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A new fully automatic algorithm for the segmentation of the
brain and total intracranial cerebrospinal fluid (CSF) from T1-
weighted volume MRI scans of the head, called Exbrain v.2, is
described. The algorithm was developed in the context of serial
intracranial volumetry. A brain mask obtained using a previous
version of the algorithm forms the basis of the CSF segmenta-
tion. Improved brain segmentation is then obtained by iterative
tracking of the brain–CSF interface. Gray matter (GM), white
matter (WM), and intracranial CSF volumes and probability
maps are calculated based on a model of intensity probability
distribution (IPD) that includes two partial volume classes: GM-
CSF and GM-WM. Accuracy was assessed using the Montreal
Neurological Institute’s (MNI) digital phantom scan. Reproduc-
ibility was assessed using scan pairs from 24 controls and
10 patients with epilepsy. Segmentation overlap with the gold
standard was 98% for the brain and 95%, 96%, and 97% for the
GM, WM, and total intracranial contents, respectively; CSF
overlap was 86%. In the controls, the Bland and Altman coef-
ficient of reliability (CR) was 35.2 cm3 for the total brain volume
(TBV) and 29.0 cm3 for the intracranial volume (ICV). Scan-
matching reduced CR to 25.2 cm3 and 17.1 cm3 for the TBV and
ICV, respectively. For the patients, similar CR values were ob-
tained for the ICV. Magn Reson Med 49:872–884, 2003.
© 2003 Wiley-Liss, Inc.

The segmentation of the brain from MRI scans has impor-
tant applications in neuroimaging, in particular for the
visualization and quantification of the cortex (1). Further-
more, the total brain volume has been shown to be corre-
lated to various measures of disease severity (2,3), as have
gray matter (GM) and white matter (WM) volumes (4). The
intracranial volume is often used as a correcting factor, for
example as an age- and/or gender-normalizing factor, to
compare the volume of cerebral substructures between
subjects (5). The segmentation of the cerebrospinal fluid
(CSF) and the brain is also relevant to the quantitative
analysis of morphological differences and changes due to
neurological disorders (6). Segmentation of head scans

into GM, WM, and CSF can also be used to refine the
quantitative analysis of magnetic resonance spectroscopy
(MRS) and positron emission tomography (PET) by cor-
recting for partial volume effects due to the mixture of
tissues in each voxel (7,8). Finally, segmentation of head
MRI scans is used in forward EEG and MEG modeling (9).
Segmentation of the baseline image for the registration of
serially acquired scans has been shown to be useful for
measuring volume and signal changes with increased sen-
sitivity (6,10–13).

Automated methods to segment the brain and the other
intracranial tissues have generally relied on multiecho
data and have used multispectral classification methods
(14,15). Held et al. (16) demonstrated a method for seg-
menting GM, WM, and CSF based on Markov random
fields in multiecho and proton density-weighted volume
images. Methods applied to single-acquisition T1-
weighted volume data have mainly focused on the seg-
mentation of the GM and WM (17–19), the extraction of the
brain as a whole (“scalping”) (20–22), or brain substruc-
tures (23). Methods for GM, WM, and CSF segmentation
from T1-weighted volume MR scans have been described
(24,25) but these require user intervention. Although the
intervention may be trivial, this has the disadvantage of
introducing subjectivity, and prevents batch processing of
multiple datasets. To our knowledge, no fully automatic,
validated method to segment both the brain and total in-
tracranial CSF in T1-weighted volume scans has been re-
ported yet.

In this work we describe and evaluate a new fully auto-
matic method to segment the GM, WM, and CSF from
T1-weighted volume data. It is an extension of, and incor-
porates, a previously published algorithm called Exbrain
(22). We aimed to develop a tool that can be used as a data
pipeline for batched processing, and therefore all steps in
the new algorithm are completely automatic (no user in-
tervention is required). We evaluate the method’s accuracy
using a simulated MRI phantom scan, and its reproduc-
ibility using serially acquired T1-weighted volume MRI
scans.

Segmentation Algorithm

The starting point of this work is the Exbrain brain seg-
mentation (scalp removal) algorithm described in Ref. 22,
with a few minor modifications (see next section); here we
refer to this algorithm as “Exbrain v.1.” The output of
Exbrain v.1 is an image volume dataset containing the
gray-level brain voxels surrounded by a null background,
and constitutes the input of the new method presented
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here. The combination of Exbrain v.1 and the new algo-
rithm, which is implemented in a single computer pro-
gram, constitutes Exbrain v.2.

As for Exbrain v.1, the new segmentation steps are based
on a basic set of assumptions on the appearance of the
head in T1-weighted volume scans. The assumptions are:
1) the WM constitutes a single connected component; 2)
the WM is surrounded by a layer of GM, which has a lower
intensity compared to WM; 3) the brain is surrounded by
CSF, which has a lower intensity compared to GM; 4) no
part of the brain or combined CSF and brain has a cross-
section diameter less than approximately 5 mm. Implicit
in these assumptions are the further assumptions of com-
plete coverage of the head and a high spatial resolution (of
the order of 1 mm).

Exbrain’s output consists of the following: binary brain
mask (volume: TBVm); binary CSF mask (volume: CSFVm);
mean and standard deviation (SD) of GM, WM, and CSF
voxel intensities; optimal CSF-GM threshold level; GMV;
WMV; CSFV; and GM, WM, and CSF probability maps.
The total brain volume (TBV) is the sum of GMV and
WMV; the intracranial volume (ICV) is the sum of TBV and
CSFV.

Improvements to Exbrain v.1

The brain histogram fitting used to determine the optimal
GM and WM threshold level (steps 3 and 6) is now based
on the tri-Gaussian model described below.

In step 2, the initial disconnection of the brain is now
based on the calculation of the second moment of the
spatial distribution of voxels, i.e., the mean square dis-
tance of each voxel to the center of mass, in the two largest
objects identified by connectivity analysis. The most com-
pact is labeled as “brain.”

Data Preprocessing: Correction for Nonuniformity

For Exbrain v.1, we use the N3 algorithm to remove signal
nonuniformity due to RF inhomogeneity (26). N3 is a fully
automatic, self-contained package designed to maximize
the global intensity histogram’s high-frequency content by
modeling the low-frequency spatial intensity variations. In
a recent comparison (27) it was shown to perform at least
as well as other published methods.

Intensity Probability Distribution (IPD)

Definitions

Three functions—the bi-Gaussian, tri-Gaussian, and penta-
Gaussian distributions—are used to model the intensity
distributions (histograms normalized to unity) of the vox-
els in various combinations of tissues, as described in the
section on segmentation steps below. In the following,
{Ai} � 0 and � Ai � 1. The bi-Gaussian is represented by
the function G2(x; �1, �1, A 1; �2 �2, A2), which is the sum
of two Gaussians:

G2�I; �1, �1, A1; �2, �2, A2�

� A1G�I; �1, �1� � A2G�I; �2, �2�. [1]

Where I is voxel intensity, AC is the total probability of
tissue class “C,” and �C and �C are the mean and SD,
respectively, of the voxel intensity in tissue class “C.”

The tri-Gaussian and penta-Gaussian have the same gen-
eral form, with three and five Gaussians, respectively, and
are represented by G3(I; �1, �1, A1; �2, �2, A2; �3, �3, A3)
and G5(I; �1, �1, A 1; �2, �2, A2; �3, �3, A3; �4, �4, A4; �5,
�5, A6).

IPDs for Image Partitions

Following Ref. 24, we assume that the IPD of the brain,
P

GM, WM
(I), can be modeled as a tri-Gaussian distribution:

one each for GM and WM, and one for GM & WM partial
volume voxels, which are modeled as consisting of 50%
GM and 50% WM each. Therefore,

PGM,WM�I� � G3�I; �GM, �GM, AGM; �GMWM, �GMWM, AGMWM;

�WM, �WM, AWM� � AGM � G�I; �GM, �GM� � AWM

� G�I; �WM, �WM� � AGMWM � G�I; �GMWM, �GMWM� [2]

where GMWM represents the partial volume class, with:

�GMWM � ��GM � �WM�/2 [3]

�GMWM � ���GM
2 � �WM

2 �/2�1/2. [4]

In a similar fashion, the IPD for the combined GM & CSF
compartment is modeled as a tri-Gaussian:

PCSF,GM�I� � G3�I; �CSF, �GM, ACSF; �CSFGM, �CSFGM, ACSFGM;

�GM, �GM, AGM� [5]

With:

�CSFGM � ��CSF � �GM�/2 [6]

�CSFGM � ���CSF
2 � �GM

2 �/2�1/2. [7]

Finally, following Ref. 24, the IPD for the combined brain
and CSF masks is modeled as a penta-Gaussian distribu-
tion, PCSF, GM, WM(I):

PCSF,GM,WM�I� � G5�I; �CSF, �CSF, ACSF;

�CSFGM, �CSFGM, ACSFGM; �GM, �GM, AGM;

�GMWM, �GMWM, AGMWM; �WM, �WM, AWM�. [8]

The partial volume intensity parameters �CSFGM, �CSFGM,
�GMWM, and �GMWM are defined as in Eqs. [3], [4], [6], and
[7]. In the following, the appropriate IPDs are fitted to the
normalized intensity histograms within a given intensity
range using the Simplex algorithm and the mean square
difference as a cost function.

Exbrain v.2 Segmentation Steps

All operations are automatic and, except where explicitly
stated otherwise, performed in 3D. The input data for the
following algorithm are: nonuniformity corrected head
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scan (Inuc, from N3), segmented brain mask (Ibrain; with cut
level at basis of cerebellum), fitted tri-Gaussian for GM &
WM voxel intensities (�GM, �GM, �WM, �WM) and optimal
GM-WM threshold level, tGM-WM (the latter three being
outputs from Exbrain v.1).

Step 1: Segmentation of Intrasulcal CSF

The background is identified by 3D connected component
analysis in Ibrain.

For each slice in Ibrain, a 2D connected component anal-
ysis is performed whereby all voxels of the brain’s back-
ground that are not connected to the edges of the image are
labeled “sulcal/ventricular” CSF, CSFs/v.

Step 2: Initial CSF and Background Signal Intensity
Characterization

The input volume, Inuc, is processed using a median filter
(spherical kernel, radius � 1.5 mm), giving Inuc, m. The
following operations are performed on Inuc, m.

Following Ref. 28, the background noise is modeled as a
Rayleigh distribution, and its mean, SD, �BGND, and �BGND

are estimated from the random noise level, which we
assume to be equal to the previously estimated mean of the
GM and WM SDs, �GMWM. We obtain the following esti-
mates of the background mean and SDs:

�BGND � �GMWM [9]

�BGND � 0.655�GMWM. [10]

An initial histogram analysis of all sulcal/ventricular CSF
is performed by fitting a tri-Gaussian, G3(I; �CSF, �GM, A
CSF; �CSFGM, �CSFGM, ACSFGM; �GM, �GM, AGM), with Eqs.
[6] and [7] and �Ai � 1. Assuming that CSFs/v is princi-
pally made up of CSF and some CSF-GM partial volume
voxels, and given that we are interested in estimating the
CSF intensity, the intensity range is limited to the range,
[�BGND, �GM]. Initialization of the parameters is as follows:
�CSF is set to the position of the first peak in the histogram.
�CSF is set to �GM and ACSF to 0.2, AGM � 0. If no peak is
detected in the histogram, the CSFs/v mask is dilated (out-
side the brain mask, radius � 1.5 mm) and the histogram
fitting operation is repeated. All tri-Gaussian parameters
are kept fixed apart from �CSF, �CSF, ACSF, and AGM, giving
initial estimates of �CSF and �CSF.

Step 3: Final CSF Segmentation

1. The optimal CSF-GM threshold level, tCSF-GM, is cal-
culated as follows from the CSFs/v histogram: First, an
initial estimate of tCSF-GM is obtained algebraically (29) by
assuming a bi-Gaussian, G2(I; �CSF, �CSF, A CSF, �GM �GM,
AGM), giving tCSF-GM 0. Second, the effect of the CSF-GM
partial volume class is then taken into account by adding
the weighted mean intensity of the partial volume class:

tCSF-GM � tCSF-GM 0�ACSF � AGM� � �CSFGMACSFGM. [11]

2. An optimal background-CSF threshold level, tBGND-CSF,
is derived algebraically by approximating the background-

CSF intensity distribution as a bi-Gaussian, G2(I; �BGND,
�BGND, 0.5, �CSF, �CSF, 0.5) as above. The resulting tBGND-

CSF defines the lower limit of the segmented CSF intensity.
The following operations are then performed on Inuc, m:
3. Taking the initial brain mask as a starting point, a

conditional dilation is performed with a spherical kernel
radius of 1.5 mm and the following minimum and maxi-
mum thresholds: [tBGND-CSF, �WM � 2.5 	 �WM]. The
difference between the resulting object and the brain mask
is called the interface CSF mask. This step initializes the
CSF mask to a single-voxel layer surrounding the brain;
the wide intensity range is chosen to overcome imperfec-
tions in the brain mask, particularly superficial voxels lost
due to morphological erosion operations used in Exbrain
v.1.

4. An iterative conditional dilation operation is per-
formed on the interface CSF mask with radius � 1.5 mm
and the following minimum and maximum thresholds:
[tBGND-CSF, tGM-WM]. This iterative intracranial filling pro-
cess is stopped when the number of voxels added to the
interface CSF mask at any step is zero.

5. Step 1 is repeated with the combined brain and CSF
mask as input to identify residual sulcal/ventrical CSF,
which is then added to the CSF mask.

Step 4: Refinement of the GM-CSF Boundary

The brain-CSF boundary in Inuc is adjusted by iterative
reclassification of voxels in a neighborhood (radius �
3 mm) of the voxels on the current GM-CSF interface. Only
voxels that have an intensity lower than that of the kernel’s
central voxel are reclassified according to the rule:

C
 � CCSF if tBGND-CSF � I � tCSF-GM

C
 � CGM if I � tCSF-GM. [12]

Where C
 represents the new voxel classification. Voxels
with I � tBGND-CSF are discarded from both the brain and
CSF masks.

The iterative reclassification is terminated when the
number of reclassified voxels is zero at a any step, in order
to recover the brain voxels that may have been discarded
in Exbrain v.1 due to erosion.

Step 5: Connectivity of Brain and Intracranial Compartments

a) First, the intracranial mask (sum of brain and CSF) is
subjected to an opening operation, with radius � 3 mm,
the largest connected component is identified, and all
other components are discarded. The CSF and brain masks
are then adjusted by masking both with the new intracra-
nial mask.

b) Second, steps 3–5 of Exbrain v.1 are performed on the
brain mask to discard voxels corresponding to marrow,
dura, or sinuses that may have been reintroduced in step
4. The usefulness of this step was tested explicitly in our
experiments.

c) Third, all voxels with I � tCSF-GM are discarded from
the CSF mask.
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Step 6: Cutting in the Axial Plane

The brain and CSF masks are cut at the level of the basis of
the cerebellum, as determined by Exbrain v.1.

Volumetry. The total number of voxels in the brain mask is
TBVm and the number of voxels contained in the CSF
mask is CSFVm. The total intracranial volume, ICV, is
defined as

ICV � TBVm � CSFVm. [13]

The final GMV, WMV, and CSFV estimates are calculated
from the IPD as follows: The normalized histogram of the
final combined brain and CSF mask is fitted to a penta-
Gaussian, giving final estimates of the intensity parame-
ters: �CSF, �CSF, �GM, �GM, �WM, �WM, and weights: ACSF,
ACSFGM, A GM, AGMWM, and AWM. Based on our model of
the partial volume voxels, we then have:

GMV � ICV�AGM � ACSFGM/2 � AGMWM/2� [14]

WMV � ICV�AWM � AGMWM/2�. [15]

Finally, TBV is the sum of the new estimates of GMV and
WMV, and CVSF � ICV – TBV.

Fuzzy Classification. Following Ref. 30, we implemented a
fuzzy classification scheme, whereby a tissue fraction, fi,
for each tissue class (CSF, GM, and WM) is calculated for
each voxel within the intracranial mask using the previ-
ously calculated class means, �i, as follows:

fi � �I � �i�
�d/�kfk �i, k � CSF, GM, WM� [16]

where I is the voxel intensity and d is an integer (here we
chose d � 2). The special case I � Ii: then f i � 1 and fj �
0 (j 
 i); the fractional probabilities were multiplied by
255 for storage. This method was chosen because it is the
one used for the Brainweb digital phantom, which is used
for validation in the present work (see next section).

EXPERIMENTS

The algorithm’s accuracy was assessed in a first set of
experiments using the Montreal Neurological Institute’s
(MNI) Brainweb digital brain phantom (31). As described
below, the Brainweb model was found to have clear im-
perfections and consequently required some editing before
it could be used as a gold standard. Segmentation repro-
ducibility was assessed in a second set of experiments by
applying the segmentation to pairs of scans from
25 normal subjects and 11 patients with epilepsy. Perfor-
mance was quantified based on a measure of voxel-by-
voxel similarity and tissue volumes.

Digital Head Phantom and Simulated Scan

The MNI digital head phantom was used to assess the
accuracy of the segmentation (31). The atlas is based on a
digital anatomical model of normal brain, and consists of a
partitioning of the head volume into 10 fuzzy tissue mem-
bership volumes (GM, WM, CSF, skull, fat, muscle/skin,
skin, connective tissue, glial matter, and “other”), all of
which are downloadable from http://www.bic.mni.
mcgill.ca/brainweb. The GM, WM, glial matter (in effect,
the CSF–WM interface, with an image intensity interme-
diate between GM and WM) and CSF true volumes are
given as 902.9 cm3, 674.8 cm3, 6.0 cm3, and 371.9 cm3,
respectively1. Therefore, the reference values are TBV
(sum of GM, WM, and glial matter) � 1583.7 cm3 and ICV
(sum of brain and CSF) � 1955.6 cm3 (before correction;
see below).

The Brainweb MRI volume simulator was then used to
generate a realistic axial, T1-weighted volume head scan
with 1 	 1 	 1mm3 voxels, 3% noise, and 20% nonuni-
formity.

Visual inspection of the downloaded CSF membership
volume showed a significant number of erroneously la-
beled voxels. Inspection of the other membership volumes
revealed that a significant amount of CSF had been as-

1These are the “crisp” volumes listed on the Brainweb website (http://www.
bic.mni.mcgill.ca/brainweb/anatomic_normal.html). The volumes for the fuzzy
tissue membership volumes are: 898.9 cm3, 663.3 cm3, 6.3 cm3, and
370.8 cm3 for GM, glia, WM, and CSF, respectively.

FIG. 1. Illustration of the CSF compartment in the MNI simulated brain scan with improvements. The white line represents the border of the
CSF compartment. a: Outline of original CSF compartment obtained from the MNI BrainWeb website. b: CSF voxels contained in the
original skin compartment and relabeled in this work (note that the relabeled voxels have the same intensity as the original CSF voxels). c:
“Corrected” CSF compartment, which is the sum of the original CSF compartment and the CSF voxels contained in the skin and relabeled.
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signed to the muscle-skin membership volume, particu-
larly in the anterior, inferior aspect of the temporal lobes
and cerebellum (see Fig. 1 for an illustration). The muscle-
skin volume also includes the main draining veins.

Correction was performed using seeding and region-
growing of the CSF voxels in the skin volume. A new,
corrected CSF membership volume was obtained by add-
ing the voxels thus identified to the original CSF volume
(see Fig. 1). The resulting corrected CSF volume was
407.4 cm3, giving a corrected ICV of 1991.1 cm3.

The accuracy of the segmentation was assessed in two
ways: 1) the volume of each compartment was compared
to the given values, and 2) the degree of similarity between
the segmentation result and the model was calculated as
follows:

Sc � 2 VOL�Sc,Exbrain � Sc,MNI�/�VOL�Sc,Exbrain�

� VOL�Sc,MNI��.

Where Sc, Exbrain is the binarized (by thresholding at 127)
fuzzy classification mask for tissue or region “C” (GM,

WM, CSF, brain, or intracranial tissue) obtained by seg-
mentation and Sc, MNI is the MNI mask for region “C,” also
binarized by thresholding, and cut at the same level as the
Exbrain segmentation. The brain and intracranial regions
were obtained by adding the tissue probabilistic maps (GM
and WM for brain, plus CSF for intracranial) followed by
thresholding.

In view of the aforementioned uncertainty in the CSF
gold standard, particularly in the inferior region, the qual-
ity of the ICV segmentation was evaluated over the whole
intracranial region as automatically identified by Exbrain
(the brainstem cut-level), and for the intracranial region
above a point 3 cm higher than the brainstem cut-level,
roughly corresponding to the base of the temporal lobes.

Scan Data

Twenty-five normal subjects (11 males and 14 females;
mean age at baseline: 32.0 years, range: 22–57 years) and
11 patients (five males and six females; mean age at base-
line: 31.1 years, range: 21–48 years) with chronic or newly
diagnosed epilepsy were scanned twice. The mean scan

FIG. 2. Illustration of the automatic segmentation result for the BrainWeb simulated scan: binary brain and CSF masks. Three representative
slices are shown. Column 1: Reference BrainWeb brain mask outline (sum of thresholded GM and WM fuzzy compartments). Column 2:
Exbrain binary brain mask. Column 3: Exbrain binary CSF mask. Column 4: Reference BrainWeb CSF mask (thresholded CSF fuzzy
compartment).
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interval was 8.2 months (range: 3.9–16.8 months) for the
controls and 41.7 months for the patients (range: 41–42
months). Data from one control was discarded due to mo-
tion in the baseline scan, and data from one patient was
rejected due to a large signal change in an abnormal vein
between the two scans, leaving 24 control and 10 patient
scan pairs for further analysis.

The scans were acquired using a fast, inversion recov-
ery-prepared, spoiled gradient-recalled (IR-SPGR) T1-
weighted volume sequence (TI/TR/TE � 450/15/4.2 ms,
flip � 25°, matrix � 256 	 192, FOV � 24 	 18 cm,
124 1.5-mm-thick coronal slices) on a Signa 1.5T Echos-
peed MR imager (GE Medical Systems, Milwaukee, WI).
This sequence is used in our routine protocol for morpho-
metric analyses in patients with epilepsy (32). It represents
a compromise between maximal coronal in-plane spatial
resolution, whole-head coverage, suitability for 3D recon-
struction and visualization, and scan time (6:56 min). In

FIG. 3. Illustration of the auto-
matic GM segmentation result for
the BrainWeb simulated scan. a:
Simulated scan. b: Reference GM
compartment (binarized, thresh-
old � 128). c: Binarized GM prob-
ability map obtained by segmen-
tation (threshold � 128). d: Differ-
ence (c – b). The arrows indicate
possible errors in the BrainWeb
reference GM compartment.

FIG. 4. Typical example of intracranial intensity histogram (dots)
and fitted penta-Gaussian IPD (line) in a normal control subject.
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these images, typical tissue intensity characteristics are:
�GM � 90, �WM � 105, �GM � �WM � 4, �CSF � 20.

A dataset from a patient with chronic epilepsy was
processed to test the applicability of the method to data
with different characteristics, using the following acquisi-

tion parameters: IR-SPGR, T1-weighted volume sequence
(TI/TR/TE � 600/9.7/4 ms, flip angle � 12, matrix size �
224 	 256, FOV � 25.6 cm, 108 1.5-mm-thick sagittal
slices) and the data were acquired on a 2T Magnetom
system (Siemens). In this data, the approximate tissue

FIG. 5. Typical result of segmentation of a matched and registered scan pair from a normal control. a: Brain mask. b: Intracranial mask.
Normal subject, a 30-year-old (at baseline) female. In this case dTBVm and dTBV (registered and matched repeat minus baseline) were
–0.88 cm3 and –1.04 cm3, respectively, and dICV was 7.06 cm3. Note the unorthodox orientation of the head, which did not affect the
quality of the registration.

Table 1
Baseline Intensity Probability Distribution (IPD)-Derived Volumes

Component

Controls Patients

Mean volume
(cm3)

Range
[Min-Max] (cm3)

Mean volume
(cm3)

Range
[Min-Max] (cm3)

CSF 211.3 167.4–297.5 213.2 171.1–264.8
GM 743.9 646.9–889.4 771.3 645.4–874.4
WM 508.8 413.6–677.3 485.7 320.9–596.6
TBV 1252.7 1071.2–1566.7 1257.0 1067.2–1470.9
ICV 1464.1 1273.3–1864.2 1470.2 1246.5–1690.9
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intensity characteristics were: �GM � 850, �WM � 950,
�GM � �WM � 50, �CSF � 300.

Reproducibility

Reproducibility was assessed by calculating the mean and
SD of the difference between the tissue volumes obtained

by segmenting the baseline and repeat scans. We also
wanted to determine the effect of scan registration on the
segmentation reproducibility. The baseline scan was seg-
mented and the repeat scan registered to the baseline
based on a nine-parameter (three rotation, three transla-
tion, and three scaling) affine transformation by iteratively
maximizing the intensity cross-correlation within the

FIG. 6. Illustration of a typical probability map in a normal subject.
Registered and matched scans; left: baseline; middle: registered
and matched; right: difference. a: Gray matter. b: White mat-
ter. c: CSF. The subject is a 37-year-old (at baseline) female. In this
case the volume differences were: dGMV: –5.18 cm3, dWMV: –0.67
cm3, dCSF � 3.45 cm3 (dICV: –2.41 cm3).
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baseline brain mask2 (10,33). Reslicing was performed us-
ing sinc interpolation (kernel radius � 5). The registered
repeat scan was segmented and the ratio of the mean
registered to baseline intensities within the baseline brain
mask was recorded:

R � �Iregistered�/�Ibaseline�.

Finally, the registered repeat scan was segmented twice,
once without and once with the intensity correction factor,
R, taken into account. In the latter the segmentation and
volumetric calculations were modified to use knowledge
derived from the baseline segmentation in an attempt to
improve reproducibility. First, the following values from
the baseline scan segmentation, adjusted by multiplying
by R, were used as input and kept fixed throughout seg-
mentation: 1) foreground threshold level (Exbrain v.1), 2)
background-CSF threshold level, tBGND-CSF, and 3) level of
the brainstem cut. Second, in the final volumetric calcu-
lation, the starting penta-Gaussian parameter values were
set to the final estimates obtained for the baseline scan,
also multiplied by R, with the mean intensities (�CSF, �GM,
�WM) and SDs (�CSF, �GM, �WM) kept fixed and the follow-
ing parameters estimated: ACSF, ACSFGM, A GM, AGMWM,
and AWM.

We use the coefficient of repeatability (CR), twice the SD
of the difference, as a measure of reproducibility (34). The
coefficient of variation (CV), defined as the absolute differ-
ence between repeated values expressed as a percentage of
baseline, is commonly used to express reproducibility
(35). Therefore, we also calculated the CV and expressed
the CR as a percentage of baseline to facilitate compari-
sons.

RESULTS

Accuracy

Figures 2 and 3 illustrate the result of the automatic seg-
mentation of the MNI simulated scan. The similarity was
0.977, 0.860, and 0.964 for the binary brain, CSF, and
intracranial masks (combined brain-CSF) segmentations,

respectively. The similarity for the GM and WM probabil-
ity maps was assessed by first applying a threshold of
128 on the maps and calculating similarity with the
thresholded MNI reference GM and WM maps; the results
were 0.945 and 0.964, respectively. The similarity for the
intracranial mask with a higher brainstem cut level was
0.966.

A visual comparison of the brain and CSF segmentation
and the gold standard revealed that the error consisted of
isolated voxel clusters distributed roughly uniformly
around the brain, with occasional erroneous inclusion of
sinuses in the Exbrain CSF mask. With regard to the GM
segmentation, Fig. 3 shows misclassification of the ventric-
ular WM-CSF interface as GM, and apparent clusters of
surplus GM, for example around the antero-inferior and
lateral aspects of the temporal lobes. The former results
from classification based on intensity alone, and can be
addressed using voxel neighborhood information (see Dis-
cussion). The latter indicates errors in the reference tissue
models, upon inspection of the temporal lobes in the sim-
ulated data, as indicated by the arrows (Fig. 3).

The TBV and ICV values calculated using Exbrain were
1586.6 cm3 and 1965.5 cm3, representing errors of �0.1%
and –1.3%, respectively, compared to the reference TBV
and corrected ICV fuzzy volumes (�0.5% relative to the
uncorrected ICV). The GM, WM, and CSF volumes were
921.5 cm3, 665.1 cm3, and 378.9 cm3, respectively, corre-
sponding to errors of �2.0%, –1.4%, and –5.0%, respec-
tively, relative to the reference values (corrected, in the
case of CSF; error is �1.8% relative to uncorrected CSF).
The binary mask volumes, TBVm and CSFm, were
1541.5 cm3 and 424.0 cm3, corresponding to errors of
–2.3% and �4.1%, respectively.

Reproducibility

The average time taken for the complete segmentation
process of the real scans was 10 min on a SunBlade
1000 Unix workstation (SUN Microsystems, Palo Alto, CA)
with 512MB RAM.

Normal Control Data

The mean values for the fitted histogram mean intensities
and SDs for each tissue class were: �CSF � 25.5, �CSF � 8.2;

2The scaling parameters are used to correct for changes in voxel dimensions;
see Ref. 33.

Table 2
IPD-Derived Tissue Volume Changes in 20 Normal Controls Scanned 8.2 Months Apart

dGMV dWMV dTBVa dCSFV DICVb

Mean CR Mean CR Mean CR Mean CR Mean CR

cm3

Repeat-baseline �0.83 24.0 �0.98 25.4 �1.82 35.2 �0.58 22.0 �2.39 29.0
Registered repeat-baseline �2.72 26.4 �0.51 20.2 �3.24 24.2 �1.36 25.8 �4.59 20.8
Registered and matched repeat-baseline �7.77 29.0 �3.96 9.50 �3.81 25.2 �0.75 24.0 �4.56 17.1

% of baseline volume
Repeat-baseline �0.10 3.06 �0.19 5.0 �0.15 2.80 �0.27 10.42 �0.16 1.98
Registered repeat-baseline �0.35 3.36 �0.10 3.98 �0.26 1.94 �0.64 12.20 �0.31 1.42
Registered and matched repeat-baseline �0.99 3.70 �0.77 1.86 �0.30 2.02 �0.35 11.36 �0.31 1.16

aTBV is the sum of GMV and WMV.
bICV is the sum of TBV and CSFV. CR, Coefficient of repeatability � 2 	 SD.
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�GM � 75.6, �GM � 8.8; �WM � 111.7, �WM � 5.8; �CSF-GM �
50.6, �CSF-GM � 8.5; and �GM-WM � 93.7, �GM-WM �
7.5. Figure 4 illustrates a typical intensity histogram and
fitted IPD in a normal control subject. In this case the cross-
correlation between the two curves is 0.997. The mean final
values for the threshold levels used in the algorithm were:
tBGND-CSF � 11, tCSF-GM � 48, tGM-WM � 95.

The mean baseline IPD-derived volumes are shown in
Table 1. The mean proportion of partial volume voxels
were: ACSF-GM � 0.20 and AGM-WM � 0.34. The mean
baseline brain and CSF mask volumes were: TBVm �
1252.6 cm3 and CSFm � 211.6 cm3. The correlation coef-
ficient between TBV and TBVm was 0.997. Figures 5 and
6 illustrate typical segmentation results for the baseline
and matched repeat scans.

The repeat-baseline volume differences were found to be
uncorrelated to the baseline values (Pearson correlation �
0.06). The results for GMV, WMV, CSFV, TBV, and ICV are
summarized in Table 2, and the results for TBVm and
CSFVm are summarized in Table 3. These show that reg-
istration alone improves the reproducibility of TBV, ICV,
and TBVm. Intensity matching following registration does
not result in any substantial improvement, except for the
TBVm and CSFm, which show a substantial drop in both
the mean and SD of the difference.

For comparison purposes, the mean CV for GMV, WMV,
CSFV, TBV, and ICV for the repeat-baseline comparison
are: 1.32%, 2.09%, 4.26%, 1.12%, and 0.81%, respec-
tively.

Patient Data

The mean baseline IPD-derived volumes are shown in
Table 1. There were no baseline volume group differences
between patient and controls. The mean baseline binary
brain and CSF mask volumes were: TBVm � 1257.3 cm3

and CSFm � 212.9. The reproducibility results are sum-
marized in Tables 4 and 5. Figure 7 illustrates the segmen-
tation for a patient with chronic epilepsy. The difference
image shows the usual signs of atrophy, in particular a
dark rim around the ventricles.

DISCUSSION AND CONCLUSIONS

We have demonstrated and validated a fully automatic
algorithm for the segmentation of brain tissues and total
intracranial CSF in T1-weighted volume scans. Our ap-
proach is based on a combination of morphological oper-
ations and intensity thresholds, guided by a basic set of
assumptions on the appearance of the head in T1-weighted
volume scans.

The algorithm’s relative complexity is its principal
weakness, as it may appear to be specifically designed for
our own data. However, the algorithm contains no explicit
reference to scan orientation, apart from the brainstem
cutting step, which relies on accurate header information.
We have not systematically evaluated the method’s robust-
ness for different scanners or other scan orientations; how-
ever, Fig. 8 shows evidence for the general validity of our
approach. Our substantial (albeit anecdotal) experience

Table 3
Binary Brain and CSF Mask Volume Changes in 20 Normal Controls Scanned 8.2 Months Apart

dTBVm dCSFVm

Mean CR Mean CR

cm3

Repeat-baseline �2.36 40.62 �0.03 33.58
Registered repeat-baseline �8.47 34.54 �3.88 36.00
Registered and matched repeat-baseline �2.69 24.30 �1.86 23.20

% of baseline volume
Repeat-baseline �0.19 3.24 �0.00 15.88
Registered repeat-baseline �0.67 2.76 �1.83 17.02
Registered and matched repeat-baseline �0.21 1.94 �0.88 10.96

CR, Coefficient of repeatability � 2 	 SD.

Table 4
IPD-Derived Tissue Volume Changes in 10 Patients With Epilepsy Scanned 3.5 Years Apart

dGMV dWMV dTBVa dCSFV DICVb

Mean CR Mean CR Mean CR Mean CR Mean CR

cm3

Repeat-baseline �11.09 40.34 �14.07 36.88 �25.16 72.38 �17.03 44.08 �8.13 34.48
Registered repeat-baseline �6.86 27.74 �3.00 25.02 �3.85 47.46 �6.66 59.60 �10.52 21.26
Registered and matched repeat-baseline �4.81 59.14 �11.45 27.18 �16.31 48.50 �24.80 42.66 �8.49 18.76

% of baseline volume
Repeat-baseline �1.44 5.24 �2.90 7.60 �2.00 5.76 �7.99 20.68 �0.55 2.34
Registered repeat-baseline �0.89 3.60 �0.62 5.16 �0.31 3.94 �3.13 27.76 �0.72 1.44
Registered and matched repeat-baseline �0.63 7.66 �2.36 5.60 �1.30 3.86 �11.63 20.02 �0.58 1.28

aTBV is the sum of GMV and WMV.
bICV is the sum of TBV and CSFV. CR, Coefficient of repeatability � 2 	 SD.
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with segmenting T1-weighted volumetric scans from other
centers indicates that performance is generally a reflection
of accuracy of the header information and image quality:
noise (intrinsic, motion, etc.), contrast (CSF-background),
spatial resolution, and preprocessing. The algorithm gen-
erally performs less well on data that has been interpo-
lated, due to blurring.

Validation relied on a widely used synthetic “gold stan-
dard” for accuracy, and on repeated scans for reproduc-
ibility.

The similarity with the MNI gold standard was 98% for
the brain and 96–97% for the intracranial volume (de-
pending on the inferior cut level). In terms of total volume,
the results for both structures revealed an excellent agree-
ment with the given values, with errors of 1.3% or less.
Our finding that the segmentation similarity is higher for
the brain than for combined brain-CSF reflects the diffi-
culty of segmenting the latter. This is likely due to a
combination of the following factors: the low signal-to-

noise ratio (SNR) of the CSF, and its thinness and convo-
lutedness (particularly in the skull base, which makes it
more subject to the partial volume effect and therefore
more difficult to segment using morphological operations).
Indeed, comparison of the results for the higher brainstem
cut level is consistent with this observation. Visual inspec-
tion of the automatic CSF segmentation result revealed
that the error was uniformly distributed around the cranial
vault. GM and WM segmentation (not shown) was in good
agreement with the reference maps, and we provided evi-
dence of consistent results in repeated scans. Our results
for GM and WM segmentation are slightly worse than
those obtained by Grabowski et al. (24) in terms of volume,
although we have shown some deficiencies in the refer-
ence data.

The accuracy of segmentation of the CSF (steps 2 and 3)
without median filtering was much inferior to the results
reported here (results not shown). Regarding the utility of
step 5b, which may be considered rather ad hoc, it is

Table 5
Binary Brain and CSF Mask Volume Changes in Patients With Epilepsy Scanned 3.5 Years Apart

dTBVm dCSFVm

Mean SD Mean SD

cm3

Repeat-baseline �27.90 101.82 �19.78 77.16
Registered repeat-baseline �2.37 79.06 �8.15 91.42
Registered and matched repeat-baseline �9.31 52.34 �17.81 46.78

% of baseline volume
Repeat-baseline �2.22 8.10 �9.29 36.24
Registered repeat-baseline 0.19 6.28 �3.83 42.94
Registered and matched repeat-baseline �0.74 4.16 �8.36 21.96

FIG. 7. Illustration of the segmen-
tation for a 34-year-old female
with a history of chronic epilepsy.
Top row: registered and matched
scans; middle row: brain segmen-
tation (binary mask applied to im-
age); bottom row: CSF probability
maps. a: Baseline. b: Registered
and matched repeat scan. c: Dif-
ference image (registered and
matched repeat scan minus
baseline). A dark rim can be seen
in the brain mask difference im-
age, indicative of cerebral volume
loss. A bright rim around the brain
and the ventricles can be seen in
the CSF difference image, indica-
tive of CSF volume increase. In
this case, dTBVm was –27.0 cm3,
dCSFm was �30.6 cm3, and dICV
was �3.6 cm3.
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noteworthy that although it had a significant effect on the
segmentation of the simulated scan, its effect on the real
scans was minimal. This is despite the larger influence of
the partial volume effect due to the larger voxel size in the
latter. This may reflect either the specificity of the subject’s
anatomy on which the digital atlas was based, or some
effect of the MNI classification process.

Reproducibility experiments were performed to test the
algorithm’s stability and as a surrogate for a true in vivo
gold standard. By limiting the interscan interval to a short
interval (average 8 months), we introduced random varia-
tions in noise, head position and orientation, and voxel
dimension, as well as some normal physiological varia-
tions (menstruation, body weight, etc.) while ensuring that
any changes in brain and intracranial volumes were very
small. In the control group, the TBV and ICV interscan
reproducibility (CR � 2 	 SD of the difference) were
35.2 and 29 cm3, respectively (2.8% and 1.98% of the
mean baseline values), for the original pairs, and lower for
the registered and matched scan pair comparisons, with
25.2 cm3 and 17.06 cm3 (2.02% and 1.16% of mean base-
line values) for the latter. Absolute GM, WM, and CSF
volume reproducibility values were similar to the TBV
values for all scan pair comparisons, apart from a marked
increase in dGMV for the registered-matched comparison
compared to the unregistered result. Binary and CSF brain
mask volume reproducibility values were similar to the
IPD-derived values.

We expected a higher variability in the patients com-
pared to the normal controls for all cerebral volumetric
measures, in part due to ongoing biological processes
(such as aging and possibly other processes associated
with disease progression) and in part due to artifacts. For
ICV, these effects should be reduced if one assumes that
the shape and size of the cranium remain relatively unal-
tered over the interscan interval. The results confirmed
these expectations, and we observed a general pattern of
cerebral volume loss and CSF volume increase, and CR
values roughly double those obtained for the controls. For
ICV, the mean change and CR were very similar to the
control values, with a very slight increase.

Visual inspection of the GM, WM, and CSF probability
maps demonstrated the validity of our method. The most
common segmentation error was the inclusion of small
fragments of dura in the brain mask in the parieto-occipital
region in approximately 10% of the subjects. This is prob-

ably due to the effect of gravity, which may reduce the gap
between the brain and skull in that region as the subject
lies supine. For the CSF, the comparison of the results
with registration (Fig. 7, in particular the difference image)
shows numerous inconsistencies. This reflects in part the
difficulty of segmenting this component, because of its
relatively low SNR. Furthermore, it is important to note
that registration of the repeat scans is based on the brain
alone, which is known to move relative to the cranium,
causing changes in the distribution of CSF and rendering
voxel-by-voxel comparison of the CSF segmentation across
the scans meaningless. We found a slight benefit in repro-
ducibility from scan pair matching.

There are several possible ways this algorithm could be
improved. Although good agreement between the intensity
histogram and fitted IPD was found, and the quality of the
segmentation provides some justification for the use of the
penta-Gaussian model, improved modeling of the partial
volume effects (e.g., based on the uniform distribution)
may provide more stable solutions (36). Local neighbor-
hood information could be used to take into account
genuine tissue intensity variations, and prevent the mis-
classification of WM-CSF boundary voxels as GM (e.g.,
Markov random field methods (16)). A possible initial
approach that would take advantage of the algorithm’s
structure would be to use a combination of intensity
information with boundary location to identify partial
volume voxels.

In conclusion, we have demonstrated a new, fully auto-
matic method to segment the brain and total intracranial
CSF from T1 volume scans with good accuracy and repro-
ducibility. We envisage that this approach will be useful in
a wide variety of applications in structural MRI and in
combination with functional neuroimaging data such as
PET and EEG.
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FIG. 8. Illustration of the segmentation result for the sagittal scan acquired on the 2T Siemens scanner: (a) slice from original data, (b) with
binary brain mask outline (white line), and (c) with binary intracranial mask (sum of brain and CSF masks) outline.
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