
Histogram-Based Characterization of Healthy
and Ischemic Brain Tissues Using Multiparametric
MR Imaging Including Apparent Diffusion Coefficient
Maps and Relaxometry

J. Bernarding,1,2* J. Braun,1 J. Hohmann,2 U. Mansmann,1 M. Hoehn-Berlage,4

C. Stapf,3 K.-J. Wolf,2 and T. Tolxdorff1

Decreased, renormalized, or increased values of the calculated
apparent diffusion coefficient (ADC) are observed in stroke
models. A quantitative description of corresponding tissue
states using ADC values may be extended to include true
relaxation times. A histogram-based segmentation is well suited
for characterizing tissues according to specific parameter com-
binations irrespective of the heterogeneity found for human
healthy and ischemic brain tissues. In a new approach, navi-
gated diffusion-weighted images and ADC maps were incorpo-
rated into voxel-based parameter sets of relaxation times (T 1,
T2), and T1- or T2-weighted images, followed by a supervised
histogram-based analysis. Healthy tissues were segmented by
incorporating T 1 relaxation into the data set, ischemic regions
by combining T 2- or diffusion-weighted images with ADC maps.
Mean values of healthy and pathologic tissues were determined,
spatial distributions of the parameter vectors were visualized
using color-encoded overlays. One to six days after stroke,
ischemic regions exhibited reduced relative mean ADC values.
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Diffusion-weighted images (DWI) display ischemic regions
within minutes after the onset of ischemia as relative
hyperintense regions (1), caused by the reduction in the
apparent diffusion coefficient (ADC). The ADC may normal-
ize after reperfusion and increase to supranormal values in
later stages (2–4). There is consensus that the ADC as a
quantitative measure for the mobility of water protons may
allow the comparison of pathophysiologic processes in
humans and stroke models. However, there is still some
debate about how to quantify ADC values of ischemic
human tissues with respect to unaffected tissues, as well as
the predictive value of ADC changes for recovery or
necrosis of affected tissue (5–7). Several factors impede the

determination of the ADC values and their spatial distribu-
tion for human brain tissues. The extreme motion sensitiv-
ity of diffusion-weighted imaging requires ultrafast imag-
ing (8) or navigator echo methods (4,9), each of which has
different advantages, drawbacks, and technical limitations
(3,10). But given healthy volunteers and the elimination of
motion artifacts, the complex human brain anatomy still
results in a broader distribution of ADC values than that
obtained in stroke models where the middle cerebral artery
(MCA) is occluded, often leading to a large connected
ischemic area with strongly decreased ADC values. By
contrast, ischemic tissues in humans may exhibit irregular
or disconnected regions, a high degree of heterogeneity
with acute and chronic lesions as well as hemorrhagic
parts, and increased partial volume effects if located near
the strongly folded human brain surface. Generally, patho-
logic regions are segmented within a parameter image, and
the mean value of the region of interest (ROI) is deter-
mined. Relative changes are determined as the ratio to the
mean parameter value of a similar ROI in an unaffected
region (most often in the contralateral hemisphere). This
yields reliable results for regions with few spatial heteroge-
neities. However, a histogram-based data analysis may be
better suited for segmenting tissues with similar physi-
ologic characteristics in irregularly shaped, disconnected,
or heterogeneous regions. This approach may also be easily
extended to a multidimensional data set, allowing a simul-
taneous description of the combined parameters: different
tissue classes may cluster into separable histogram regions
according to their characteristic parameter distributions.
The histogram analysis may also clarify whether certain
parameter combinations can be correlated to different
substructures within ischemic regions (11–14), as pro-
posed by the concept of tissue signatures (5). The most
important task is to predict which tissue will necrotize and
to determine the zones of tissue at risk that might recover
(5,14,15).

To investigate whether tissues may be characterized by
quantitative parameters, we incorporated for the first time
ADC maps and true relaxation times into a multi-spectral
parameter set of navigated DWI and standard clinical
images. Histogram-based methods using spin density, true
T1 and T2 (or corresponding relaxation rates) were applied
to analyze healthy brain tissues and experimental tumors
(16–21). Besides preliminary results published in abstract
form (22), a histogram-based characterization of human
ischemic brain tissues using ADC maps, T2- and diffusion-
weighted images has been reported only by Welch and
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others (5,23). However, they analyzed the histogram with a
different strategy than the one presented in this work (5).

Since the data set included other spin-echo-based im-
ages, we had to use navigated spin-echo-based DWI (9,24),
which resulted in geometrically undistorted images with a
higher spatial resolution compared to echo planar imaging
(EPI). Parameter distributions of a segmented histogram
region were color-encoded and superposed onto the corre-
sponding parameter images, displaying both physiologic
and anatomical information simultaneously. A multi-
parametric data set of unaffected tissue classes served as
reference data. Different parameter combinations were
examined with regard to the minimal number of param-
eters needed to reliably segment healthy and pathologic
tissue classes. Healthy volunteers and patients were exam-
ined. Two cases will illustrate in detail typical problems
associated with the analysis of human ischemic regions
and the results obtained by the proposed method.

METHODS

Examination

Seventeen healthy volunteers (10 male, 7 female, 24–57
years, mean 33.7 years), and 10 patients (7 male, 3 female,
35–64 years, mean 55.7 years) were examined after provid-
ing written consent, in accordance with the board of ethics.
Patients were admitted to the neurological department of
the hospital because of acute cerebral ischemia. Three
patients in poor condition were examined without deter-
mining exact relaxation times. One patient with a transient
neurological deficit did not show abnormalities in T1-
weighted (T2w), T2-weighted (T2w), or DWI. Eight patients
exhibited hyperintense regions in DWI and T2w images,
whereas one patient (examined 4 months after ischemia)
showed hyperintense signals in the T2w image and corre-
sponding hypointense signals in the DWI. Healthy and
affected tissues were identified by a radiologist according
to their specific signal behavior in the different images.
Diagnoses were ascertained in a clinical follow-up.

MR Imaging and Data Postprocessing

Two spin-echo pulse sequences were implemented on a
standard clinical MR scanner (1.5 T, Magnetom Vision,
Siemens). A navigated diffusion-sensitive double-spin-
echo sequence was used for DWI (9,24,25) with
TE(image echo) 5 76 msec, TE(navigator echo) 5 95 msec. Diffusion-
encoding gradients were applied along the phase-encoding
direction (short axis of the head). Diffusion weighting with
variable b-values (0–529 sec/mm2) was achieved with
amplitudes of the diffusion gradients (GD) between 0 and
20 mT/m according to

b 5 g2 GD
2 d2 (D 2 d/3) [1]

with a gradient duration of d 5 28 msec, a difference
between the leading edges of the gradient lobes D 5 35
msec, and g as the gyromagnetic ratio of the proton. Seven
slices with a matrix size of 128*256 were acquired using
pulse-triggered data acquisition (TR 5 850 msec, trigger
delay 100–150 msec, effective TR about 1500 msec). Mo-
tion artifacts were corrected in the frequency domain

analogous to (9,24). In a few cases this algorithm did not
correct motion-induced artifacts in localized regions. The
original navigator phases of these regions were then inter-
actively replaced by navigator phases interpolated from
adjacent nondistorted regions. A second navigator method,
using phase correction in the time domain, led to insuffi-
cient results in patient examinations (26). All voxels above
an automatically determined noise level were selected for
the ADC calculation by applying a linear least squares
fitting routine to the logarithm of the signal intensity as a
function of the b-values (0, 132, 259, 428, 529 sec/mm2).
The mismatch of voxels caused by minor patient move-
ments between measurement cycles (most prone at border
structures) was reduced by applying a motion-correcting
software (27). Data were post-processed on the scanner
console with a self-developed software system. Corrected
images and ADC maps were stored in the database system
of the vendor, allowing immediate data evaluation by
neuroradiologists. ADC calculation took about 3 min for 7
slices, 5 b-factors, and a 128*256 matrix size.

Exact longitudinal and transversal relaxation times, ini-
tial magnetization, and relative proton densities were
determined simultaneously using a special multi-echo
sequence followed by a nonlinear data analysis similar to
(16). Two pulse trains (28 and 4 echoes with a time spacing
DTE 5 22.5 msec, separated by a fixed TR of 500 msec)
were recorded. Repetition time varied between 2200 and
3000 msec. Only voxels above an automatically deter-
mined noise level were selected for further analysis (16). T1

relaxation time and relative spin density were calculated
from the first 4 echoes of each echo train according to (28).
The first 28 echoes were used for the nonlinear multi-
exponential analysis of the T2 relaxation time and the
initial magnetization (16,29). All data were fitted with a
mono-exponential curve. Voxels with a x2 statistic greater
than xn

2, 1 2 a (n 5 degrees of freedom, a 5 0.05) were
additionally fitted by a bi-exponential curve. To assess the
improved fit, an F-test on level a 5 0.05 was performed.
Adjacent voxels were compared to estimate whether bi-
exponential T2 behavior was caused by partial volume
effects or by intrinsic tissue characteristics (16,17,21). Data
were analyzed using a two-tailed paired Student’s t-test.
P-values below 0.05 were considered to be significant.

Data Analysis

The supervised histogram-based analysis was performed
on a DEC Alpha 300, requiring about 6 min for data
transfer, image registration, parameter evaluation, and
histogram generation. Multidimensional histograms were
constructed by combining 1D histograms of selected param-
eter subsets (30). Histogram segmentation was performed
using rectangular ROIs. In 2D histograms, arbitrarily shaped
ROIs could also be used. To analyze parameters that were
unequally distributed within their ranges (e.g., T2), the
histogram axes could be scaled logarithmically or in-
versely. Contrast was optimized by freely adjusting the
window size and the center of both the histogram and the
parameter images. In a given histogram (e.g., T1-T2), voxels
within the selected ranges of an ROI were color-encoded
according to the parameter range (e.g., T1) and then super-
posed onto the original parameter images. The overlay
color blue (or red) stood for the minimum (or maximum)
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value of the selected parameter ranges. The original param-
eter image and color-encoded overlay could be displayed
separately. To verify the histogram-based tissue segmenta-
tion, a control segmentation of regions that were hyperintense
in the DWI (Table 1, patients 1 and 3–9) or in the T2w image
(patient 2) was performed by a second radiologist, who was
blinded for the results of the histogram method. ROIs were
subsequently transferred to other images (e.g., T2w image or
ADC map). Contralateral ROIs with similar shape and compa-
rable location were selected and their mean parameter
values were determined. Ratios of mean values of ischemic
to contralateral unaffected tissues were determined. Histo-
gram cells corresponding to the parameter combinations of
the voxels within the selected ROI of the image were
color-encoded and superposed onto the original histogram.
For a definition of false-positive voxels, see Table 1.

Histogram and images could be zoomed to account for
small or irregular structures. Number of segmented voxels,
parameter ranges, mean values, standard deviations of
segmented tissues, and their ratios to unaffected brain
parenchyma were automatically calculated, displayed, and
stored in a data base.

RESULTS

Nonischemic Tissue

Figure 1 displays original parameter images and ADC
values of representative healthy brain tissues obtained by
an interactive segmentation of true T1, T2, and ADC values.
The spatial distribution of the ADC is visualized by using
color-encoded overlays. Comparable segmentation results
were obtained by analyzing different 2D histograms, given
that arbitrarily shaped ROIs were used instead of rectangu-

lar ones: In a T1-T2 histogram, gray matter (GM), white
matter (WM), cerebrospinal fluid (CSF), adipose tissue,
and muscle could be segmented; a T1-ADC histogram
allowed the differentiation of GM, WM, and CSF. Muscle
and adipose tissue could not be differentiated from each
other but were clearly distinct from GM, WM, or CSF. In
healthy volunteers a T2-ADC histogram generally allowed
only the differentiation between brain parenchyma (WM/
GM), CSF, and muscle/adipose tissue (similar to the T1-
ADC histogram). The mean and standard deviation of the
parameters were determined for the tissues of volunteers
and the unaffected tissues of patients. Mean ADC values
were 890 6 215 µm2/sec for GM, 810 6 270 µm2/sec for
WM, and 3100 6 660 µm2/sec for CSF. In WM, the ADC
values per voxel varied between 1500 µm2/sec (parallel to
the diffusion-weighting gradients) and 230 µm2/sec (nerve
fiber direction perpendicular to the gradients). The few
voxels corresponding to adipose tissue and muscle exhib-
ited widely scattered and nonseparable ADC values (780 6
700 µm2/sec).

Mean T1 relaxation times were 1120 6 120 msec for GM,
780 6 89 msec for WM, 1715 6 600 msec for CSF, 395 6 81
msec for adipose tissue, and 1072 6 290 msec for muscle.
Mean T2 relaxation times were 96 6 8 msec for GM, 92 6 8
msec for WM, and 50 6 10 msec for muscle. Mean T2

relaxation for adipose tissue was 111 6 30 msec, which
could be resolved into two decay components with mean
values of 34 6 8 msec and 165 6 31 msec. Partial volume
effects between brain parenchyma and CSF were resolved
in surface-adjacent CSF parts, showing a bi-exponential T2

relaxation with mean values of 79 6 12 msec and 1052 6
485 msec. Mono-exponential T2 relaxation for CSF was
1458 6 400 msec.

Table 1
Histogram- and Image-Based Analysis of Ischemic Tissues Using T2- and Diffusion-Weighted Imaging*

Patient
Time after
onset of
ischemia

Relative size of
ischemic regions

Relative mean signal intensity (SI) Classification statistics

PerformanceT2w SI ADC Histogram Image

Histogram Image Histogram Image Histogram Image IA IB IC IIA IIB IIC

1 6 days 0.109 0.075 1.41 1.53 0.64 0.70 0.066 0.112 0.27 0.147 0.135 0.041 1a,b
2 4 mo 0.037 0.044 2.18 2.11 2.53 2.17 0 0.06 0.004 0.038 0.125 0.019 1a; 3a
3 16 days 0.108 0.082 1.75 1.63 1.55 1.61 0.061 0.132 0.172 0.058 0.141 0.05 1a,b,c; 3a
4 3 days 0.311 0.339 1.38 1.39 0.67 0.66 0.008 0.002 0.053 0.022 0.039 0.013 1b
5 3 days 0.126 0.155 1.48 1.48 0.91 0.95 0 0 0.025 0.066 0.035 0.01 0
6 6 days 0.004 0.003 1.58 1.51 0.68 0.68 0.077 0 0.077 0.051 0.152 0.017 2
7 1 day 0.002 0.002 1.30 1.22 0.55 0.62 0.133 0 0.167 0.181 0 0.091 3b
8 2 days 0.293 0.312 1.39 1.40 0.59 0.60 0.008 0.006 0.062 0.019 0.028 0.028 0
9 6 days 0.030 0.039 1.47 1.39 0.85 0.80 0.015 0 0.006 0.003 0.092 0 (1d*)

0.014 0.011 1.15 1.12 0.37 0.38 0.023 0 0.39 0.071 0.165 0.071 2; 3b

*Results of patients diagnosed with cerebral ischemia. Patient 9 (case 2) with a progressive stroke exhibited lesions with different T2w-ADC
combinations (see Fig. 5). One patient with a transient neurological deficit did not exhibit abnormalities in the DWI (data not shown). Sizes and
SI are displayed as the ratio of the parameters of ischemic tissue relative to the parameters of unaffected tissue (see text for details). The
classification statistics shows the false-positive (FVR) voxels for both methods as ratios of the number of misclassified voxels to the number of
ischemic voxels. FVR of the histogram-based method: Voxels localized within the histogram ROI of ischemic tissues but projected within the
image onto (IA) unaffected brain parenchyma, (IB) regions with increased partial volume effects, or (IC) other non-ischemic tissues (mostly
muscle or adipose tissue). FVR of the image-based method: Parameter combinations of voxels localized in the image within the segmented
ischemic tissues but projected onto histogram regions with characteristics of (IIA) unaffected parenchyma, (IIB) partial volume effects between
ischemic tissues and parenchyma or CSF, or (IIC) with ADC values below the lower border of the histogram ROI of unaffected parenchyma but
outside the histogram ROI of ischemic tissues. The last column summarizes the performance of the segmentation procedures: (1)
histogram-based segmentation was faster than image-based ROI segmentation due to (1a) increased partial volume effects, (1b)
heterogeneous, (1c) irregular or (1d) multiple ischemic regions. (2) Segmentation in the image was faster than histogram-based segmentation.
(3) The contralateral ROI was not reliable due to (3a) partial volume effects and (3b) strongly varying ADC values (e.g., old lesions or
anisotropy effects). (0) Both methods worked equally well. (*): the complete segmentation of all lesions of patient 9 was faster in the histogram.
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Ischemic Tissue

Various parameter combinations were examined with re-
spect to the minimal number of input parameters necessary
to differentiate unaffected from ischemic tissues as well as
to characterize substructures: 1) The ADC distribution of
ischemic regions with increased T2 values could be deter-
mined by analyzing the T2-weighted-ADC (T2w-ADC) histo-
gram. In true T2-ADC histograms the separation of tissue-
characterizing regions was less pronounced (Fig. 2); 2) DWI
should be included if T1- or T2-weighted signal intensities
(T1w, T2w SI) do not show clear abnormalities (in the
hyperacute phase (8) or if T2 or T2w SI of ischemic regions
are comparable to adjacent structures, e.g., CSF); 3) hemor-
rhagic regions with elevated T1w SI can best be segmented

by including T1w images. True T1-ADC histograms did not
lead to a better segmentation.

Relative mean T2w SI and mean ADC values obtained by
a T2w-ADC histogram analysis are summarized in Table 1.
Decreased ADC values and increased T2w SI were observed
between day 1 and day 6 after the onset of ischemia.
Relative mean ADC and T2w SI were increased for patient 2
when examined 16 days, and patient 3 when examined 4
months, after stroke. The time after the ischemic event
correlated with an increase of the relative mean T2w SI (r 5

0.87) and relative mean ADC values (r 5 0.91). Data were
also analyzed by segmenting ischemic and unaffected
tissues interactively within the parameter images (Table 1).
Comparing the histogram-based method with the image-

FIG. 1. Selected results of an interactive 3D segmentation of the main cerebral structures using quantitative T1 relaxation, T2 relaxation, and
ADC values. Upper row: Original parameter images of T1 (a), T2 (b), and ADC (c). The gray-value encoding corresponds to the gray-scale bar
at the bottom. To enhance contrast, the window of the T2 values is set from 0–275 msec; T2 values between 275 msec and 2500 msec are
encoded white. The broad range of T2 values of the CSF is due to partial volume effects. Lower row: ADC values for gray matter (GM) (d), white
matter (WM) (e), and cerebrospinal fluid (CSF) (f). The color bar shows the upper and lower parameter limits. The different ADC values of the
WM tracts, parallel and orthogonal to the diffusion gradient (applied parallel to the short axis of the head), can be clearly recognized. The
overlays are shown without the underlying parameter image to control the quality of the segmentation result. Not shown are the segmented
overlays for T1 of GM (segmentation range 930–1387 msec), WM (s.r. 581–989 msec), and CSF (s.r. 753–3000 msec), T2 of GM (s.r. 76–145
msec), WM (s.r. 67–141 msec), and CSF (s.r. 149–2500 msec).
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based method, no significant differences were found for
the relative sizes of ischemic regions (P 5 0.679), relative
mean T2w SI (P 5 0.189), relative mean ADC values (P 5
0.68), and for the total relative number of false-positive
voxels (P 5 0.94). However, significant differences were
found by comparing the subclasses of false-positive voxels
(see Table 1 for details): In the image-based segmentation,
more voxels were classified as ischemic tissue but exhib-
ited characteristics of unaffected brain parenchyma (mean
of ratios [mR] of class IA 5 0.039, mR of class IIA 5 0.066;
P 5 0.04) or of partial volume effects (mR of class IB 5
0.031, mR of class IIB 5 0.091; P 5 0.01). Using the
histogram method, more voxels were classified as ischemic
tissue but were located in adipose tissue or muscle (mR of
class IC 5 0.123, mR of class IIC 5 0.034; P 5 0.028).

DISCUSSION

The complex patterns of MR signals as a result of perfusion
changes of tissues were analyzed in experimental and
clinical studies: the decline of the ADC at normal T2 in the
hyperacute phase followed by a T2 rise at a still reduced but
slowly increasing ADC in the following days; potential
reverse of the ADC decline after reperfusion, where reper-
fused regions may not match regions with decreased
diffusion; and different behavior of T2 and ADC in the
chronic phase depending on tissue evolution (1,3–9,11–
15,23,29). These complex processes may be analyzed ei-
ther separately in each original image or in a unified
approach by segmenting ROIs with similar parameter
combinations in one histogram. Within this histogram
correlations between parameters are immediately depicted
by the shape, extension, and main axes of the clusters.

Nonischemic Tissue

The feature-based segmentation allowed the characteriza-
tion of even geometrically complex, irregular or discon-

nected tissues, or of tissue zones with transition character-
istics between different tissue types (e.g., CSF adjacent to
GM). This is seen in Fig. 1, where quantitative parameter
vectors were determined for GM by combining T1 with T2

and with ADC maps (Fig. 1). Partial volume effects and the
direction-dependent ADC values in WM tracts were re-
solved (Fig. 1). More information about the direction
dependence of the ADC could be obtained by tensor-
imaging techniques (31). However, tensor-imaging with
navigated spin echo DWI prolongs the examination proce-
dure, which may be intolerable for patients in poor condi-
tion. Additionally, isotropic ADC maps lead to decreased
image contrast, reducing the efficiency of the histogram
analysis and resulting in a more difficult characterization
of strongly anisotropic structures (e.g., the brain stem). In
most cases pathologic regions can be differentiated from
anisotropy effects by comparing contralateral unaffected
structures.

ADC values are in good agreement with reported ADC
values for GM of 850 6 60 µm2/sec (9) and 1000 6 200
µm2/sec (32). Reported ADC value ranges for WM were
450–850 µm2/sec (9), between 220 6 220 µm2/sec and 1070
6 60 µm2/sec (33), and 700 6 200 µm2/sec (34) compared
with the mean ROI value of 810 6 270 µm2/sec obtained by
our analysis. CSF shows a wide distribution of ADC values:
2200 µm2/sec (9), 2940 6 50 µm2/sec (33), and 3500 6 700
µm2/sec (34).

Only a few histogram-based results have been reported
for quantitative relaxation times of human brain tissues at
1.5 T. Fletcher et al. (18) reported segmentation ranges for
T1 times between 1090–2150 msec (center: 1430 msec) for
GM, 760–1080 msec (center: 893 msec) for WM, 800
msec–20 sec for CSF (no center specified), 950–1820 msec
(center: 1333 msec) for muscle, and 200–750 msec (center:
417 msec) for adipose tissue. Segmentation ranges for T2

times were 61–109 msec (center: 80 msec) for GM, 61–100
msec (center: 77 msec) for WM, 110–2000 msec for CSF (no

FIG. 2. Histogram-based analysis of a patient three days after the onset of an extended right hemispheric stroke. Histograms of quantitative
T2-ADC (a) and T2-weighted-ADC values (b). Cluster 2 in b, which corresponds to the ischemic regions, is more clearly separated from cluster
1, which characterizes the unaffected tissue. ADC values are ordered ascending in negative y-direction, T2 values, and T2-weighted signals
ascending in positive x-direction. T2 values are scaled logarithmically in a. The frequency of the histogram cells is encoded blue for low and red
for high frequency.
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center specified); 20–67 msec (center: 52 msec) for muscle,
and 53–94 msec (71 msec) for adipose tissue. Their results
agree with our findings, except for their somewhat high T1

of 1430 msec for GM compared to our result of 1070 msec
and to other reported values of 870 msec and 921 msec
(35,36).

Alfano et al. (19), reported only segmentation ranges for
T1 times of 800–2381 msec for GM, 465–794 msec for
WM, . 952 msec for CSF, . 457 msec for muscle, and
392–454 msec for adipose tissue. Segmentation ranges for
T2 times were 58–119 msec for GM, 54–88 msec for WM,
125–2777 msec for CSF, 32–46 msec for muscle, and . 32
msec for adipose tissue.

Ischemic Tissue

The advantage of quantitative tissue characterization using
true T1 and T2 relaxation times was counteracted by the
prolonged examination time, which prevented the acquisi-
tion of quantitative data for three patients in poor condi-
tion. Since true relaxation times did not provide a better
segmentation than the corresponding T1w and T2w SI, their
acquisition may be skipped if no exact relaxation times are

required. Other intrinsic difficulties of analyzing human
ischemic regions will be demonstrated by two typical
cases.

The first case (Fig. 3) illustrates heterogeneous ischemic
areas as well as the different influences of hemorrhagic
transformations on relaxation times and ADC calculation.
The patient was examined two days after the sudden onset
of a left-sided visual and sensory hemineglect and hemiple-
gia caused by an occlusion of the right MCA. The symp-
toms did not improve over the next two weeks. The region
exhibiting reduced signals in both the T2w image (Fig. 3b,
arrow) and the DWI (Fig. 3c) was interpreted as a beginning
hemorrhagic transformation (37). Figure 4 displays repre-
sentative color-encoded overlays of 2 different histogram-
based segmentations. Inclusion of T1w images (Fig. 3a) in
the histogram allowed a better characterization of the
hemorrhagic parts with elevated T1w SI. Compared to the
frontomedial part (Fig. 3b, arrow), the hemorrhagic region
in the medial part of the segmented ischemic region (Fig. 4,
arrow) exhibits T2- and diffusion-weighted signals above
noise level. The ADC values for this region are therefore
more reliable than those in the frontomedial part.

FIG. 3. T1w image (a), T2w image (b),
DWI (c; b-factor 5 529 sec/mm2), and
ADC map (d) of a patient 2 days after the
onset of stroke (case 1). In the T1w
image, a lateral hypointense and a me-
dial hyperintense zone can be differenti-
ated whereas the main parts of the ische-
mic region are more clearly demarcated
as hyperintense regions in the diffusion-
weighted image (c) with already elevated
T2w SI (b). Corresponding ADC values
are decreased (d). A region with strongly
reduced T2w SI (b, arrow), interpreted as
tissue with a beginning hemorrhagic trans-
formation (38), remained hypointense af-
ter additional diffusion weighting (c). The
reduced signal of CSF spaces in the DWI
is because of the high mobility of water
protons (d).
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Case 2 illustrates lesions with different parameter combi-
nations (Fig. 5) as well as the determination of ADC values
of small lesions adjacent to structures with intense T2

signals (Fig. 6). The patient suffered from a sudden dysar-
thria and a right-sided weakness (face and arm) six days
before examination, his condition deteriorating with an
aphasia one day before examination. The DWI showed two
hyperintense lesions with different combinations of T2w SI

and ADC values (see figure caption for details). The partial
overlap of the 1D ADC distributions of unaffected and
ischemic tissues was resolved using a T2w-ADC histogram.
Additional small cortical ischemic lesions could not be
localized unambiguously in the T2w image due to the
intense T2 signal of the adjacent CSF (Fig. 6a), whereas they
were well demarcated in the DWI (Fig. 6b). The spatial
distribution of the ADC is therefore more reliably deter-

FIG. 4. Representative results of an interactive 4D histogram-based analysis of the data presented in Fig. 3 using the T1w image (3a), the T2w
image (3b), the DWI (3c), as well as the ADC map (3d). The values of image parameters are color-encoded according to their segmentation
ranges (shown in the lower bar; arbitrary units [a.u.] for signal intensities [SI] and µm2/sec for ADC). Here both the color-encoded overlays and
the original parameter images are displayed. a: T1w SI for unaffected and ischemic brain tissues (not shown are the overlays of T2w SI
[segmentation range 291–1124 a.u.], of the diffusion-weighted signals [s.r. 42–849 a.u.] and of the ADC values [s.r. 0–3493 µm2/sec]). The
color-encoded T1w SI allow the differentiation of GM, WM, a lateral part of the ischemic region with reduced T1w SI indicating edema, and a
hyperintense hemorrhagic region within the medial part of the ischemic region (arrow). b–d: The segmentation of tissue that is hyperintense in
the DWI (compare Fig. 3c) is achieved by changing the segmentation ranges. Original and color-encoded overlays of the magnified
segmented parts of T1w SI (b), T2w SI (c), and ADC values (d) visualize in more detail the spatial heterogeneity of the parameters. In contrast
to the frontomedial region with T2 signal loss (compare Fig. 3b and c) the hemorrhagic region (a, arrow) in the medial part of the segmented
ischemic region still has T2w and diffusion-weighted SI well above noise level, leading to more reliable ADC values. Within the segmented
overlay (d) local values of the ADC range from subnormal (blue and green) to above normal values (red). The mean ADC value of the
segmented region is 60% that of mean ADC value of unaffected brain parenchyma. (Not shown is the overlay of diffusion-weighted SI with a
segmentation range of 461–788 a.u.)
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mined using a DWI-ADC histogram. Fig. 6b also illustrates
the high spatial resolution and the undistorted geometry of
navigated spin-echo DWI, which allows the exact localiza-
tion of even small cortical ischemic regions.

To determine the parameter vectors of tissues using
image-based segmentation rather than the histogram method
required the segmentation of a pathologic region within
one parameter image, a subsequent transfer of this ROI to
other images, and an analysis of a possible mismatch
between pathologic structures in different images. Apply-
ing both methods, no significant differences were found for
lesion sizes, parameter mean values, and total number of
false-positive voxels (Table 1). A further analysis revealed,
however, that the image-based segmentation of ischemic
regions with increased partial volume effects and complex
anatomical structures was often tedious (patients 1–4, see
performance). A differentiation between lesion, paren-
chyma, and CSF was difficult for heterogeneous ischemic
regions. Consequently, the relative number of voxels with
characteristics of unaffected brain parenchyma or partial
volume effects (IIA, IIB) was higher than found in the
histogram method (IA, IB). In the histogram method,

parenchyma and partial volume parts were well separated
(Fig. 1) except in images with reduced signal-to-noise ratio
(SNR; patients 1 and 3). Voxels with low ADC values,
reflecting the influence of direction-dependent ADC val-
ues or noise, are usually fewer in number in the image ROIs
than in histogram-segmented regions (IIC).

The histogram-based segmentation led to less reliable
results for tissues with overlapping or scattered parameters, for
instance parts of muscle or adipose tissue with broadly distrib-
uted and subnormal ADC values (IC). Their relative number is
greater in small lesions with a strongly decreased mean ADC
(patient 9), in images with reduced SNR (patient 1), or in
images displaying more muscle or adipose tissue (patient
3). This effect may be reduced by including fat-suppressed
or dark-fluid images into the histogram-analysis.

Histogram Analysis

The task of characterizing tissue parameters of pathologic
tissues as increased, decreased, or normal with respect to
parameters of unaffected tissue depends on the strategy of
the histogram analysis: Welch et al. determined thresholds

FIG. 5. T2w image (a), DWI (b; b-factor 5 529 sec/mm2), and ADC map (c) of a patient 6 days after the onset of a progressive stroke (case 2).
d: Histogram of T2w SI and ADC values. ADC map with color-encoded overlays corresponding to region of interest (ROI) 1 (e), ROI 2 (g), and
ROI 3 (f) of the histogram. ROI 1 characterizes the unaffected GM and WM except voxels with partial volume effects between GM and CSF. ROI 2
characterizes an ischemic region with slightly elevated T2w SI values but strongly decreased ADC values (mean ROI ADC 37% that of normal). ROI 3
characterizes the ischemic area with strongly elevated T2w SI values but with only a slightly decreasedADC mean value (85% that of normal).
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for normal ADC values and T2w SI of unaffected tissue (5)
and divided the remaining histogram into rectangular
regions representing combinations of decreased, normal,
or increased ADC-T2w SI. Corresponding parameter combi-
nations were correlated to different tissue signatures (5).
Applying this method to the histogram in Fig. 2b, cluster 2
would probably be described as tissue with normal ADC
and elevated T2w SI. However, the overall ADC distribu-
tion and the mean ADC of this cluster is clearly shifted
toward lower values compared to the cluster for unaffected
brain parenchyma. Connected clusters may also be local-
ized in more than one histogram region or within regions
ascribed to normal values (e.g., cluster 2 in Fig. 6). Among
other reasons, this different tissue ‘‘labeling‘‘ may be one of
the reasons why Welch et al. observed elevated ADC values
at an earlier time than other groups did (6,7). While
segmenting connected ROIs, we found subnormal mean
ADC values during the first week after the onset of ische-
mia (Table 1). In later stages (16 days, 4 months), mean
ADC values were supranormal, which coincides with the
results of other groups (4,8). T2 values were always supra-
normal. Since both parameters exhibited increasing values
for longer time periods after the ischemia, progressive
strokes may be characterized by lesions with different
combinations of mean ADC and T2. This might explain the
different parameter combinations of the ischemic regions
observed in case 2. However, comparing ischemic and
unaffected brain tissue ROIs, some ischemic tissue parts
exhibited ADC values that were increased relative to
unaffected tissue parts while the overall ischemic region
exhibited a still decreased mean ADC. Whether locally
increased ADC values are due to anisotropy effects or
whether parts of ischemic tissues exhibit increased ADC
values at early points in time (5) has yet to be investigated.

CONCLUSION

The combined determination of ADC, true relaxation times,
DWI, T1w SI, and T2w SI using a histogram-based data
analysis compensates for strongly fluctuating parameters

such as ADC values. This, together with the color-encoded
representation of the spatial distribution of the parameter
values, allows a characterization of heterogeneous healthy
and ischemic tissue structures, which is the prerequisite
for investigating parameter combinations as predictive
values for tissue evolution toward recovery or necrosis.
Combined normal values of true relaxation times and ADC
were determined for healthy brain tissues. Navigated spin-
echo DWI provided the necessary spatial resolution with-
out geometric distortions for the exact localization of small
cortical infarcts. To characterize the ADC distribution of
ischemic tissue in the hyperacute phase (, 6h) or adjacent
to hyperintense T2 signals, DWI should be combined with
ADC maps. In later stages combined ADC maps and T2w
images deliver the best results with regard to examination
duration and segmentation of pathologic tissue. Influences
of hemorrhagic transformations have to be analyzed by
including T1w images. Reduced mean ADC values and
increased T2w SI were found between day 1 and day 6 after
the onset of ischemia.

Compared with image-based ROI methods, the histogram-
based analysis relies on characteristic parameter combina-
tions and is therefore better suited for characterizing
irregular, scattered, or heterogeneous ischemic regions.
The method is less reliable for tissues with overlapping or
broadly distributed parameter combinations. Image-based
methods are better suited for connected structures with
homogeneous characteristics and reduced partial volume
effects (e.g., ischemic regions in basal ganglia). Both meth-
ods are complementary to some degree, since the character-
istics of image-based segmented voxels are easily verified
by a projection onto the corresponding histogram. Extend-
ing the histogram analysis to include perfusion imaging
and additional metabolic information (12,15,38) will in-
crease its potential to describe ischemic zones with differ-
ent metabolic characteristics, such as tissue at risk. This
may help to more precisely evaluate new therapeutic
strategies.

FIG. 6. T2w image (a), DWI (b, b-factor 5 529 sec/mm2), and ADC map (c) at a second slice position of the patient shown in Fig. 5. In a, the
lesions (arrows) can hardly be differentiated from adjacent structures with high T2w SI intensities (CSF). The high spatial resolution of
navigated spin-echo DWI allows a clear differentiation of even small ischemic regions (b, arrow) exhibiting a reduced mean ADC value of about
60% that of normal values.
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