NMR structure of the single QALGGH zinc finger domain from the Arabidopsis thaliana SUPERMAN protein(329 views visite) Isernia C, Bucci E, Leone M, Zaccaro L, Di Lello P, Digilio G, Esposito S, Saviano M, Di Blasio B, Pedone C, Pedone PV, Fattorusso R
Chembiochem (ISSN: 1439-4227, 1439-7633, 1439-7633electronic), 2003 Mar 3; 4(2-3): 171-180.
Keywords Parole chiave: Dna Recognition, Nmr Spectroscopy, Structure Elucidation, Superman, Zinc Finger Domain, Alpha Amino Acid, Vegetable Protein, Zinc Finger Protein, Amino Acid Sequence, Arabidopsis, Article, Crystal Structure, Dna Binding, Ligand Binding, Nonhuman, Nuclear Magnetic Resonance Spectroscopy, Peptide Synthesis, Plant, Priority Journal, Protein Structure, Reversed Phase High Performance Liquid Chromatography, Structure Analysis, Three Dimensional Imaging, Ultraviolet Spectrophotometry, Arabidopsis Proteins, Dna-Binding Proteins, Molecular Structure, Peptide Biosynthesis, Protein Conformation, Transcription Factors, Animalia, Arabidopsis Thaliana, Embryophyta, Eukaryota,
Affiliations Affiliazioni: *** IBB - CNR ***
Dipartimento di Scienze Ambientali, Seconda Universita di Napoli, 81100 Caserta, Italy Dipartimento di Chimica Biologica, Ist. Biostrutture/Bioimmagini - CNR, Universita di Napoli Federico II, 80134 Napoli, Italy Bioindustry Park del Canavese, 10010 Colleretto Giacosa, Torino, Italy
Houbaviy, H.B., Husheva, A., Shenk, T., Burley, S.K., (1996) Proc. Natl. Acad. Sci. USA, 93, pp. 13577-13582
Kochoyan, M., Havel, T.F., Nguyen, D.T., Dahl, C.E., Keutmann, H.T., Weiss, M.A., (1991) Biochemistry, 30, pp. 3371-3386
Berg, J. M., (1995) Acc. Chem. Res., 28, pp. 14-1
Berg, J. M., Godwin, H. A., (1997) Annu. Rev. Biophys. Biomol. Struct., 26, pp. 357-371
Schwabe, J. W. R., Klug, A., (1994) Nat. Struct. Biol., 1, pp. 345-349
Hanas, J. S., Hazuda, D. J., Bogenhagen, D. F., Wu, F. Y. -H., Wu, C. -W., (1983) J. Biol. Chem., 258, pp. 14120-14125
Wolfe, S. A., Nekludova, L., Pabo, C. O., (2000) Annu. Rev. Biophys. Biomol. Struct., 29, pp. 183-212
Foster, M. P., Wuttke, D. S., Radhakrishnan, I., Case, D. A., Gottesfeld, J. M., Wright, P. E., (1997) Nat. Struct. Biol., 4, pp. 605-608
Pedone, P. V., Ghirlando, R., Clore, G. M., Gronenborn, A., Felsenfeld, G., Omichinski, J., (1996) Proc. Natl. Acad. Sci. USA, 93, pp. 2822-2826
Omichinski, J. G., Pedone, P. V., Felsenfeld, G., Gronenborn, A., Clore, G. M., (1997) Nat. Struct. Biol., 4, pp. 122-132
Gerber, H. P., Seipel, K., Georgiev, O., Hofferer, M., Hug, M., Rusconi, S., Schaffner, W., (1994) Science, 263, pp. 808-811
Soeller, W. C., Oh, C. E., Kornberg, T. B., (1993) Mol. Cell. Biol., 13, pp. 7961-7970
Wisz, M. S., Garrett, C. Z., Hellinga, H. W., (1998) Biochemistry, 37, pp. 8269-8277
Berg, J. M., Merkle, D. L., (1989) J. Am. Chem. Soc., 111, pp. 3759-3761
W thrich, K., (1986) NMR of Proteins and Nucleic Acids, , Wiley, New York
Lee, M. S., Mortishire-Smith, R. J., Wright, P., (1992) FEBS Lett., 309, pp. 29-32
G ntert, P., Mumenthaler, C., W thrich, K., (1997) J. Mol. Biol., 273, pp. 283-298
Laskowski, R. A., Rullmannn, J. A., MacArthur, M. W., Kaptein, R., Thornton, J. M., (1996) J. Biomol. NMR, 8, pp. 477-486
Laity, J. H., Lee, B. M., Wright, P., (2001) Curr. Opin. Struct. Biol., 11, pp. 39-46
Pabo, O. C., Peisach, E., Grant, R. A., (2001) Annu. Rev. Biochem., 70, pp. 313-340
Carpino, L. A., (1993) J. Am. Chem. Soc., 115, pp. 4397-4398
Riddles, P. W., Blakeley, R. L., Zerner, B., (1983) Methods Enzymol., 91, pp. 49-60
Pace, C. N., Vajdos, F., Fee, L., Grimsley, G., Gray, T., (1995) Protein Sci., 4, pp. 2411-2423
G ntert, P., D tsch, V., Wider, G., (1992) J. Biomol. NMR, 2, pp. 619-629
Van Gunsteren, W. F., Billeter, S. R., Eising, A. A., Hunenberger, P. H., Kruger, P., Mark, A. E., Scott, W. R. P., Tironi, I. G., (1996) Biomolecular Simulation: The Gromos96 Manual and User Guide, , BIOMOs b. v. Z rich, Groningen, The Netherlands
Bowres, M. P., Schaufler, L. E., Klevit, R. E., (1999) Nat. Struct. Biol., 6, pp. 478-485
Omichinski, J. G., Clore, G. M., Appella, E., Sakaguchi, K., Gronenborn, A. M., (1990) Biochemistry, 29, pp. 9324-9334
Lee, M. S., Gippert, G. R., Soman, K. V., Case, D. A., Wright, P. E., (1989) Science, 245, pp. 635-637
Houbaviy, H. B., Husheva, A., Shenk, T., Burley, S. K., (1996) Proc. Natl. Acad. Sci. USA, 93, pp. 13577-13582
NMR structure of the single QALGGH zinc finger domain from the Arabidopsis thaliana SUPERMAN protein
Zinc finger domains of the classical type represent the most abundant DNA binding domains in eukaryotic transcription factors. Plant proteins contain from one to four zinc finger domains, which are characterized by high conservation of the sequence QALGGH, shown to be critical for DNA-binding activity The Arabidopsis thaliana SUPERMAN protein, which contains a single QALGGH zinc finger, is necessary for proper spatial development of reproductive floral tissues and has been shown to specifically bind to DNA. Here, we report the synthesis and UV and NMR spectroscopic structural characterization of a 37 amino acid SUPERMAN region complexed to a Zn2+ ion (Zn - SUP37) and present the first high-resolution structure of a classical zinc finger domain from a plant protein. The NMR structure of the SUPERMAN zinc finger domain consists of a very well-defined ββα motif, typical of all other Cys2-His2 zinc fingers structurally characterized. As a consequence, the highly conserved QALGGH sequence is located at the N terminus of the α helix. This region of the domain of animal zinc finger proteins consists of hypervariable residues that are responsible for recognizing the DNA bases. Therefore, we propose a peculiar DNA recognition code for the QALGGH zinc finger domain that includes all or some of the amino acid residues at positions - 1, 2, and 3 (numbered relative to the N terminus of the helix) and possibly others at the C-terminal end of the recognition helix. This study further confirms that the zinc finger domain, though very simple, is an extremely versatile DNA binding motif.
NMR structure of the single QALGGH zinc finger domain from the Arabidopsis thaliana SUPERMAN protein
66 Records (66 escludendo Abstract e Conferenze). Impact factor totale: 271.182 (271.182 escludendo Abstract e Conferenze). Impact factor a 5 anni totale: 273.121 (273.121 escludendo Abstract e Conferenze).
Last modified by Ultima modifica di Marco Comerci on in data Sunday 12 July 2020, 13:15:11 329 views visite. Last view on Ultima visita in data Thursday 25 February 2021, 17:46:06