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a b s t r a c t

The last decade has witnessed an exponential increase in older adult population suffering from chronic life-long
diseases and needing healthcare. This situation has highlighted a need to revolutionize healthcare and provide
innovative, efficient, and affordable solutions to patients at any time and from anywhere in an economic and
friendly manner. The recent developments in sensing, mobile, and embedded devices have attracted considerable
attention toward mobile health monitoring applications. However, existing architectures aimed at facilitating the
realization of these mobile applications have shown to be not suitable to address all these challenging issues: (i)
the seamless integration of heterogeneous devices; (ii) the estimation of vital parameters not measurable directly
or measurable with a low accuracy; (iii) the extraction of context information pertaining to the patient’s activity to
be used for the interpretation of vital parameters; (iv) the correlation of physiological and contextual information
to detect suspicious anomalies and supply alerts; (v) the notification of anomalies to doctors and caregivers only
when their detection is accurate and appropriate. In light of the above, this paper presents a smart mobile, self-
configuring, context-aware architecture devised to enable the rapid prototyping of personal health monitoring
applications for different scenarios, by exploiting commercial wearable sensors and mobile devices as well as
knowledge-based technologies. This architecture is organized as a composition of four tiers that operate on a
layered fashion and it exploits an ontology-based data model to ensure intercommunication among these tiers and
the monitoring applications built on the top of them. The proposed architecture has been implemented for mobile
devices equipped with the Android platform and evaluated with respect to its modifiability by employing the
ALMA (Architecture Level Modifiability Analysis) method, highlighting its capability of being rapidly customized,
personalized or eventually modified by software developers in order to prototype, with a reduced effort, novel
health monitoring applications on the top of its components. Finally, it has been employed to build, as case
study, a mobile application aimed at monitoring and managing cardiac arrhythmias, such as bradycardia and
tachycardia, confirming its effectiveness with respect to a real scenario.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

The last decade has witnessed an exponential increase in older
adult population suffering from chronic life-long diseases and needing
healthcare. Indeed, the number of patients requiring health care services
has raised proportionally with the growth in population, reaching
approximately 2 billion by 2050, with 80% in developing countries
(WHO, 2002). Therefore, it is predicted that the cost of hospitalization
and patient care will rise worldwide and patients will find increasing
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difficulties to receive necessary treatments and assistance even in
emergency situations. In light of the above, it is clear that there exists a
need to revolutionize healthcare and provide innovative, efficient, and
affordable solutions to patients at any time and from anywhere in an
economic and friendly manner.

In such a direction, recently, a patient-oriented model is being
considered, where patients are being equipped with knowledge and
technologies to play a more active role in his/her health monitoring.
This health monitoring can be rigorously defined as ‘‘repeated or
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continuous observations or measurements of the patient, his or her
physiological function, and the function of life support equipment,
for the purpose of guiding management decisions, including when to
make therapeutic interventions, and assessment of those interventions’’
(Hudson, 1985). This model embraces the principles of proactivity,
independence, accessibility, and cost-effectiveness by using a wide range
of mobile technologies such as smartphones, tablets, and wearable
sensors for the continuous monitoring of patients’ behavior and vital
signs (Banos et al., 2014).

This allows for the possibility of an increased focus on individual
health promotion and health maintenance rather than the traditional
focus on dealing with the consequences of illness and injury after they
occur. Such a transformation could have a profound impact on the cost
of providing healthcare and on the level of health enjoyed by individuals
during their lifetimes (Giffen et al., 2015).

This new trend of mobile health monitoring applications has been
made possible due to a fabulous development in mobile devices and
wearable sensors alongside wireless and cellular communication net-
works (Serhani et al., 2016). Existing applications of this typology
essentially utilize wearable sensors to continuously monitor different
physiological parameters of the patient. The observed information is
sent to a hub, which collects the measurements and sends them,
through communication networks, to the final destinations, i.e. the
healthcare professionals or doctors. These latter observe the current
medical condition and activities of the patient and provide a diagnosis
or assistance based on the information provided by the applications.
They can also get in touch with the patient through either the reversed
channel or traditional communication media, such as the telephone or
the SMS system (Serhani et al., 2016). The hub can be represented by
the cloud, where sensed information is sent for being analyzed and
accessed by the healthcare professionals or doctors (Forkan et al., 2014).
Alternatively, it can be an intermediate personal computer or a mobile
device, which in turn relays the received information to the healthcare
professionals or doctors. Both these solutions are often adopted due to
one of the main limitations of up-to-date wearable sensors, i.e. their
processing and storage capabilities (Banos et al., 2014). Indeed, they
are able to measure physiological magnitudes and convert them into
machine-readable information, but they are equipped with very limited
resources to process this information.

However, currently, a set of issues hampers both innovation and
development of new mobile health monitoring applications.

Firstly, the heterogeneity of communication protocols and the mix-
ture of addressing schemes used by wearable sensors of different vendors
and models is challenging to be handled when developing integrated
mobile health monitoring applications (Evensen and Meling, 2009).
Most of the applications offered today is based on proprietary all-in-
one solutions, where sensors might use either a proprietary RF protocol
over the 868MHz band or ZigBee, Bluetooth, WiFi or another IEEE
802.x-based protocol over the 2.4 GHz band. Furthermore, many sensors
have their own application-level protocol for communicating control
commands and retrieving data. This implies that applications need to
know anything about the physical or logical communication protocols
used by each specific sensor, and that they can become unusable when
a different sensor model is used even if they share the same basic
functionalities.

Secondly, due to the miniaturization of electronic devices and the
development of new ways of mobile computing in recent years, wearable
technology has seen substantial advances, mainly triggered by the need
for non-invasive, non-obtrusive ways to monitor physiological signals
over long periods of time (Marques et al., 2011).

However, some vital parameters cannot be measured precisely,
easily and noninvasively. For instance, today, systolic and diastolic
blood pressures can be measured by means of digital monitors able to
communicate their readings to smartphones via a wireless Bluetooth
connectivity. The most accurate monitors feature an upper arm cuff,
which is extremely invasive to be used to perform a continuous health

monitoring. On the other hand, other monitors make use of non-invasive
devices placed on the wrist or on the finger, and thus are characterized
by a higher degree of freedom and easiness of use, but they generate
less accurate blood pressure readings.

Thirdly, physiological parameters alone are not enough to charac-
terize the patients’ health status. For instance, an increase in the heart
rate is considered abnormal when evaluated singularly, whereas it is
classified as normal when it is registered while the patient is running. As
a result, context information, and, in particular, information pertaining
to the patient’s activity, should be used as an additional factor in the
interpretation of the vital signs. However, context information coming
from sensors is often characterized by a lack of precision and accuracy as
well as a fine granularity that make it difficult to use at the application
level (Clear et al., 2007). Monitoring applications respond to events that
should be generally richer than a single sensor reading and sensitive to
user activities also affected by uncertainty. For example, the activity
‘‘running’’ is richer, and of more use than, the accelerometer motion
values over the 𝑥, 𝑦 and 𝑧 axes, but it cannot be defined precisely, for
instance, in terms of number of steps.

Fourthly, the capability of correlating physiological and contextual
information, detecting suspicious anomalies and supplying warnings or
suggestions to enable personalized monitoring and health management
is undoubtedly a real-added value for monitoring applications. Embed-
ding intelligent components able to reason over mobile devices and
locally perform an accurate and continuous analysis of the patient’s
health status allows minimizing network transmission with remote sta-
tions, avoiding communication delays or interruptions and maintaining
appropriate levels of security and privacy (Minutolo et al., 2015).
However, the capability to reason over different forms of information
and knowledge, often graded and affected by uncertainty, directly on
the mobile devices represents a critical point, still pending to date.

Fifthly, notifying anomaly conditions to the healthcare professionals
or doctors plays an effective role in enabling personalized monitoring
and health management only in case when it is accurate and appropri-
ate. However, notifications or alerts can be generated inappropriately,
especially in cases when anomaly conditions are detected without taking
into account that physiological data may vary for each patient. In these
situations, they become ineffective and bothersome, leading to alert
fatigue, a state in which the healthcare professionals or doctors become
less responsive to them in general.

In literature, various solutions, architectures, and frameworks have
been proposed for personal health monitoring, but they are not com-
pletely adequate to address all the above-mentioned issues. Starting
from this consideration, in this paper, a smart mobile, self-configuring,
context-aware architecture for personal health monitoring is proposed.
This architecture enables the rapid prototyping of personal health mon-
itoring applications for different scenarios, by exploiting commercial
wearable sensors and mobile devices as well as knowledge-based tech-
nologies, in accordance with the following functional model. Sensor data
are collected by wearable sensors and transmitted through a wireless
communication network, stored and analyzed on mobile phones by
exploiting knowledge-based formalisms and technologies, and finally
sent from mobile devices to the healthcare professionals or doctors for
subsequent storage and processing. A proper action depending on the
patient’s condition is determined and communicated to the healthcare
professionals or doctors through mobile communication channels.

The word ‘‘smart ’’ refers to its capacity to be adaptive, configurable,
dynamic, and reactive, which accordingly makes it able not only to
provide information about physiological condition but also personalized
assistance for each patient in terms of notifications when he/she may
be at risk. As the term ‘‘self-configuring ’’ advocates, it is not based
on a specific kind of sensor, but different and heterogeneous sensors
can be used, offering uniform communication interfaces to external
applications. The word ‘‘mobile’’ refers to its capability of using portable
and wireless sensors as well as embedding data storage and data pro-
cessing completely inside a mobile device, without requiring the usage
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of centralized computing platforms located in clouds and accessible
over the wireless connection. Finally, ‘‘context-aware’’ stands for the
ability of mainly understanding and handling context and activities
that can be sensed automatically with reference to an individual and
treated as implicit input to positively affect the behavior of a monitoring
application.

The proposed architecture has been implemented for mobile devices
equipped with the Android platform and evaluated by employing the
ALMA method (Architecture Level Modifiability Analysis) (Bengtsson et
al., 2004), with respect to its modifiability, i.e. its ability to be simply
modified and evolve over time.

Moreover, since it is extremely general and can allow anywhere and
anytime monitoring of the health status of a patient, several application
areas can benefit from its facilities. In particular, as case study, it
has been employed in the context of the Italian project ‘‘Bersagli’’ to
build a mobile application aimed at monitoring and managing cardiac
arrhythmias, such as bradycardia and tachycardia.

The remainder of the paper is structured as follows. Section 2 reviews
and compares existing health monitoring architectures and systems,
detailing their characteristics and presenting the fundamental contribu-
tions of this proposal. Section 3 presents the proposed architecture for
the rapid prototyping of mobile health monitoring applications. Section
4 outlines the implementation details of the architecture and describes
the modifiability analysis performed by using the ALMA method. The
mobile application for monitoring cardiac arrhythmias built on the top
of the architecture is diffusely depicted in Section 5. Finally, Section 6
concludes the work and introduces some future activities.

2. Related work

Extensive efforts have been made in both academia and industry in
the research and development of various solutions, architectures, and
frameworks for health monitoring (Chan et al., 2012; Patel et al., 2012).

In more detail, a framework is described in Mei et al. (2006) for
creating different vital sign representations based on XML schema
diagrams. It can cope flexibly with the constraints and requirements
raised by different stakeholders. This flexibility can be also exploited for
realizing adaptive or context-aware systems to overcome infrastructural
changes due to patient’s mobility in heterogeneous environments.

In the MobiHealth project (Jones et al., 2006), a generic platform
integrating the technologies of Body Area Networks (BANs), wireless
broadband communications and wearable medical devices is realized,
in order to provide mobile healthcare services for patients and health
professionals. These technologies enable remote patient care services,
such as management of chronic conditions and detection of health emer-
gencies. It has been trialled and evaluated in four European countries
with a variety of patient groups, focusing on home care, trauma care
and outdoor settings. Other projects worth mentioning that have been
carried out as part of different programs of the European Commission
are: MyHeart (Habetha, 2006), WEALTHY (Paradiso et al., 2004) and
MagIC (Rienzo et al., 2006). These projects led to the development of
garment-based wearable sensors aiming at general health monitoring of
people in the home and community settings.

Another architecture is presented in Roy et al. (2007), which is
aimed at efficiently supporting data fusion and user-centric situation
prediction based on dynamic Bayesian networks, leading to context-
aware healthcare applications in smart environments. This framework
provides a systematic approach to fuse context fragments and deal with
context ambiguity in a probabilistic manner, to represent context within
the application, and to easily compose rules to reason efficiently to
mediate ambiguous contexts. This architecture has been evaluated to
monitor elderly people in small home environments.

The ElderCare platform is described in López-de Ipiña et al. (2011),
which is aimed at offering an Ambient Assisted Living solution designed
to give support not only to people in risk of losing autonomy but also
to caretakers or people concerned about them (relatives or friends). It is

a low cost, easily deployable, usable and evolvable ICT infrastructure,
which combines common hardware, OSGi middleware and mobile-aided
care data management and uses an interactive TV as main interaction
mechanism offered.

A Personal Health Monitor system is proposed in Gay and Leijdekkers
(2007), where a patient is monitored using various types of off-the-shelf
sensors (ECG, accelerometer, oximeter, weight scale, blood pressure
monitor). Healthcare professionals can select one or more sensors to be
used for a particular patient in order to provide personalized monitoring
and treatment. Sensor data are collected and transferred wirelessly to
a smartphone, where they are locally processed and analyzed. Mecha-
nisms are given for locating the patient position in case of emergency,
detecting life-threatening anomalies and giving general information
about the patient’s health when he/she is not in a dangerous situation.

In Agarwal et al. (2013), a web-based architecture is proposed for
the monitoring of patient vital statistics in a local environment using
wireless medical sensor devices and a smart-phone as a local hub. It
is devised to provide an available, reliable, secure, and dependable
solution for a mobile platform based system with the aim of mitigating
costs on individual patient care while maintaining a high-quality level
of care.

Zappa is presented in Ruiz-Zafra et al. (2013), which is an extensible,
scalable, highly-interoperable and customizable platform, designed to
support e-Health/m-Health systems and that is able to operate in the
cloud. The platform architecture is based on components and services,
as well as on open source software that reduces its acquisition and
operation costs. The platform can be used to develop several remote
mobile monitoring m-health systems. More recently, a framework is
proposed in Khalifeh et al. (2014), which provides scalable and effective
monitoring services for patients’ health and conditions to support them
to rehabilitate and recover from their illnesses. It utilizes a systems-of-
systems approach in sensing, analyzing the patients’ information, and
issuing real-time alert messages to the healthcare monitoring center.
It also proposes mechanisms to efficiently deal with the reliability and
real-time data delivery challenges that are very essential in healthcare
monitoring and reporting process. A mobile monitoring application is
outlined in Villarreal et al. (2014), aimed at allowing a patient to moni-
tor a chronic disease through mobile and biometrics devices. It consists
into a set of layers distributed in three elements that interact with the
final application: mobile devices, biometrics devices, and central server.
This distribution is performed to identify each element that interacts
with the application, to identify where the application needs change
and to add new elements to the application. It uses MobiPattern to
define the interface, layers to distribute the application to the mobile
devices and server, and ontologies to classify medical elements, such as
diseases, recommendations, preventions, foods, mobile devices and diet
suggestions.

An advanced multi-sensor platform is presented in Fanucci et al.
(2015), which integrates all actors involved in the healthcare of chronic
patients, for the provisioning of personalized telemedicine services
based on the home monitoring of vital signs and the circulation of the
clinical information among all the caregivers. This platform consists
into three main elements: (i) a service center server that acts as a
central hub for the data and information exchange; (ii) a multi-sensor
tele-monitoring system, usually installed at patient’s home, aimed at
acquiring and transmitting vital signs to a service center; (iii) the general
practitioner module that allows the family doctor to interact with the
clinical information of the followed patients, realizing at distance the
evolution of the disease.

In Lamprinakos et al. (2015), another platform is designed and
implemented, which enables the deployment of services to follow-up
the patient’s health status based on a set of monitored parameters
per disease, and to profile user’s habits and diagnose deviations from
their usual activities. A key aspect of the platform is its SOA (Service
Oriented Architecture) middleware that collects data from heteroge-
neous Telecare and Telehealth gateways, and provides the upper service
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Table 1
Comparison of different mobile solutions, architectures, and frameworks for health monitoring.

Related works Self-configuration Non-invasive parameter
estimation

Context-awareness Hybrid knowledge
representation and reasoning

Personalization Mobility

Mei et al. (2006) Yes No No No No Yes
Jones et al. (2006) Yes Yes No No Yes Yes
Habetha (2006) Yes No No No Yes Yes
Paradiso et al. (2004) No No No No Yes Yes
Rienzo et al. (2006) No No Yes No Yes Yes
Roy et al. (2007) No No Yes Yes Yes Yes
López-de Ipiña et al. (2011) Yes No No No Yes No
Gay and Leijdekkers (2007) Yes No Yes No Yes Yes
Agarwal et al. (2013) Yes No No No Yes Yes
Ruiz-Zafra et al. (2013) Yes No No No Yes Yes
Khalifeh et al. (2014) Yes No No No Yes Yes
Villarreal et al. (2014) Yes No No Yes Yes Yes
Fanucci et al. (2015) Yes No Yes No Yes Yes
Lamprinakos et al. (2015) Yes No Yes Yes Yes No
Serhani et al. (2016) Yes No No No Yes Yes
The proposed architecture Yes Yes Yes Yes Yes Yes

Fig. 1. The functional model of monitoring applications that can be built on the basis of
proposed architecture.

layers with a unified and standards compliant message. In this way,
an integrated view of Telehealth and Telecare data and alerts is made
possible into a backend Web Portal, accessible by both clinicians and
operators.

Finally, SME2EM is outlined in Serhani et al. (2016), which is a
novel mobile-based end-to-end architecture for live monitoring and
visualization of life-long diseases, offering smartness features to cope
with continuous monitoring, data explosion, dynamic adaptation, un-
limited mobility, and constrained devices resources. Its components
are fully implemented as Web services in accordance with the SOA
paradigm to be easy to deploy and integrate, and are supported by Cloud
infrastructure to allow high scalability, availability of processes and
data being stored and exchanged. The architecture system is formally
model-checked to automatically verify its correctness against designers’
desirable properties at design time. Its applicability is evaluated through
concrete experimental scenarios on monitoring and visualizing states of
epileptic diseases.

Summarizing, all the solutions above-mentioned are relevant and
technically valid with respect to different application domains, by
offering many interesting features. Nonetheless, they are still far from
a productive framework to build real monitoring applications usable
in daily practice. Indeed, to the best of our knowledge, the existing
solutions are not completely adequate to address all the open issues
outlined in Section 1, as synthetically reported in Table 1.

In other words, they do not exhibit all the functionalities necessary
to simplify the development of health monitoring applications, with
the characteristic of being expressly devised for running entirely on
mobile devices and efficiently exploiting their available resources. As
a consequence, the gap between the technological reality in terms
of enabling frameworks or architectures and the mobile monitoring

application requirements may be considered the most limiting factor
for a widespread deployment of these solutions in daily scenarios.

On the contrary, the proposed architecture exhibits its novelty in the
way that it provides an extensive and generic set of features to concretely
enable the realization of mobile monitoring applications for a variety
of possible scenarios. All these characteristics together with the specific
architectural components in charge of offering them to build monitoring
applications are diffusely described in the next section.

3. The proposed architecture

The proposed architecture has been designed for being deployed on
mobile devices, offering functionalities for collecting, processing and
storing information about patients’ health conditions in order to support
the process of identification of possible abnormal events.

Monitoring applications, which can be built based on this architec-
ture, are characterized by the functional model visualized in Fig. 1.

A patient is monitored in order to acquire and evaluate his/her
physiological conditions. A number of biomedical, low cost and non-
invasive devices is attached to patient’s body, periodically collects
information about different vital signs or his/her movements and, then,
sends the collected data to a mobile device (e.g. smart phone). The
mobile device locally stores such data and, then, indirectly calculates
both further vital signs and user’s movement intensity starting from
biomedical or accelerometer information monitored in a direct manner.
Successively, it locally correlates all this information, by means of
medical rules also able to handle uncertainty and vagueness, in order
to identify abnormalities altering the health status of the patient. These
rules can be customized and configured according to the type of patient
and his/her state of health, in line with existing medical guidelines.
Finally, by using different channels, i.e. email and text messages, it can
send a daily monitoring report to the doctor for his/her evaluation as
well as it can notify the occurrence of potential abnormalities in order
to require the intervention of a caregiver or of the doctor, depending on
the severity of the abnormality.

The architecture promotes high levels of mobility for both patients,
doctors and caregivers. This mobility has a straightforward impact on
availability since they would be able to use monitoring applications built
on the top of it anytime and anywhere. Mobility is supported at different
levels: (i) wireless and wearable sensors based on Bluetooth Low Energy
4.0 (BLE) communication protocol are chosen to not limit the patient’s
daily activities, by ensuring hours of continuous monitoring, granting
the requirements of safety and reliability and, contextually, reducing
the energy consumption, the interference and the transmission power;
(ii) each application is completely deployable on a mobile device,
whose battery life is usually enough for a fully monitoring day, before
a new wired charging session is requested, thus giving the patient
the possibility of being continuously evaluated with respect to his/her
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Fig. 2. The main components of the proposed architecture.

health status, without any service interruption; (iii) Wi-Fi and/or 3G/4G
networks, available with a very high probability in most areas, allow
applications to timely communicate, when necessary, with doctors or
caregivers, reaching them in every place.

Fig. 2 presents the overall architectural view, organized as a compo-
sition of four tiers that operate on a layered fashion. In detail, each tier
provides a particular set of functionalities with a predefined interface.
The advantage of a layered architecture is that each tier depends only
on lower tiers and does not have knowledge about higher ones. It has
been also designed modularly so that changes in one component of a tier
do not alter the whole architecture and do not affect the configuration
of other components belonging to the same tier or to other ones. A
unified data model has been defined to enable the data interoperabil-
ity required to ensure intercommunication among the components of
the architecture and the monitoring applications built on the top of
them.

The four tiers are as follows:

∙ A sensing tier comprising the set of components aimed at
gathering parameters characterizing the health status of the
patient. Sensors are used to collect both biomedical signals
and accelerometer information from the patient. All the sensed
information is then locally stored on the mobile device in a
dedicated database.

∙ A tier of perceptual components based on signal-processing and
context-extraction algorithms. Perceptual components extract vi-
tal and context cues, by processing biomedical and accelerometer
sensed data. Information derived from perceptual components
relates to vital signs not-directly measured on the patient and
the intensity of his/her physical activity.

∙ A reasoning tier made of intelligent components that model
and correlate vital parameters and contextual information per-
taining to the patient’s physical activity in order to detect
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Fig. 3. The main components of the access gateway.

possible anomalies, by incorporating a set of personalized and
patient-specific rules characterizing each particular monitoring
application.

∙ A tier of actuating components that provide the means to com-
municate with caregivers and doctors, by sending emails or text
messages. This tier selects the optimal communication channel
according to the health status of the patient and the severity of
the detected anomalies.

In the following, first, the main components of each layer of this
architecture and, then, the data model are diffusely described.

3.1. Sensing tier

This tier is aimed at interfacing with multiple heterogeneous mobile,
wearable, biomedical devices, as well as acquiring, processing and
understanding their data streams. This behavior is realized by means
of an access gateway devised to provide the abstraction level required
to enable the functioning of the upper layer of the architecture inde-
pendently of the underlying sensors. In other words, this component
concretely gives the architecture the capability of configuring itself
with respect to several heterogeneous wearable sensors, by offering
‘‘plug-and-play’’ facilities to grant not only a transparent and automatic
connectivity and communication, by hiding the complexity of propri-
etary and cumbersome protocols, but also the correct data retrieval and
interpretation, by exploiting the data model presented successively.

The main sub-components of the access gateway are shown in Fig. 3.
The Data Acquisition Manager (DAM) is the component devised to

receive by the upper layers of the architecture the requests for some
typologies of sensed data, according to the requirements of a specific
monitoring application, and enable their acquisition independently
of the underlying physical sensors to be concretely used for their
measurement. Generally, a physical sensor is sensitive to one special
phenomenon, monitors some relevant change and, then, it converts
this change into data (Li et al., 2015). The approach here adopted
is to represent the different observable phenomena through specific
entities of the proposed data model, so giving them a uniform and
shared semantics. Such a way, the DAM is able to receive requests for
semantically well-defined entities that model observable phenomena,
and, successively, communicates with the Sensor Manager (SM) to
identify typologies of sensors able to measure them.

In particular, first, the SM is in charge of registering, into a local
directory, one or more BLE individual sensors for each typology. Two

different modalities of communication can be configured for all the
sensor typologies. The first one consists in sending the sensor reading
once at a certain configurable frequency and then returning to sleep
mode, with a low-power consumption extending battery life. On the
other hand, the second one consists in enabling a higher data rate in
order to monitor a specific phenomenon with a finer grain, but with a
superior power consumption.

Moreover, the SM is devoted to search for all the individual de-
vices belonging to a certain typology among the ones preliminarily
registered. Successively, it communicates with the Sensor Discoverer
(SD) in order to detect how many among the registered devices are
active for establishing a BLE connection with them. Finally, it selects
one among these active devices according to the requirements of the
monitoring application, such as the need of being not obtrusive or of
using a more complex sensing device able to simultaneously measure
more phenomena, or, more simply, in a random fashion.

Once the sensor is chosen by the SM, this information is used to
find a matching Sensor Adapter (SA) that knows how to communicate
with it in full capacity. Indeed, each sensor is designed to respond to
a different message-passing sequence depending on the sensor manu-
facturer. Even though sensors and external mobile devices may use the
same communication technology/ protocol (e.g. TCP, UDP, Bluetooth),
the exact communication sequence can be varied from one sensor to
another.

Therefore, many different SAs are provided to enable transparent
communication and data retrieval with heterogeneous BLE sensing
devices, by means of specific Application Programming Interfaces (APIs)
able to facilitate access to their low-level capabilities. Such a way,
every SA manages the connection with a specific device, interprets the
received data and maps it to the unified data model. More specifically,
these APIs consist of a hierarchy of sensor-related classes and their
operations. The class hierarchy includes vendor-independent classes for
typologies of sensors based on BLE communication protocol, e.g. pulse
oximeters, thermometers, activity trackers, glucometers, heart rate
and blood pressure monitors and so on. On the other hand, vendor-
independent operations offer virtualized access to the capabilities of the
underlying sensors. Any component interfacing with a certain sensor
type exploits the same single API, regardless of the sensor vendor. As
a result, the upper layers of the architecture need only to leverage a
simple API to interface with each sensor type. This modularity makes
the approach simply extensible and evolvable to future devices and
technologies.
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Fig. 4. Reliable acquisition with 𝑅index = 1 (upper part) and noisy acquisition with
𝑅index = 4 (lower part) of a pulse oximeter signal. Sample intervals and light sensor signals
are displayed on x and y axes, respectively.

All the data measured by a specific SA are considered meaningful
by the DAM only if accurate, reliable, and effective. To this aim, a
reliability index (𝑅index) is defined, whose range is set from 1 to 4. The
value 1 indicates the highest level of reliability, i.e. the sensed value
has a high Signal to Noise ratio (S/N), whereas the value 4 indicates the
lowest level of reliability, i.e. the value acquired has a low S/N and is
not truthful since affected by noise, due to motion artifacts or to other
effects, such as photon diffusion. As a result, the DAM can be configured
in order to recognize as meaningful and store in the local database all
the sensed data or a subset of them according to the value of the 𝑅index.
For instance, all the sensed data with 𝑅index equal to 1 or 2 can be stored
in the local database for further analysis since considered trustworthy,
whereas all the ones with 𝑅index equal to 3 or 4 can be discharged and
not persistently saved, since evaluated as not reliable.

As a further example, Fig. 4 reports a reliable acquisition (𝑅index = 1)
of a pulse oximeter signal by means of a wrist-type sensing device in its
upper part, and a noisy acquisition (𝑅index = 4) of another signal affected
by motion artifacts, which is obtained by the same device and subject,
in its lower part.

3.2. Perceptual tier

This tier contains primary mechanisms for the treatment and refine-
ment of data acquired by means of physical sensors and communicated
by the lower-layer components of the architecture. It is made of two
components, namely the Signal Estimator (SE) and the Context Extractor
(CE).

In more detail, the SE is devised to estimate both physiological and
movement information from data sensed by wearable sensors. First,
it is aimed at emulating biomedical sensors that are fundamental for
assessing the person’s health status, since able to provide meaningful
information about some vital signs. In other words, it is able to generate
information about certain vital signs starting from sensors that are
properly designed to observe other ones. As an example, the SE can
be used to measure heart rate by means of wrist-type pulse oximeters,
which are specifically designed to measure the blood oxygen saturation
(SpO2).

Moreover, it is also able to replace, even if, often, not satisfactorily,
invasive devices attached to the human body, that are usually annoying
for patients and limit their movement. As an example, it can be used to
measure SpO2 by using wrist-type pulse oximeters instead of fingertip
ones. Fingertip pulse oximeters are largely adopted and very accurate
in static environments, but they cannot be worn, interfere with daily
activities and generate problems associated with their placement. On
the other hand, wrist-type pulse oximeters are easy to wear and do not

interfere with daily activities, but they generate measurements affected
by motion artifacts that often corrupt the observed signal. Another
important source of artifacts for these devices is the photon diffusion;
in fact, the measurement of the light is made for diffusion in wrist-type
pulse oximeters, whereas it is made for transmission in fingertip ones.

To effectively estimate physiological information from a signal
observed by a wearable sensor used in a dynamic environment, the SE
implements signal processing techniques to analyze sensed data, filter
the noise, extract desired signals from moving windows over the input
data streams and, finally, calculate measures of specific vital signs. The
extracted signals can be further elaborated in order to filter outliers
and provide a more stable reading by fusing different estimates over
successive windows.

Secondly, the SE is in charge of calculating more complex movement
information starting from raw accelerometer data. To this aim, it
integrates signal processing techniques to assess the intensity of physical
activities performed by the patients by analyzing the characteristics
of movement-induced accelerations and filtering interfering accelera-
tion signals, which do not always correlate well with the movements
taken. Accelerometers have been preferred to measure physical activity
because acceleration is proportional to external force and, hence, can
reflect intensity and frequency of human movement. On the other hand,
since only the intensity of the physical activity is of interest, the SE
neither calculates information on the pattern or duration of specific
activities (i.e., how many steps a person accumulated at 2:00 pm while
going to the restaurant), nor distinguishes one intensity level from
another (i.e. if one person sprinted 100 steps and a second person
walked 100 steps, the SE simply records approximately 100 steps for
each person).

Finally, the CE is essentially a means of turning physical and simu-
lated sensor data into symbolic context descriptions. Generally speak-
ing, context is any piece of information that characterizes a situation
regarding an entity, such as a person. According to this definition, the
CE is in charge of constructing primitive context types that map directly
to measurable physical aspects or calculated ones, and are characterized
by a set of conceptual states that a certain entity can assume. In order
to make these primitive context types meaningful to the upper layers
of the architecture, i.e. usable for generating inference and producing
higher-level knowledge, their states are represented in the CE such that
they reflect human reasoning, handling uncertainty and imprecision.
More concretely, the conceptual states of a primitive context have been
modeled by means of Fuzzy Logic (Zadeh, 1965), making the distinction
between the gradual states as opposed to well-defined boundaries.

Indeed, Fuzzy Logic is based on the concept of fuzzy set, which is
a set characterized by a gradual degree of membership of its elements.
Differently, the boundary of a classical set is crisp, i.e. the membership
of an element to a classical set is ruled by a dichotomic condition:
either it belongs or does not belong to the set (Zadeh, 1965). The
main advantage of Fuzzy Logic, over more conventional approaches
in solving complex, nonlinear and/or ill-defined problems, lies in its
capability of incorporating a priori qualitative knowledge and providing
a procedural morphology of approximate reasoning on the top of it for
drawing imprecise conclusions from existing imprecise data. This makes
Fuzzy Logic almost indispensable for obtaining a transparent qualitative
insight and human-like inferential procedures for systems, where knowl-
edge representation and reasoning with exact mathematical models is
poor and inadequate.

As a result, primitive context types modeled by means of Fuzzy
Logic are able to provide a more realistic representation of a particular
aspect characterizing an entity, with a better tolerance for imprecision,
uncertainty and partial truth that can arise in data gathered from
physical sensors or calculated from simulated ones.
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Fig. 5. The architecture of the Hybrid Reasoner.

3.3. Reasoning tier

The essential necessity of producing reliable alarms or notifications
makes the Reasoning tier the core of the architecture. Essentially, this
tier is aimed at receiving preprocessed data from physical or simulated
sensors as input by means of the lower layers, conducting an analysis
to determine abnormal situations, and identifying which of them must
effectively generate notifications to the caregivers or to the doctor. This
behavior is realized by means of a hybrid, rule-based reasoner designed
to support inferential procedures directly on mobile devices. It relies on
hybrid production rules as its basic unit of computation and employs the
classical recognize-act cycle, made of two main phases, namely pattern
matching and rule firing. In the pattern matching phase, the system looks
for the first applicable rule instance, also named rule activation, which is
matched by the most recent data characterizing the system state. Then,
in the rule firing phase, the system executes the matched rule activation,
updates its state and cycles back to the pattern matching phase. The
main sub-components of the reasoner are shown in Fig. 5.

In detail, the Knowledge Manager (KM) and the Inference Manager
(IM) are the main interfaces between the reasoner and the other
architecture layers.

The KM accesses and updates the current system knowledge after
being invoked by the IM by handling knowledge base repositories.
In particular, the repositories called Terminological Box (Tbox) and
Assertional Box (Abox) contain, respectively, knowledge about a do-
main, expressed in terms of classes and properties, and collections of
domain objects, also named facts, described as individuals (instances of
classes) with the corresponding instances of properties. In addition, the
repository named Rule Box (Rbox) contains different production rules,
namely classic rules operating only on precise information and hybrid
rules working with both precise and vague information and eventually
grouped when cooperating to generate a shared outcome. Both these
typologies of rules contain a conjunction of condition elements (CEs) in
its left-hand side (LHS), and a set of action elements (AEs) in its right-
hand side (RHS).

The IM enacts a forward chaining scheme, searching for eligible
rules in the Rbox starting from the elements contained in both the
Tbox and Abox, and drawing all possible new inferred facts. It is in
charge of invoking the other components of the Reasoner, namely the
Rule Activation Identifier (RAI) and the Rule Activation Executor (RAE),
in order to ensure the correct flow of inference execution, the proper
knowledge updating, and the notification of inference outcomes to
external components.

In more detail, at each recognize-act cycle, the IM invokes the RAI
to determine the rule activation to execute. To this aim, the RAI first
applies a specific pattern-matching algorithm to process the Tbox and
Abox elements and tests if they satisfy CEs contained in the LHSs of
rules stored in the RBox. Such a way, all the eligible rule activations
are determined and, among them, only one is selected according to a
predetermined resolution scheme. Successively, the IM invokes the RAE
to execute the AEs included in the RHS of the rule activation identified
and produce possible updates on the Tbox and Abox.

3.4. Actuating tier

An important characteristic of several monitoring applications is the
generation of alerts, notifications, reports and other future advanced
functionalities. Essentially, this tier is aimed at receiving and assembling
the set of data observed or estimated enriched with context information
calculated and possible anomalies detected by means of the lower layers,
and providing this information to doctors and caregivers. This behavior
is realized by means of a Multi-Channel Notifier (McN) designed to
generate appropriate notifications by exploiting the communication
channels offered by mobile devices, i.e. e-mails and text messages. For
this reason, both the phone numbers and email addresses of caregivers
and doctors should be given as inputs to the McN.

In particular, this McN is made of two sub-components, namely an
Alert Notifier (AN) and a Report Notifier (RN), as shown in Fig. 6.

The AN provides mechanisms to trigger alerting procedures when
abnormalities are detected. These mechanisms are automatic emails and
text messages, respectively provided by an SMS Generator (SG) and an
Email Generator (EG). Emails and text messages may be delivered to
both caregivers and doctors in the event of a critical abnormal situation,
i.e. when an anomaly is detected at least twice consecutively from a
time perspective (i.e. labeled with a ‘‘red" color). In particular, text
messages are chosen to contain only short descriptions of the anomalies
detected, whereas the emails should contain more accurate reports of
all the information acquired, estimated or inferred until the occurrence
of the last anomalies detected. All this information is stored in the local
database foreseen by the architecture. Such a way, it is possible to enable
caregivers or doctors to have a complete view of the health status of the
patient in the last monitoring period.

On the other hand, the RN is in charge of offering mechanisms to
generate reporting procedures at the end of a scheduled monitoring
period. In this case, these mechanisms are offered by the EG and
consist in automatic emails that may be delivered to both caregivers
and doctors, for instance at the end of each day. In particular, the
emails should contain daily reports of all the information acquired,
estimated or inferred, inclusive of also non-critical abnormal situations,
i.e. anomalies that are detected only once (i.e. labeled with a ‘‘yellow"
color). Such a way, it is possible to reduce the number of alerts generated
inappropriately, thus reducing the alert fatigue and improving the
responsiveness of caregivers and doctors to the really critical situations.

3.5. Data model

The proposed data model has been conceived as formal, semantically
well-defined, flexible and extensible to support the representation and
integration of heterogeneous data between the above-mentioned com-
ponents of the architecture. An ontological approach has been chosen to
represent this model for the following reasons: (i) a common ontology
enables knowledge sharing in an evolvable environment, where new
sensing devices can be added; (ii) ontologies with their high and formal
expressiveness together with their well-defined declarative semantics
provide a means for enabling automatic reasoning mechanisms on the
represented information; (iii) explicitly formalized ontologies allow
devices and architectural components to simply interoperate among
them.
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Fig. 6. The architecture of the Multi-Channel Notifier.

Generally speaking, an ontology is intended as a vocabulary and
a set of terms and relations that define, with the needed accuracy,
a set of entities enabling the definition of classes, hierarchies, and
other relations among them (Gruber, 1995; Guarino, 1995). In other
words, it enables to produce a representation of knowledge about a
part of an abstract or real world with the characteristics of being: (i)
formal, since it is machine readable and interpretable; (ii) semantically
well-defined, since it defines concepts, properties, relationships, that
characterize a domain of interest using a shared vocabulary; (iii) flexible
and extensible, since it can be simply altered, by adding more classes to
its scheme.

In detail, the proposed data model has been designed as ‘‘an appli-
cation ontology’’ (Guarino, 1997), i.e. describing concepts dependent
on a particular domain and task; in particular, the domain chosen is the
healthcare and the task is the monitoring of individual health conditions
by means of wearable sensors and mobile devices. For this reason, the
vocabulary for this ontology model has been constructed as a collection
of concepts strictly related to the specific class of applications that can be
built by exploiting the proposed architecture. This collection of concepts
has been encoded into a high-level ontology, which captures more
general knowledge about health monitoring applications, and one or
more low-level ontologies built on the top of it, which define the details
of this general knowledge for each particular monitoring application.

The high-level ontology has been realized by employing a middle-out
approach in order to identify the basic concepts composing the domain
structure. This strategy enables to identify the most relevant concepts
in the domain of interest before moving on to more abstract and more
concrete ones. In such a way, it strikes a balance in terms of the level
detail. Indeed, detail arises only as necessary, by specializing the basic
concepts, so some effort is avoided and higher-level concepts are more
likely to be stable. This, in turn, leads to less re-work and less overall
effort (Uschold and Gruninger, 1996). The concepts identified by means
of this approach have been categorized with respect to four distinctive
but related themes: (i) concepts that define sensors and the typologies
of physically observable or simulated parameters they are associated to,
(ii) concepts that define the measurements associated to each parameter,
(iii) concepts that describe the subject and their characteristics, and (iv)
concepts that describe the potential anomalies that can be detected and
their attributes. Next, the properties of the concepts, i.e. attributes, and
the relationships between these concepts have been specified.

Successively, on the top of the high-level ontology, low-level ontolo-
gies have been realized, by identifying instances of more general domain
concepts and proprieties, in order to define peculiar aspects depending
on the specific application of interest.

Both these two typologies of ontologies have been concretely devel-
oped using the Protégé tool (Musen, 2015) and encoded in Ontology
Web Language (OWL), since characterized by an appropriate expressive
power. In particular, in OWL, classes are used to represent concepts,
individuals to model instances of concepts, datatype properties to express
characteristics of individuals, and object properties to indicate relations
between individuals. The Protégé tool, and, in particular, the Pellet
reasoner, which is an OWL checker coming together with it, has been
also used to test and validate the ontologies realized with respect to their
correctness and consistency.

For the purposes of this paper, each ontology is formally defined
as the tuple 𝑂 ∶= ⟨𝑂𝑇 , 𝑂𝐴

⟩ where 𝑂𝑇 is the terminological part of the
ontology and 𝑂𝐴 is its assertional part defined over the entities in 𝑂𝑇 .
In the following, classes and properties are denoted in bold, whereas
individuals are indicated in italics. Moreover, assertions in the form x:
C and P(x,y) state that ‘‘individual x is an instance of class C’’ and
‘‘individual x is related to y by means of P’’, respectively.

3.5.1. The proposed high-level and low-level ontologies
The proposed high-level ontology defines the terminological part

𝑂𝑇 by formulating statements about concepts and properties as graphi-
cally described in Fig. 7.

In more detail, the set of subjects is represented by the class Subject,
whose individuals are the patients to be monitored. The class Measure
represents the sets of possible measurements that can be acquired when
a patient is monitored, whereas the class Parameter indicates the pos-
sible typologies of parameters, either directly measurable or indirectly
calculated, to which a measure belongs. This class is further specified
into two sub-classes, namely ActivityParameter and VitalParameter,
representing the sets of parameters pertaining to the physical activity
performed by the patient or his/her vital signs, respectively. The class
Sensor defines the sets of possible sensing devices usable to monitor
a patient. Also, this class is further specialized into two sub-classes,
namely PhysicalSensor and SimulatedSensor, representing the sets
of real sensors that can be physically worn by the patients or of
virtual sensors that can indirectly estimate the value of a measure by
elaborating other sensed information, respectively. Finally, the class
Anomaly indicates the sets of possible abnormal situations that can
affect the health status of a patient.

The class Subject is linked to the class Measure through the ob-
ject properties measure(Subject, Measure) and restMeasure(Subject,
Measure) to indicate, with respect to a certain parameter, a measure-
ment observed or estimated in a time instant or a reference measurement
evaluated at rest.

Moreover, it is also linked to the class Anomaly through two
object properties, namely anomaly(Subject, Anomaly) and previou-
sAnomaly(Subject, Anomaly), to correlate a patient with the current
anomaly and, if existing, also to the last occurred one.

Finally, it is further characterized by means of six datatype prop-
erties, namely surname(Subject, string), name(Subject, string),
age(Subject, integer), sex(Subject, string), height(Subject, string),
weight(Subject, string), for modeling some relevant anthropometric
information characterizing a patient.

The class Measure is linked to the class Parameter through the
object property parameter (Subject, Measure) to correlate a measure
to the type of parameter it refers to. It is further characterized by
means of three datatype properties, namely date(Measure, date),
relIndex(Measure, float), value(Measure, float), for modeling the
date of acquisition of the measure, its reliability index and, finally, the
observed or estimated value.

The class Parameter is linked to the class Sensor through the
object property sensor(Parameter, Sensor) to correlate a parame-
ter to the sensor able to produce it. It is further characterized by
means of three datatype properties, namely name(Parameter, string),
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Fig. 7. The high-level ontology for describing data shared by the components of the architecture.

indirect(Parameter, bool), descr(Parameter, string), for modeling
the name of the parameter, its typology of acquisition and, finally, a
description of it.

The class Sensor is characterized by means of three datatype
properties, namely name(Sensor, string), model(Sensor, string), de-
scr(Sensor, string), for modeling the name of the sensor, its model and,
finally, a description of it.

Finally, the class Anomaly is characterized by means of four
datatype properties, namely name(Anomaly, string), type(Anomaly,
string), descr(Anomaly, string), color(Anomaly, string), for model-
ing the specific name of the anomaly (such as tachycardia at rest), its
type (such as tachycardia), an extensive description of it and the color
(such as yellow or red) indicating its severity calculated depending on
the number of occurrences.

On the other hand, the low-level ontologies are essentially con-
structed by populating the assertional part 𝑂𝐴 defined over the classes
and properties specified in the terminological part 𝑂𝑇 of the high-level
ontology. On other words, depending on the specific scenario of interest,
a set of individuals can be defined that are instances of the general
classes of the high-level ontology in order to model peculiar aspects not
priory included in it.

As an example, class assertions that can be defined in a low-level
ontology pertaining to an application for monitoring blood pressure are:

∙ bloodPressure: VitalParameter
∙ sphygmomanometer : Sensor
∙ hypertension, hypotension: Anomaly

4. Implementation and evaluation of the proposed architecture

The proposed architecture has been implemented in Java and re-
leased to operate on the Android Operating System (OS). The choice of
Android OS is due to the fact that it is open source and has received
a great support in the community for developing mobile applications
and, contextually, integrating these ones with sensors and devices for
the monitoring and acquisition of data and/or parameters of interest.
Moreover, different software components to interface with biomedical
devices produced by third parties are developed for the Android OS.

Furthermore, SQLite database1 is used to implement the local persis-
tence, since specifically devised to operate on resource-limited mobile
devices, consuming a minimal stack space and a very little heap.

The architecture has been then evaluated by adopting the ALMA
method, since it has had a remarkable impact and acceptance in the
scientific community (Villarreal et al., 2014). This method has been
applied to perform a modifiability analysis of the architecture, i.e. to
evaluate its ability to be simply modified and evolve over time. It
consists of the following five steps:

∙ Set goal: determine the aim of the analysis, choosing among
risk assessment, maintenance and costs prediction, or software
architecture selection.

∙ Describe software architecture (s): provide a description of the
most important parts of the architecture, by decomposing it
into components, the relationship between components, and the
relationships between it and its environment.

∙ Elicit scenarios: select the set of relevant scenarios that may play
a role in architecture modifiability, by cooperating with the
relevant stakeholders.

∙ Evaluate scenarios: determine the effect of the set of scenarios and
express the result in a suitable and measurable way for the goal
of the analysis.

∙ Interpret results: interpret the results in accordance with the goals
of the analysis and verify them against system requirements.

With reference to the first step, the goal of this analysis has been to
make a prediction of the costs of modifying or adapting the architecture
for new health monitoring applications. To this end, a prediction model
for relating impact and effort required to implement change scenarios
is used, whose form is reported as follows:

𝐶𝑎𝑣𝑒𝑟𝑎𝑔𝑒 =
∑𝑛

𝑖=1 𝐶
(

𝑐ℎ𝑎𝑛𝑔𝑒𝑖
)

×𝑤
(

𝑐ℎ𝑎𝑛𝑔𝑒𝑖
)

𝑛
where C(change𝑖) denotes the effort or cost required to realize the i-
th change scenario, and w(change𝑖) denotes the specific weight of this
scenario.

1 SQLite, Available online: http://www.sqlite.org/.
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Table 2
Summary of the architectural components and their functions.

Function Component Relation between components

Sensing Access Gateway Signal Estimator, Context Extractor
Perception Signal Estimator Access Gateway, Context Extractor, Hybrid Reasoner
Perception Context Extractor Access Gateway, Signal Estimator, Hybrid Reasoner
Reasoning Hybrid Reasoner Signal Estimator, Context Extractor, Multi-Channel Notifier
Actuation Multi-Channel Notifier Hybrid Reasoner

The second step has determined the parts of the architecture real-
izing a specific function and the relationships between these parts, as
outlined in Table 2.

The third step has regarded the elicitation of the change scenarios
that are most likely to occur in a short period of time, i.e. one year.
A bottom-up elicitation technique is used by interviewing the software
designers in possess of knowledge of the architecture, producing twenty
change scenarios that can occur when new health monitoring applica-
tions have to be realized. For this paper, we have selected five main
change scenarios, each of which has been chosen in order to evaluate
modifiability with respect to one specific component of the architecture
reported in Table 2:

∙ S1. Add a new Bluetooth sensing device to replace an old one.
∙ S2. Change the vital parameters to be indirectly estimated from

raw sensed data.
∙ S3. Change the context information to be extracted from raw

sensed data.
∙ S4. Add a new domain-specific ontological model and a new

collection of rules for monitoring and managing a specific health
condition.

∙ S5. Add a new channel for transmitting reports and alerts.

Successively, weights have been associated to the scenarios in order
to indicate their probability of occurrence. These weights w(change𝑖)
have been calculated as the number of times that a specific change sce-
nario is expected to occur during the prediction period. These estimates
have been also normalized by dividing the number of occurrences of
each change scenario by the sum of occurrences of all the scenarios, as
shown below:

𝑤
(

𝑐ℎ𝑎𝑛𝑔𝑒𝑖
)

=
𝑜𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑒𝑠

(

𝑐ℎ𝑎𝑛𝑔𝑒𝑖
)

∑𝑛
𝑗=1 𝑜𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑒𝑠

(

𝑐ℎ𝑎𝑛𝑔𝑒𝑗
) .

The result of this normalization is that all the scenarios have a
weight between zero and one and that the sum of all scenario weights is
exactly one. The list of change scenarios with their normalized weights
represents the scenario profile outlined in Table 3.

Successively, the next step has consisted in evaluating the impact of
each change scenario contained in the profile. To this aim, first, the
functions already present in the architecture and required to realize
each change scenario have been identified. Successively, the effects of
the changes on the components directly associated to the identified
functions in Table 2 have been assessed with respect to the lines of code
(LoC) that are needed for the changes.

In this evaluation, the architecture has been carefully examined and
the modifications to be performed on the existing components have been
conceived and estimated as described in the following:

∙ S1. Only a new Sensor Adapter must be added to the Access Gate-
way, whereas no change affects its remaining sub-components.
Taking into account the average size of Sensor Adapters already
implemented, this change can be estimated approximately as
equal to 800 LoC.

∙ S2. Since the Signal Estimator implements a family of signal
processing techniques to analyze and filter sensed data, the
changes necessary to estimate a novel vital sign impact only on
the configurations of these techniques or on very light customiza-
tions to properly work on the specific case considered. As a result,
this change can be estimated approximately as equal to 150 LoC.

∙ S3. The Context Extractor integrates a family of signal processing
techniques to analyze the characteristics of movement-induced
accelerations and extract context information pertaining to the
physical activities performed by the user. For this reason, more
impacting changes must be performed to estimate another type
of context information, since completely novel algorithms should
be implemented and integrated. On the other hand, no change
must be performed to integrate these novel algorithms into the
Context Extractor and represent the produced information by
using Fuzzy Logic. As a result, this change can be estimated
approximately as equal to 500 LoC.

∙ S4. The Hybrid Reasoner is built to support customization and
personalization, since it gives the possibility of changing domain-
specific ontological models and rules built on the top of them.
For this reason, taking into account the average size of other
ontological models and collection of rules already implemented,
the changes required to realize this scenario can be estimated
approximately as equal to 350 LoC.

∙ S5. Only a new component to physically transmit a notification
must be implemented and added to the Multi-Channel Notifier,
whereas no change affects its remaining sub-components. Taking
into account the average size of the similar components already
implemented, this change can be estimated approximately as
equal to 500 LoC.

Moreover, the ripple effects have been considered in this evaluation,
but the other components of the architecture not directly associated to
the identified functions have resulted as not impacted by the changes.
Indeed, the interfaces of the aforementioned components affected by the
changes have been not altered at all.

Summarizing, a set of estimates of the modification volume for
each affected component has been obtained, as depicted in Table 4. In
addition, also the average effort per scenario has been calculated by
applying the prediction model introduced above.

The last step has regarded the interpretation of the results achieved.
In detail, change scenarios S1 and S5 require more effort because
they impact on components of the architecture that are more linked
to specific monitoring applications to be developed. Indeed, these
scenarios involve the architectural components that are used to gather
different data from the patient or to transmit information to doctors and
caregivers, and, thus, can be more affected by modifications depending
on the specific application requirements. In scenarios S2 and S4, changes
made to the architecture are minimal, requiring little customization
or lightweight model personalization. Finally, scenario S3 requires a
substantial effort for changes due to its actual specialization with respect
to a certain typology of context information that it is able to handle.

In conclusion, assuming that the overall productivity per software
engineer in making and testing the modifications to the code baseline
of the architecture is in accordance with the values published in the soft-
ware engineering literature (Henry and Cain, 1997), i.e. 40 LoC/month
for modifying existing code, the average time required to perform the
changes is approximately equal to 2.325 man-months per scenario. As a
result, the architecture appears sufficiently flexible and robust for being
rapidly customized, personalized or eventually modified with respect
to possible change scenarios, highlighting its capability of enabling
software developers to prototype, with a reduced effort, novel health
monitoring applications on the top of its components.
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Table 3
Scenario profile.

ID Scenario Occurrences Weight

S1 Add a new Bluetooth sensing device to replace an old one. 8/30 0.27
S2 Change the vital parameters to be indirectly estimated from raw sensed

data.
6/30 0.20

S3 Change the context information to be extracted from raw sensed data. 4/30 0.13
S4 Add a new domain-specific ontological model and a new collection of rules

for monitoring and managing a specific health condition.
10/30 0.33

S5 Add a new channel for transmitting reports and alerts 2/30 0.07

Table 4
The efforts and the calculation of average effort per scenario.

ID Scenario Weight Effort

S1 Add a new Bluetooth sensing device to replace an old one. 0.27 ∼800 LoC
S2 Change the vital parameters to be indirectly estimated from raw sensed

data.
0.20 ∼150 LoC

S3 Change the context information to be extracted from raw sensed data. 0.13 ∼500 LoC
S4 Add a new domain-specific ontological model and a new collection of rules

for monitoring and managing a specific health condition.
0.33 ∼350 LoC

S5 Add a new channel for transmitting reports and alerts 0.07 ∼500 LoC
Average effort per scenario ∼93LoC

5. Case study: amobile application formonitoring cardiac arrhyth-
mias

As a real case study, the proposed architecture has been employed
in the context of the Italian project ‘‘Bersagli’’ to realize a mobile
application for monitoring and managing cardiac arrhythmias, such as
bradycardia and tachycardia. This application has been thought and
realized in cooperation with medical experts involved in the project,
who have followed and supported its design and development. It has
been built by using a bracelet equipped with multiple sensors in order
to acquire or estimate different vital and context parameters. It has
been designed to detect a set of cardiac anomalies due to bradycardia
and tachycardia by correlating all the parameters directly acquired or
indirectly calculated, together with other anthropometric information
manually inserted by means of the graphical user interfaces of the
application itself. The occurrence of these anomalies is notified to
doctors and caregivers when they persist over time.

The main features together with the graphical user interfaces of this
application are diffusely described in the following.

5.1. Data acquisition

Data acquisition is performed by the application by using the bracelet
of the Amiigo2 fitness tracker shown in Fig. 8. It is equipped with a 3-
axis accelerometer, a temperature sensor and a reflectance-based pulse
oximeter, composed of a light source and a detector, with red and
infrared (IR) light-emitting diodes (LEDs).

As a result, a specific Sensor Adapter (SA) has been implemented and
integrated in the architecture to enable transparent communication with
the bracelet by using BLE transmission protocol and retrieve from it the
following parameters: three values of acceleration, one for each axis, one
skin temperature value and two values of light intensity related to red
and infrared LEDs. This SA allows continuously acquiring measures of
both skin temperature and 3-axis acceleration at frequencies equal to 1
per minute and 4 Hz, respectively. On the other hand, it allows cyclically
acquiring measures of light intensity related to red and infrared LEDs for
a determined time span, whose frequency and period are configurable.
The modality of acquisition chosen is the following: each reading lasts
30 s, with a frequency equal to 30 Hz, and is repeated periodically every
30 min. Such a way, the battery life has been experimentally proven
to be preserved, surviving for about 2 days. Finally, the SA stores all
the sensed data locally into the SQLite database installed on the mobile
device.

2 http://www.amiigo.co.

Fig. 8. The Amiigo bracelet.

5.2. Data processing

Data processing is realized by the application by operating on the
information sensed from the bracelet, i.e. 3-axis acceleration, skin
temperature and red and infrared light intensities.

5.2.1. Estimation of heart rate and SpO2 from the pulse oximeter waveform
The analysis of the pulse oximeter waveform has been performed in

the frequency domain in order to filter noise due to motion artifacts and
estimate both SpO2 and heart rate. In particular, in order to calculate
SpO2 and heart rate, a moving time window (Hamming) of 100 samples
and a shift of 1 sample ahead is considered. For each time window, the
Fast Fourier Transform (FFT) is applied to the infrared light intensity and
the resulting power spectrum is analyzed. According to the assumption
that the heart rate ranges from 45 to 200 beats per minute (bpm), a
bandpass filter is preliminary applied to eliminate noise at frequencies
lower and higher of those borderline values respectively. If the power
spectrum still contains some significant harmonics, first, the heart rate
is estimated as the frequency corresponding to the largest one in mag-
nitude. Second, the SpO2 is calculated as the mean of the logarithmic
ratio between red and infrared light intensity values in the window
considered. The final heart rate and SpO2 are calculated as mean of all
the values estimated in the different time windows considered. A formal
description of the algorithm is given in Algorithm 1.

Algorithm 1 has been experimentally tested on ten volunteers, 5
male and 5 female, aged between 25 and 45 years, with no cardiac and
pulmonary disease evidenced. They have been simultaneously equipped
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Table 5
Comparison of heart rate calculated with Algorithm 1 on values from the Amiigo bracelet (A) and obtained from the Onyx II Model 9560 (O) with respect to three different readings of
30 s.

Volunteer Gender Age 𝐀𝟏 (bpm) 𝐎𝟏 (bpm) |

|

|

𝐀1−𝐎1

𝐎1

|

|

|

(%) 𝐀𝟐 (bpm) 𝐎𝟐 (bpm) |

|

|

𝐀2−𝐎2

𝐎2

|

|

|

(%) 𝐀𝟑 (bpm) 𝐎𝟑 (bpm) |

|

|

𝐀3−𝐎3

𝐎3

|

|

|

(%)

1 Male 25 80 75 6.67 76 72 5.56 78 73 6.85
2 Male 28 78 73 6.85 79 78 1.28 79 75 5.33
3 Male 33 77 73 5.48 76 75 1.33 81 78 3.85
4 Male 41 70 65 7.69 72 67 7.46 71 68 4.41
5 Male 45 73 71 2.82 72 69 4.35 69 65 6.15
6 Female 27 85 79 7.59 84 80 5.00 83 80 3.75
7 Female 29 82 77 6.49 84 79 6.33 82 78 5.13
8 Female 35 72 78 7.69 75 80 6.25 79 81 2.47
9 Female 40 75 77 2.60 73 77 5.19 76 79 3.80
10 Female 41 68 73 6.85 66 70 5.71 74 75 1.33

Table 6
Comparison of SpO2 calculated with Algorithm 1 on values from the Amiigo bracelet (A) and obtained from the Onyx II Model 9560 (O) with respect to three different readings of 30 s.

Volunteer Gender Age 𝐀𝟏 (%) 𝐎𝟏 (%) |

|

𝐀1 −𝐎1
|

|

𝐀𝟐 (%) 𝐎𝟐 (%) |

|

𝐀2 −𝐎2
|

|

𝐀𝟑 (%) 𝐎𝟑 (%) |

|

𝐀3 −𝐎3
|

|

1 Male 25 98 97 1 100 99 1 98 98 0
2 Male 28 99 99 0 99 98 1 99 100 1
3 Male 33 96 97 1 97 97 0 99 99 0
4 Male 41 93 94 1 97 96 1 96 97 1
5 Male 45 95 95 0 92 93 1 95 95 0
6 Female 27 100 99 1 98 98 0 98 99 1
7 Female 29 98 97 1 97 96 1 98 97 1
8 Female 35 97 96 1 95 95 0 97 98 1
9 Female 40 93 94 1 94 95 1 95 95 0

10 Female 41 96 96 0 95 96 1 97 98 1

Table 7
Comparison of number of steps calculated with Algorithm 2 on values from the Amiigo bracelet (A) and obtained from the HJ-112
Digital Pocket Pedometer from Omron (H) with respect to three different time windows of 5 min.

Volunteer Gender Age 𝐀𝟏 𝐎𝟏
|

|

|

𝐀1−𝐎1

𝐎1

|

|

|

(%) 𝐀𝟐 𝐎𝟐
|

|

|

𝐀2−𝐎2

𝐎2

|

|

|

(%) 𝐀𝟑 𝐎𝟑
|

|

|

𝐀3−𝐎3

𝐎3

|

|

|

(%)

1 Male 25 25 26 3.85 37 36 2.78 46 48 4.17
2 Male 28 47 45 4.44 24 25 4.00 36 37 2.70
3 Male 33 42 44 4.55 35 34 2.94 45 43 4.65
4 Male 41 21 22 4.55 22 23 4.35 39 38 2.63
5 Male 45 36 35 2.86 46 44 4.55 45 47 4.26
6 Female 27 22 21 4.76 36 36 0.00 23 24 4.17
7 Female 29 38 37 2.70 42 42 0.00 23 22 4.55
8 Female 35 33 34 2.94 31 32 3.13 43 44 2.27
9 Female 40 20 21 4.76 26 27 3.70 20 21 4.76

10 Female 41 41 40 2.50 41 42 2.38 32 33 3.03

with the Amiigo bracelet and a wireless finger pulse oximeter, i.e. the
Onyx II Model 9560 from Nonin Medical. According to the modality
of acquisition chosen for the bracelet, three different readings of 30 s
have been performed for each volunteer by using both the devices. Next,
the heart rate and SpO2 calculated by using Algorithm 1 on the values
acquired by the Amiigo bracelet and the ones directly collected by the
finger pulse oximeter have been compared, as shown in Tables 5 and 6.

Therefore, for each reading, a mean difference less than 8% for the
heart rate and less than 2 units for SpO2 has been obtained between
them. These results confirm the validity of Algorithm 1 applied to the
Amiigo bracelet, since comparable with the ones achievable by means
of a more accurate but invasive commercial solution.

5.2.2. Estimation of the number of steps from 3-axis accelerometer data
As further data processing functionality, starting from the 3-axis

acceleration, the number of steps performed has been estimated by
using a step-counting procedure implemented in the SE and inspired
to the algorithm proposed in Oner et al. (2012). This procedure applies
a peak detection technique to the 3-axis accelerometer data in order
to count steps, by simplifying and adapting that algorithm to this
context. It essentially assumes that, according to research about human
walking dynamics, walking is a cyclical pattern and, thus, steps can
be calculated by finding the peaks within a period, where these points
represent the highest accelerations along the axes. In detail, for each
reading of the bracelet, a number of 3-axis accelerometer samples is
collected, depending on both the acquisition time and the sampling

frequency. To simplify the computation, the total magnitude of each
accelerometer sample is considered, calculated as the square root of
the sum of the squares of each of the 3-axis values. At the startup,
a baseline is initialized with the total acceleration value of the first
sample. After setting this baseline, pairs of consecutive samples are
iteratively compared until their total acceleration values are different.
In particular, if the oldest sample in the pair is less than or equal
to the newest one, the baseline is set with the value of this latter.
Alternatively, if the oldest sample in the pair is greater than the newest
one, it is compared with the baseline to decide whether it is a peak
or not. In particular, if that sample is greater than or equal to the
baseline and, contextually, it is also greater than or equal to a threshold
characterizing misleading data (i.e. quick repetitious movements), it
is recognized as a step. That threshold is calculated as the average
of all the total acceleration values of the samples processed thus far,
multiplied by a correction factor. This factor allows widening the margin
for determining misleading data with respect to sensed accelerometer
activities and has been experimentally fixed equal to 1.20 since able to
reduce false positive peak detections of about 90 percent, so granting
a better tolerance to noisy acceleration values. When all the samples
are processed, the total number of steps is represented by the number
of peaks detected. A formal description of the algorithm is given in
Algorithm 2.

Also, Algorithm 2 has been experimentally tested on the same ten
volunteers aforementioned. They have been equipped with the Amiigo
bracelet and a commercial pocket pedometer, i.e. the HJ-112 Digital

148



M. Esposito et al. Engineering Applications of Artificial Intelligence 67 (2018) 136–156

Pocket Pedometer from Omron. Three different time windows of 5 min
have been considered for each volunteer by using both the devices.
Next, the number of steps calculated in these time windows by using
algorithm 2 on the accelerometer values acquired by the Amiigo bracelet
and the ones directly collected by the commercial pedometer have been
compared, as shown in Table 7.

Therefore, for each reading, a mean difference less than 5% has been
obtained. Also in this case, this result confirms the validity of algorithm
2 applied to the Amiigo bracelet, since it is comparable with a more
accurate but single-purpose solution.

5.2.3. Estimation of the intensity of physical activity from the number of
steps calculated

Next, starting from the classification proposed in Tudor-Locke et al.
(2005), the intensity of physical activity has been first categorized with
respect to the number of steps in an interval of 5 min, as shown in
Table 8.

Then, the CE has been used to represent the primitive context
‘‘intensity of physical activity ’’ on the basis of classes and intervals of steps
reported in Table 8 by means of the concepts of fuzzy variables and fuzzy
sets.

A fuzzy variable x is defined as the quintuple FV= (x, T(x), X, G,
M), where x is the name of the variable, T(x) is the set of symbolic
terms associated to x, X is the set of numerical values u spanned by x,
called universe of discourse of x, G is the syntactic rule to generate the

Table 8
The classification of the intensity of the physical activity.

Class Number of steps in 5 min

Zero activity 0 –17
Low activity 17–26
Somewhat activity 26–35
Moderate activity 35–44
High activity 44 to higher

name of the terms and M is the semantic rule to associate each term with
its meaning, i.e. a fuzzy set defined on X. A fuzzy set F on a nonempty
set X is defined by its membership function 𝜇𝐹 : 𝑋 → [0, 1], where 𝜇𝐹 (𝑥)
is interpreted as the degree of membership of the element x in the fuzzy
set F for each 𝑥 ∈ 𝑋, i.e., 𝐹 = {(𝑢, 𝜇𝐹 (𝑢))|∀𝑢 ∈ 𝑋, 𝜇𝐹 (𝑢) ∈ [0, 1]} (Zadeh,
1965). By exploiting these fuzzy concepts, the context ‘‘intensity of
physical activity ’’ has been modeled as a fuzzy variable, whose terms have
been set equal to the classes reported in Table 8. In order to associate a
meaning, i.e. a fuzzy set, to these terms, first, the membership function
shape has been chosen, and, successively, its design parameters have
been defined.

With reference to the shape, a trapezoid has been selected, since it al-
lows introducing vagueness not over all the entire universe of discourse,
but only around its boundaries. Indeed, its formal representation is the
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Fig. 9. Trapezoidal membership function.

following:

𝜇𝑋 (𝑥) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(𝑥 − 𝑎)∕(𝑏 − 𝑎) 𝑎 < 𝑥 < 𝑏
1 𝑏 ≤ 𝑥 ≤ 𝑐

(𝑑 − 𝑥)∕(𝑑 − 𝑐) 𝑐 < 𝑥 < 𝑑
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

where 𝜇𝑋 (𝑥) is the membership grade of x on X, b and c are lower
and upper bounds for its core (defined as the set of its elements with
membership grade equal to 1, and thus not affected by vagueness), a
and d are lower and upper bounds for its support (defined as the set of
all its elements with non-zero membership grade), as shown in Fig. 9.

With reference to the design parameters of these fuzzy sets, each of
the intervals detailed in Table 8 has been mapped to a trapezoid, by
preserving the overall interpretability, i.e. all the resulting fuzzy sets

verify the following criteria (Gacto et al., 2011):

⎧

⎪

⎨

⎪

⎩

∀𝑥 ∈ 𝑋
∑

𝑖=1,…,𝐹
𝜇𝑋𝑖

(𝑥) = 1

∀𝑋𝑖, 𝑖 = 1,… , 𝐹 ∃𝑥 ∈ 𝑋|𝜇𝑋𝑖
(𝑥) = 1

where F is the number of fuzzy sets and 𝜇𝑋 (𝑥) is the membership grade
of x on 𝑋𝑖.

Lower and upper bounds for core and support of each fuzzy set have
been determined as follows. Mean and standard deviation have been
calculated for each interval reported in Table 8. Trapezoids not placed at
the edges of the universe of discourse, i.e. associated to the classes Low,
Somewhat and Moderate, have been centered in their mean, with a core
size assumed equal to twice the minimum of their standard deviations,
approximated by defect. Moreover, the upper bounds of the intervals
reported in Table 8 have been mapped to the crossover points of these
contiguous trapezoids, fixing their membership grade equal to 0.5 in
order to preserve the role of points characterized by the maximum grade
of vagueness. Such a way, also the supports of these trapezoids have
been univocally determined. On the other hand, trapezoids placed at
the edges of the universe of discourse, i.e. associated to the classes Zero
and High, have been automatically built, since the crossover points to
their contiguous fuzzy sets have been previously fixed and the slopes
of their vertical sides have been forcedly determined by the criteria of
interpretability aforementioned.

The resulting collection of five distinct fuzzy sets is shown in Fig. 10,
by exhibiting more graded transitions between two contiguous classes,
with a semantics closer to human reasoning.
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Fig. 10. The primitive context ‘‘physical activity’’ whose conceptual states are modeled as a collection of fuzzy sets.

5.3. Reasoning

The reasoning facilities offered by the application enable to process
and correlate all the sensed or estimated data. To this aim, first of all,
some specific technical solutions have been chosen for representing
the information stored into the repositories of the Hybrid Reasoner,
i.e. Tbox, Abox and Rbox. All the information stored in the first two
boxes is codified as triples, each of them in the form <subject, predicate,
object> , according to the N-Triples syntax (RDF 1.1 N-Triples, 2014).
On the other hand, all the rules stored in the Rbox have been expressed
by using the syntax outlined in Fig. 11.

In this syntax, three kinds of rule atoms have been defined, namely
Triple pattern (TP), Negated triple pattern (nTP) and Function to call (FC).

A TP is an N-triple object containing both static values and variables,
these latter indicated using the standard convention of prefixing them
with a question mark. A TP can be used both in a CE, to test the existence
of facts in the Abox matching it, and in an AE, to assert a fact in the
Abox. A nTP is an N-triple object that can be used in a CE to test the
absence of a fact in the Abox matching it. Finally, FCs are internal
procedures invoked to evaluate logical conditions, compute arithmetic
expressions or perform fuzzy evaluations, if inserted in the LHS of a rule,
and assert and retract facts according to a non-monotonic strategy or a
fuzzy inference scheme, if inserted in the RHS.

A particular type of FC is FuzzyFunction (FF), which enables the
hybridization of the classic inference scheme with Fuzzy Logic. It can be
used in the LHS of a rule in order to associate a fuzzy term to a variable
with a smoothed degree of membership (fuzzification), whereas it can
be used in the RHS of a rule to perform the fuzzy inference procedure
(fuzzy inference and aggregation) and produce a precise value as output
(defuzzification). Hybrid rules built by using FF are eventually grouped
depending on the fuzzy variable used in their AE.

On the top of these choices, a specific algorithm for both pattern
matching and rule firing has been defined and integrated in the Hybrid
Reasoner, by extending the lazy evaluation approach proposed by the
authors in Minutolo et al. (2015) and offering the additional function-
ality of supporting hybrid rules and, contextually, granting an efficient
handling of memory and computational resources. In particular, this
algorithm, referred as Algorithm 3, essentially consists in the following
steps.

First, it starts the pattern matching phase by processing Tbox and
Abox in order to detect novel elements not evaluated yet, and, succes-
sively, it verifies if they satisfy TPs or nTPs contained in the LHSs of both
classical and hybrid rules stored in the RBox by calculating the so-called
intra-condition tests. The results of such tests are elements matching TPs
or nTPs, which are stored into ad-hoc memory structures. After filling
these memories, Algorithm 3 processes classical and hybrid rules and
labels them as active if all the memories linked to their TPs contain a
matching element at least.

After generating the list of active rules, these latter are processed
to determine the first eligible rule activation. Different situations can

occur, i.e. an active rule can admit one or more activations. In particular,
a rule admits one activation in case when its CEs do not contain variable
references, and more activations in case when its CEs contain one or
more variable references. In this last case, each activation is determined
by calculating the so-called inter-condition tests, which visit the space of
all possible variable bindings and choose the ones that do not violate
any other CEs. Successively, a degree is assigned to each activation. It
is equal to 1 for classical rules, where only TP and nTPs are evaluated,
and can vary from 0 to 1 for hybrid rules, where also FFs are taken into
account, first singularly, by calculating their degree of membership, and
then together, by aggregating the different contributions and choosing
their minimum as final output. Obviously, in case of degree equal to
0, the activation is discarded since ineligible. As soon as an eligible
activation is found, the research of other possible ones is paused and,
then, it is passed to the RAE for the execution.

At this point, Algorithm 3 starts the rule firing phase, which es-
sentially proceeds in the following way. In case the activation to be
executed is associated to a classical rule, the TP in its AE is executed.
On the other hand, in case the activation is associated to a hybrid rule
belonging to a group, it is considered as the main one and activations
of other rules of the same group and having a coherent binding space
are searched for. Indeed, a group of rules with the same fuzzy variable
in their AE must be processed as a whole since all of them contribute
to produce a new assertion about that variable, in accordance with the
dictates of Fuzzy Logic in case of multiple levels of inference. For this
reason, the FFs occurring in the AEs of all the coherent activations in a
group are processed according to the classical fuzzy inference scheme,
generating a precise defuzzified value. Thus, the TP present in the AE
of the main activation is linked to this value and, then, executed.

Finally, after the execution of an AE, possible updates to Tbox and
Abox are timely produced, by changing also the memories associated to
the CEs of involved rules. A formal description of the whole algorithm
is reported in Algorithm 3.

Algorithm 3 has been experimentally tested in terms of overall
response time and memory usage on a smartphone with the following
characteristics: Samsung Galaxy S5, Android 4.4.2, 2 GB RAM, CPU
Quad-Core Snapdragon-801 2.5 GHz. In particular, three different con-
figurations of Rbox have been considered: (i) 30 classical rules; (ii) 5
groups of 6 hybrid rules; (iii) 12 classical rules and 3 groups of 6 hybrid
rules. For each Rbox, a set of 10 experiments has been performed with a
growing number of individuals populating both Tbox and Abox, varying
from 1k to 10k triples. Moreover, the number of potential activations has
been fixed equal to 10 and chosen for the three configurations of Rbox in
the following way: (i) 5 activation for 2 classical rules; (ii) 2 activations
for each group of hybrid rules; (iii) 2 activations for 2 classical rules
and 2 activations for each group of hybrid rules. Each experiment has
been executed 5 times for a total of 50 runs. The results achieved in
terms of overall response time and memory usage have been calculated
as the average obtained over the five repeated runs of each experiment.
In particular, Algorithm 3 has produced timely responses in about 300–
400 ms with a memory usage less than 150 KB. These performances are
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Fig. 11. The rule syntax used for the Rbox.

Fig. 12. An example of text message and report generated when an anomaly is detected by the application.

perfectly coherent with health monitoring demands, with the additional
benefit of preserving the available runtime memory of the device hosting
the application.

5.4. Reporting and alerting

The reporting and alerting functionalities offered by the application
allow contacting doctors and caregivers. To this aim, the application
exploits the mechanisms offered by the architecture to generate reports
at the end of a scheduled monitoring period or to trigger alerts when
anomalies are detected.

An example of text message and report generated when an anomaly
is detected and persists over time, i.e. at least twice consecutively, is
depicted in Fig. 12. In particular, the text message contains only a
short description of the anomaly detected, whereas the email contains
the whole report, including of all the data sensed by the bracelet
or estimated by means of the components of the architecture until
the occurrence of the anomaly. Both the text message and report are
automatically sent to the doctor and the caregiver by means of an SMS
and an email, respectively.

5.5. Application-specific knowledge and data model

Application-specific knowledge and data have been represented as
follows. First, the low-level ontology for the monitoring application has

been formalized, consisting into the following individuals that statically
populate the assertional part of the high-level ontology defined in the
data model of the proposed architecture:

∙ temperature: VitalParameter

◦ name: ‘‘Skin temperature’’; indirect : false; descr : ‘‘This
parameter measures the temperature of the skin of the
subject’’.

∙ heartRate: VitalParameter

◦ name: ‘‘Heart Rate’’; indirect : true; descr : ‘‘This parameter
measures the heart rate of the subject’’.

∙ spO2: VitalParameter

◦ name: ‘‘ Saturation of Peripheral Oxygen’’; indirect : true;
descr : ‘‘This parameter measures the 𝑂2 saturation in the
blood of the subject’’.

∙ stepCount : ActivityParameter

◦ name: ‘‘ Number of steps’’; indirect : true; descr : ‘‘This
parameter measures the number of steps walked by the
subject’’.

∙ bracelet : Sensor
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◦ name: ‘‘Bracelet’’; model: ‘‘Amiigo’’; descr : ‘‘This bracelet is
a wristband sensor equipped with a 3-axis accelerometer,
a temperature sensor and a reflectance-based pulse oxime-
ter’’.

On the other hand, all the individuals of the classes Subject and
Measure are instanced the first time the application is initialized and
when it is dynamically utilized by the user, respectively.

Finally, all the properties related to the individuals of the class
Anomaly are valued dynamically only when a specific abnormal sit-
uation is detected.

A collection of hybrid rules has been defined on the top of the above-
mentioned individuals in order to detect bradycardia and tachycardia.
These rules have been formulated in order to apply definitions of
bradycardia and tachycardia in a personalized manner, by allowing the
evaluation of each heart rate measure with reference to the specific sub-
ject, to his/her actual situation (such as after dinner) and to the intensity

of physical activities just performed. In these rules, the value ranges used
for the skin temperature at rest and during a physical activity have been
elicited from Trinity et al. (2010). Moreover, the classical definitions of
bradycardia and tachycardia have been used in case when the patient
is at rest, whereas the definition of chronotropic incompetence, often
defined as ‘‘sustained relative arrhythmia’’ (Brubaker and Kitzman,
2011), has been used to express an inadequate heart rate response
during physical exercise. Finally, the relationships between hypoxia and
bradycardia as well as between hypothermia, hyperthermia and cardiac
arrhythmias have been also formalized as evidenced in Skinner (1997);
Deussen (2007), respectively.

In more detail, with reference to the bradycardia, the rules expressed
in natural language are reported in the following:

∙ at rest : the current measure of heart rate is detected as lower than
15% of the measure of heart rate at rest of the subject, having a
skin temperature included between 30 ◦C and 32 ◦C, for at least
two consecutive measurements;
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Fig. 13. Exemplary rules for detecting chronotropic incompetence during a lowly or somewhat intense physical activity.

∙ due to hypothermia: the current measure of heart rate is detected
as lower than 15% of the measure of heart rate at rest of the
subject, with a skin temperature lower than 28◦C, for at least
two consecutive measurements;

∙ due to hypoxia: the current measure of heart rate is detected
as lower than 15% of the measure of heart rate at rest of the
subject, with a SpO2 lower than 92%, for at least two consecutive
measurements.

On the other hand, the rules referred to the tachycardia are the
following:

∙ at rest : the current measure of heart rate is detected as higher
than 40% of the measure of heart rate at rest of the subject,
having a skin temperature included between 30 ◦C and 32 ◦C,
for at least two consecutive measurements;

∙ due to hyperthermia: the current measure of heart rate is detected
as higher than 40% of the measure of heart rate at rest of the
subject, with a skin temperature higher than 36◦C, for at least
two consecutive measurements.

Finally, the rules referred to the chronotropic incompetence are the
following:

∙ during a lowly or somewhat intense physical activity : the current
measure of heart rate is detected as lower than 50% of the
maximum heart rate value of the subject (calculated as 220 —
his/her age), having a skin temperature lower than 37 ◦C, for at
least two consecutive measurements;

∙ during a moderately or highly intense physical activity : the current
measure of heart rate is detected as lower than 70% of the
maximum heart rate value of the subject (calculated as 220 —
his/her age), having a skin temperature lower than 37 ◦C, for at
least two consecutive measurements.

These rules have been codified according to the syntax outlined in
Fig. 11 on the top of the high-level and domain ontologies defined. For
the sake of brevity, only two exemplary rules are reported in Fig. 13,
which detect, as above described, the chronotropic incompetence during
a lowly or somewhat intense physical activity.

All these rules can be dynamically loaded into the monitoring ap-
plication, customizing their behavior depending on the specific subject
to be monitored, i.e. for instance, by modifying the thresholds used in
them.

5.6. Graphical user interfaces

The main graphical user interfaces of the application are shown in
Fig. 14. After launching the app, the user is asked to insert name and
password, to uniquely identify and log him/her into the application
contents (Fig. 14(a)). Registration is only required for the first access,
where the user is asked to insert some personal information (Fig. 14(b)),
such as name, age, height, weight, and gender and his/her caregiver(s)
(Fig. 14(c)). Thereupon the user is logged and the application modules
loaded, the main menu is available (Fig. 14(d)). By pushing the button
‘‘Monitoring’’, the user starts the monitoring procedure and gets access
to some of its main functionalities (Fig. 14(e)). First, patient-specific
knowledge and data model must be loaded (Fig. 14(f)), successively,
the scan of available BLE devices is started and the pairing between the
mobile device and the bracelet is performed (Fig. 14(g)). Finally, the
user can start/stop the monitoring (Fig. 14(h)).

In conclusion, the usage of the architecture, as already envisioned
during its conception, has implied a rapid prototyping of the whole
application. In fact, most of the application development efforts have
been mainly devoted to the design and realization of these graphical
user interfaces, whereas the core functionalities above described has
been easily released by exploiting the architecture.

6. Conclusions and future work

This paper has presented a smart mobile, self-configuring, context-
aware architecture devised to enable the rapid prototyping of personal
health monitoring applications for different scenarios, by exploiting
both commercial wearable sensors and mobile devices. It has been or-
ganized as a composition of four tiers aimed at: (i) acquiring biomedical
signals and accelerometer information pertaining to the patient; (ii)
extracting vital and context cues; (iii) correlating them in order to detect
possible anomalies, by means of personalized rules; (iv) communicating
with caregivers and doctors by sending emails or text messages. A uni-
fied data model has been defined to enable data interoperability among
the components of the architecture and the monitoring applications built
on the top of them. This data model is codified in terms of a high-level
ontology and more specific low-level ontologies built on the top of it so
that the features of particular monitoring applications can be captured.

The proposed architecture has been implemented in Java and re-
leased to operate on the Android Operating System (OS). Successively,
to prove its modifiability and evolvability, it has been evaluated by
employing the ALMA method, highlighting its capability of being
rapidly and effortlessly customized, personalized or eventually modified
to prototype novel health monitoring applications. Finally, as a real
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Fig. 14. The Login Interface (a), the Registration Interfaces (b, c), the Main Menu (d), the Main Monitoring Interface (e), the Configuration Interface (f), the Device Searching Interface
(g), the Monitoring Control Interface (h).

case study, it has been used in the context of the Italian project
‘‘Bersagli’’ to realize a mobile application for monitoring and managing
cardiac arrhythmias, such as bradycardia and tachycardia. Even if the
requirements of this project have not enabled to take advantage of all the
sensing facilities of the architecture (only one sensing device is used),
all the other features offered by it have been fully exploited to build the
application, confirming its effectiveness with respect to a real scenario.

The current version of the proposed architecture leaves room for
some improvements. First of all, the architecture is planned to be
extended with further Sensor Adapters for supporting smart watches,
since their computational power and rich sensor interfaces together with
their proximity to the human body make them a very promising means
for continuously monitoring people’s behaviors through collecting con-
textual data.

Secondly, the described architecture will be further improved in the
future by means of deep learning algorithms to infer behaviors and
contexts from sensor data collected by mobile devices. In particular,
algorithms capable of performing a variety of sensor inference tasks
directly on the mobile device will be investigated, assuming to train
deep models in an offline manner with conventional tools. Finally,
further development will also address issues tied to the integration
of some mechanisms for security and privacy enforcement as well as
Quality of Service provision.
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