2003). Google ScholarScitation, CAS
19. A. Dreuw and M. Head-Gordon, J. Am. Chem. Soc. https://doi.org/10.1021/ja039556n 126, 4007 (2004); Google Scholar
A. Dreuw, J. L. Weisman, and M. Head-Gordon, J. Chem. Phys. https://doi.org/10.1063/1.1590951 119, 2943 (2003). Google ScholarScitation, ISI, CAS
20. K. Burke, J. Werschnik, and E. K. U. Gross, J. Chem. Phys. 123, 62206 (2005); Google Scholar
O. Gritsenko and E. J. Baerends, J. Chem. Phys. https://doi.org/10.1063/1.1759320 121, 655 (2004); Google Scholar
N. T. Maitra, F. Zhang, R. J. Cave, and K. Burke, J. Chem. Phys. https://doi.org/10.1063/1.1651060 120, 5932 (2004); Google Scholar
N. T. Maitra, J. Chem. Phys. https://doi.org/10.1063/1.1924599 122, 234104 (2005). Google ScholarScitation, CAS
21. R. Improta and V. Barone, J. Am. Chem. Soc. https://doi.org/10.1021/ja0460561 126, 14320 (2004); Google Scholar
O. Crescenzi, M. Pavone, F. de Angelis, and V. Barone, J. Phys. Chem. B https://doi.org/10.1021/jp046334i 109, 445 (2005); Google Scholar
N. Sanna, G. Chillemi, A. Grandi, S. Castelli, A. Desideri, and V. Barone, J. Am. Chem. Soc. 127, 15429 (2005). Google ScholarCrossref, CAS
22. G. Scalmani, M. J. Frisch, B. Mennucci, J. Tomasi, R. Cammi, and V. Barone, J. Chem. Phys. https://doi.org/10.1063/1.2173258 124, 094107 (2006). Google ScholarScitation
23. R. Cammi, S. Corni, B. Mennucci, and J. Tomasi, J. Chem. Phys. https://doi.org/10.1063/1.1867373 122, 104513 (2005). Google ScholarScitation, CAS
24. S. Corni, R. Cammi, B. Mennucci, and J. Tomasi, J. Chem. Phys. https://doi.org/10.1063/1.2039077 123, 134512 (2005). Google ScholarScitation, CAS
25. M. Cossi and V. Barone, J. Phys. Chem. A https://doi.org/10.1021/jp000997s 104, 10614 (2000). Google ScholarCrossref, CAS
26. M. A. Aguilar, J. Phys. Chem. A https://doi.org/10.1021/jp011598f 105, 10393 (2001). Google ScholarCrossref, CAS
27. J. J. Regan and J. N. Onuchic, in Electron Transfer: From Isolated Molecules to Biomolecules, edited by J. Jortner and M. Bixon (Wiley, New York, 1999), Pt. 2, p. 497; Google Scholar
R. A. Marcus and N. Sutin, Biochim. Biophys. Acta https://doi.org/10.1016/0304-4173(85)90014-X 811, 265 (1985); Google Scholar
M. D. Newton, Theor. Chem. Acc. https://doi.org/10.1007/s00214-003-0504-9 110, 307 (2003); Google Scholar
M. D. Newton and N. Sutin, Annu. Rev. Phys. Chem. https://doi.org/10.1146/annurev.physchem.35.1.437 35, 437 (1984); Google Scholar
M. D. Newton, Chem. Rev. (Washington, D.C.) https://doi.org/10.1021/cr00005a007 91, 767 (1991); Google Scholar
I. V. Leontyev, M. V. Basilevsky, and M. D. Newton, Theor. Chem. Acc. 111, 110 (2004). Google ScholarCrossref, CAS
28. M. Cossi, G. Scalmani, N. Rega, and V. Barone, J. Chem. Phys. https://doi.org/10.1063/1.1480445 117, 43 (2002). Google ScholarScitation, CAS
29. C. Adamo and V. Barone, J. Chem. Phys. https://doi.org/10.1063/1.478522 110, 6158 (1999); Google Scholar
M. Enzerhof and G. E. Scuseria, J. Chem. Phys. https://doi.org/10.1063/1.478401 110, 5029 (1999). Google ScholarScitation, ISI, CAS
30. C. Adamo, G. E. Scuseria, and V. Barone, J. Chem. Phys. https://doi.org/10.1063/1.479571 111, 2889 (2000). Google ScholarScitation
31. R. Improta, F. Santoro, C. Dietl, E. Papastathopoulos, and G. Gerber, Chem. Phys. Lett. https://doi.org/10.1016/j.cplett.2004.02.055 387, 509 (2004). Google ScholarCrossref, CAS
32. V. Barone, M. Cossi, and J. Tomasi, J. Chem. Phys. https://doi.org/10.1063/1.474671 107, 3210 (1997). Google ScholarScitation, CAS
33. M. J. Frisch, G. W. Trucks, H. B. Schlegel et al., GAUSSIAN Development Version D.02, Gaussian, Inc., Pittsburgh, PA, 2005. Google Scholar
34. M. Maroncelli and G. R. Fleming, J. Chem. Phys. https://doi.org/10.1063/1.452460 86, 6221 (1987). Google ScholarScitation, CAS
35. M. L. Horng, J. A. Gardecki, A. Papazyan, and M. Maroncelli, J. Phys. Chem. https://doi.org/10.1021/j100048a004 99, 17311 (1995). Google ScholarCrossref, CAS
36. Y. Kimura, J. Chem. Phys. https://doi.org/10.1063/1.479808 111, 5474 (1999); Google Scholar
T. Gustavsson, L. Cassara, V. Gulbinas, G. Gurzadyan, J. C. Mialocq, S. Pommeret, M. Sorgius, and P. van der Meulen, J. Phys. Chem. A https://doi.org/10.1021/jp980282d 102, 4229 (1998); Google Scholar
F. Ingrosso, B. M. Ladanyi, B. Mennucci, and G. Scalmani, J. Phys. Chem. B 110, 4953 (2006). Google ScholarScitation, CAS
37. R. J. Cave and E. W. Castner, Jr., J. Phys. Chem. A https://doi.org/10.1021/jp026718d 106, 12117 (2002). Google ScholarCrossref, CAS
38. F. Ingrosso, B. Mennucci, and J. Tomasi, J. Mol. Liq. https://doi.org/10.1016/S0167-7322(03)00172-7 108, 21 (2002). Google ScholarCrossref
39. E. G. McRae, J. Phys. Chem. https://doi.org/10.1021/j150551a012 61, 562 (1957). Google ScholarCrossref, CAS
40. L. Onsager, J. Am. Chem. Soc. https://doi.org/10.1021/ja01299a050 58, 1486 (1936). Google ScholarCrossref, CAS
A State-Specific Pcm Td-Dft Method For Equilibrium And Non-Equilibrium Excited State Calculations In Solution
An effective state specific (SS) model for the inclusion of solvent effects in time dependent density functional theory (TD-DFT) computations of excited electronic states has been developed and coded in the framework of the so-called polarizable continuum model (PCM). Different relaxation time regimes can be treated thus giving access to a number of different spectroscopic properties together with solvent relaxation energies of paramount relevance in electron transfer processes. SS and conventional linear response (LR) models have been compared for two benchmark systems (coumarin 153 and formaldehyde in different solvents) and in the limiting simple case of a dipolar solute embedded in a spherical cavity. The results point out the complementarity of LR and SS approaches and the advantages of the latter model especially for polar solvents. The favorable scaling properties of PCM-TD-DFT models in both SS and LR variants and their availability in effective quantum mechanical codes pave the route for the computation of reliable spectroscopic properties of large molecules of technological and/or biological interest in their natural environments.
A State-Specific Pcm Td-Dft Method For Equilibrium And Non-Equilibrium Excited State Calculations In Solution
Kim YH, Shin SW, Pellicano R, Fagoonee S, Choi IJ, Kim YI, Park B, Choi JM, Kim SG, Choi J, Park JY, Oh S, Yang HJ, Lim JH, Im JP, Kim JS, Jung HC, Ponzetto A, Figura N, Malfertheiner P, Choi IJ, Kook MC, Kim YI, Cho SJ, Lee JY, Kim CG, Park B, Nam BH, Bae SE, Choi KD, Choe J, Kim SO, Na HK, Choi JY, Ahn JY, Jung KW, Lee J, Kim DH, Chang HS, Song HJ, Lee GH, Jung HY, Seta T, Takahashi Y, Noguchi Y, Shikata S, Sakai T, Sakai K, Yamashita Y, Nakayama T, Leja M, Park JY, Murillo R, Liepniece-karele I, Isajevs S, Kikuste I, Rudzite D, Krike P, Parshutin S, Polaka I, Kirsners A, Santare D, Folkmanis V, Daugule I, Plummer M, Herrero R, Tsukamoto T, Nakagawa M, Kiriyama Y, Toyoda T, Cao X, Corral JE, Mera R, Dye CW, Morgan DR, Lee YC, Lin JT, Garcia Martin R, Matia Cubillo A, Lee SH, Park JM, Han YM, Ko WJ, Hahm KB, Leontiadis GI, Ford AC, Ichinose M, Sugano K, Jeong M, Park JM, Han YM, Park KY, Lee DH, Yoo JH, Cho JY, Hahm KB, Bang CS, Baik GH, Shin IS, Kim JB, Suk KT, Yoon JH, Kim YS, Kim DJ * Helicobacter pylori Eradication for Prevention of Metachronous Recurrence after Endoscopic Resection of Early Gastric Cancer(237 visite) N Engl J Med (ISSN: 0028-4793, 0028-4793linking, 1533-4406electronic), 2015 Jun; 30642104201566393291: 749-756. Impact Factor:59.558 DettagliEsporta in BibTeXEsporta in EndNote
Malvindi MA, Greco A, Conversano F, Figuerola A, Corti M, Bonora M, Lascialfari A, Doumari HA, Moscardini M, Cingolani R, Gigli G, Casciaro S, Pellegrino T, Ragusa A * MR Contrast Agents(248 visite) Small Animal Imaging, 2011 Jul 8; 21(13): 2548-2555. Impact Factor:1.784 DettagliEsporta in BibTeXEsporta in EndNote
700 Records (644 escludendo Abstract e Conferenze). Impact factor totale: 2453.156 (2291.367 escludendo Abstract e Conferenze). Impact factor a 5 anni totale: 2672.023 (2482.734 escludendo Abstract e Conferenze).
Last modified by Ultima modifica di Marco Comerci on in data Sunday 12 July 2020, 13:15:07 248 views visite. Last view on Ultima visita in data Tuesday 13 April 2021, 21:21:22