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Abstract: The release of a homogeneous high dose to the tumour region has been one of the cornerstones 
of radiotherapy (RT) treatment since its early days. According to the organ type and to the cancer histology, 
different doses are required in order to inactivate malignant cells, thus stopping proliferation. However, 
radiation-induced cell killing is a stochastic process. Tumour control probability (TCP) models have been 
developed in order to assign a success rate to a given RT treatment. At the same time, there is the need to 
keep the risks of normal tissue toxicity at an acceptable level. Normal tissue complication probability (NTCP) 
models provide a means of doing this. Traditionally, TCP and NTCP models combine clinical outcomes 
with dosimetric information in terms of dose-volume histograms (DVH). Model parameters are derived by 
mathematical fits to clinical observations and are subsequently used to estimate the risk of tumour relapse 
or toxicity. In both types of models, all of the patient dosimetric information is condensed into the DVHs, 
which represents a potential limitation on their descriptive and predictive power. This choice, related to 
historical and practical reasons, does not allow the full complexity of the 3D dose distribution in the patient 
to be taken into account. Neglecting these aspects might be relevant in a modern RT setting, which often 
includes the presence of high dose gradient regions. This has motivated research on ‘advanced’ TCP and 
NTCP models, able to tackle the problem by looking at a different scale, e.g. in tumour sub-regions or at the 
single voxel level. This is relevant not only from the purely dosimetric point of view. Increasing evidence is 
reported on the heterogeneity of cancer tissues, suggesting that non-uniform dose distributions could result 
in improved survival, for instance if targeted to take into account sub volumes with high clonogen density 
or hypoxic radioresistant regions. Similarly, radiation-induced side effects are part of a complex biological 
response, which depends not only on cell killing, but also on the inflammatory response and in some cases on 
the interplay among different organs. Obviously, conventional NTCP models cannot describe this scenario, 
and the development of more advanced mathematical tools is needed. This review will be focused on the 
discussion of recent studies showing possible directions for moving the field of TCP and NTCP modelling 
forward. Without diminishing the role and usefulness of available models, the aim is to shed light on the 
benefits that might be achieved by ‘enhanced’ modelling. This could represent an important step in the 
gradual transition of radiation therapy towards a form of precision medicine.
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Introduction

Biological models in radiotherapy (RT) began to appear 
in the late 1980s and early 1990s at the dawn of the ‘3D 
conformal era’ (1-3). Around the same time, the dose-
volume histogram (DVH) concept entered the RT 
treatment-planning arena. The DVH represented a major 
simplification of the then ‘new’ 3D dose distributions in 
target and normal-tissue volumes; the potential of using 
these DVHs to estimate (local) tumour control probability 
(TCP) and normal tissue complication probability (NTCP) 
was soon recognized, and mathematical functions for TCP 
and NTCP began to appear in the literature (4).

By taking the DVH as their starting point, these early 
TCP and NTCP models effectively ignored possible 
regional differences in radiosensitivity within the structures 
of interest. Such models are a hybrid of the patient-
specific (i.e., organ- and target-volume specific) DVH and 
a patient-population-based TCP or NTCP model. Thus 
the statement ‘for this patient the rectal NTCP =5%’ is 
to be interpreted as ‘for patients with precisely this rectal 
DVH, 5 out of 100 will suffer a complication’ (of a specific 
type e.g., grade 2 rectal bleeding); similarly, a TCP of 
43% for a non-small-cell lung tumour means 43 patients 
out of 100 with that particular target DVH [say for the 
clinical target volume (CTV)] will be controlled locally. 
If the NTCP and TCP vs. prescription dose curves are 
computed from the mathematical expressions for TCP 
and NTCP then fairly shallow curves result, as opposed to 
a ‘binary’ situation (Figure 1): lower x-axis-(prescription) 
dose & no complication/tumour control; upper x-axis-
(prescription) dose & certain complication/tumour control. 
Such models, provided their parameters are derived from 
best fits to DVH-based clinical outcomes, possess a logical 
consistency, at least within the range of doses over which 
the fitting was carried out. It is equally logical to suppose 
that the shallowness of the curves as a function of the dose 
is a result of a multiplicity of unknown factors. A clear 
example is the Marsden TCP model (5,6), which explicitly 
incorporates a spread in radiosensitivity over the population 
by considering a range of alpha values (i.e., sigma-alpha). 
Were the radiosensitivity of tumour clonogens for the 
individual patient’s tumour known exactly or at least within 
tighter limits, then a much steeper TCP vs. (tumour) 
dose curve would result, approaching in the limit a binary 
control/failure threshold, thereby yielding the dose that just 
achieves local control.

NTCP models reduce complex 3D dosimetric and 

anatomical information to a single risk measure. Modelling 
of NTCP has been performed with different techniques for 
many organs and endpoints. The Lyman-Kutcher-Burman 
(LKB) and relative seriality (RS) models (1,7), in particular, 
are the most well-known and traditionally accepted 
methods for predicting toxicity after radiation treatment. 
Conventional NTCP models are uniquely based on DVH 
and fractionation information and implicitly treat the organ 
in question as homogeneous in its response to radiation. 
Given their DVH-based nature, they cannot by definition 
handle differences in radiation response in different sub-
volumes. Furthermore, such models (e.g., LKB, RS) are far 
less mechanistic in nature than the cell-killing TCP models. 
In addition, RT outcomes may also be affected by multiple 
factors other than dosimetric parameters; tissue response 
to radiation involves complex interactions of physical, 
biological and clinical factors (8). The identification of these 
additional factors is needed to improve the predictive power 
of the models.

It is important to emphasize that the ‘population’ 
nature of the DVH-based TCP and NTCP models in 
no way invalidates the concept of ‘isotoxic’ prescription-
dose individualization (3,4,6,9,10). Quite the reverse—
any increases in the specificity of these models (e.g., an 
increase in the slope) can only result in improved treatment 
individualization: “the baby must not be thrown out with 
the bathwater”. A model can be extremely useful while 
being far from perfect. 

This review will focus on recent advances in the field of 
TCP and NTCP modelling, discussing possible strategies 
to go beyond the concept of a risk/benefit analysis based 
solely on DVH information, aiming at an increased 
personalization of RT treatments.

TCP models: biological targeting of the tumour 

Most of the current TCP models start from the assumption 
that tumour control, i.e., the stopping of tumour growth, 
requires all clonogenic cells to be ‘killed’ by the radiation 
treatment. Poisson statistics are employed in the classical 
approach, combined with the so-called linear-quadratic 
(LQ) model, to calculate the probability of complete 
cancer-cell inactivation, i.e., reproductive death, as a 
function of radiation dose (6). Reviews have been published 
summarizing the mathematical formalisms of the most 
common TCP models (4-6). In order to enable TCP models 
to accurately predict clinical response, input parameters 
such as the intrinsic radiosensitivity of the clonogenic cells 
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and their total number in the tumour are required. These 
parameters are usually unknown for individual tumours but 
estimates are available, mainly from in vitro studies (11,12). 
At the same time, there is a growing consensus in the RT 
community that inter- and intra-tumour heterogeneity 
represent important players for the radiation response of 
groups of human cancers. This heterogeneity arises from 
several aspects, including distributions in intrinsic tumour 
radiosensitivity, oxygenation status and growth fraction. 

In this framework, because of the technical advances 
achieved in RT in the last decade, TCP models ought 
now to be included in the treatment-planning workflow. 
In parallel, progress in biomedical imaging has made it 
possible to obtain information on several of the sources of 
heterogeneity listed above, mainly by MRI- and PET-based 
techniques (13). This paves the way for the identification 
of what Ling et al. defined as ‘biological target volume’ 
(BTV, Figure 2) in their seminal paper (14). The BTV 
concept is based on the hypothesis that local relapses are 
likely to arise from niches of radioresistant cells, or from 
local concentrations of clonogens that are present in some 
regions at higher densities. If these sub-regions can be 
identified by means of non-invasive tools, treatment plans 
can be optimized accordingly. We thus move towards a 

scenario where TCP models and bio-imaging can be used 
in synergy in order to improve clinical outcomes. 

Image-guided dose escalation strategies

As summarized by Bentzen and Gregoire in a review on 
the incorporation of PET tracers in RT (15), including 
biological imaging in treatment planning constitutes a 
departure from the conventional concept of delivering a 
homogeneous dose to the target volume; instead it aims 
to take into account tumour heterogeneity. This can be 
done by ‘dose boosting’ or at the single-voxel level, so-
called ‘dose painting by numbers’ (DPBN). Dose boosting 
requires a target defined from either quantitative or 
morphological aspects that enable the identification of one 
(or more) macroscopic region inside the PTV. The dose is 
then escalated only in a restricted volume. Nowadays dose 
boosting is in widespread clinical use, for instance for post-
operative breast cancer (16) and for some head and neck 
lesions (17). In contrast, DPBN is still largely on the clinical 
practice ‘drawing board’. It is essentially based on the 
mathematical transformation of image intensity into voxel 
values according to the dose grid adopted. These image 
intensities contain biological information (e.g., oxygenation 

Dose (Gy) Dose (Gy)

Dose (Gy)Dose (Gy)

1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0

1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0

1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0

1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0

R
el

at
iv

e 
vo

lu
m

e
R

el
at

iv
e 

vo
lu

m
e

60 60

60

100

10060

40 40

40

80

8040

20 20

2020

50 50

50

90

9050

30 30

30

70

7030

10 10

1010

0 0

00

OAR-DVH

CTV-DVH

NTCP

TCP

Binary outcome
Probabilistic model

Binary outcome
Probabilistic model

Figure 1 Left panel: Dose-volume histogram (DVH) for clinical target volume (CTV) and for organ-at-risk (OAR). Right panel: TCP and 
NTCP vs. prescription dose as computed from mathematical functions (probabilistic models), whose parameters are derived from best fits to 
DVH-based binary clinical outcomes. TCP, tumour control probability; NTCP, normal tissue complication probability.



4 Tommasino et al. Recent trends and current issues in TCP and NTCP modelling

© Translational Cancer Research. All rights reserved.   Transl Cancer Res 2017 tcr.amegroups.com

level, clonogen density, proliferation status) to be used to 
escalate the dose locally, prescribing doses voxel-by-voxel 
by inverse planning (18,19). In this context, TCP models 
are particularly important for quantifying the magnitude of 
the clinical gain compared to homogeneous irradiation. The 
studies presented in what follows include examples of both 
approaches.

Dose escalation based on tumour biopsy

Despite the debate on the usefulness of dose-escalation 
and of related techniques, there are not many papers that 
explicitly combine dosimetric analysis and TCP evaluation. 
Most of the relevant publications have investigated targeted 
dose escalation for prostate cancer. The goal is usually 
the targeting of the region of the tumour expected either 
to be more radioresistant, or to have a higher clonogen 
density, and therefore a higher risk of local failure (with 
homogeneous irradiation). Already in 2002, Nutting et al. 
presented a feasibility study combining biopsy information 
with CT imaging in order to identify the so-called dominant 
intra-prostatic tumour nodule (IPTN), which is a large 
nodule postulated to be responsible for local failures (20).  

Despite the fact that advanced imaging techniques for the 
prior definition of IPTNs were not available at the time, 
by using a patient-by-patient delta-TCP analysis (21) they 
were able to demonstrate that in principle an increase in 
TCP should be expected by delivering 70 Gy to the whole 
prostate and a 90 Gy boost to the dominant IPTN, with 
no significant increase in rectum toxicity. Remarkably, 
these results are also supported by recently published 
clinical investigations. In fact, even though a small number 
of patients was considered, the data published by Uzan  
et al. (22) and Onjukka et al. (23) suggest that dose boosting 
strategies based on MRI guidance are feasible and should be 
further investigated.

A more extensive TCP analysis is included in the work 
presented by Ghobadi et al. (24). Based on microscopy 
slides, Ghobadi and colleagues assigned a Gleason score 
(GS) to the different lesions derived from 25 patients. LQ 
TCP was calculated as the product of GTV and CTV-
TCP, including also the information in terms of GS as 
a modification factor. This leads to different α values 
for the different lesions, thus reflecting differences in 
radiosensitivity corresponding to the heterogeneity of the 
lesion. Their results also show that taking into account 

Figure 2 Illustration of the concept of biological target volume: in conventional treatments, we can imagine that we would ideally assign a 
score of 1 to the dose released in the planning target volume and a score of zero to the normal tissue dose. However, if we are able to obtain 
information on the heterogeneity of the tumour, we can imagine assigning different scores to cancer sub-volumes, e.g., higher scores to 
regions with higher clonogen density or to hypoxic areas. 
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heterogeneity results in a spread of TCP curves among 
patients, with their positions shifted along the dose axis 
according to the histopathology of the specific patient. 

MRI and PET imaging: tools for BTV definition

Several in silico studies have been published, demonstrating 
the feasibility and the potential gain in TCP from a 
combination of CT with MRI (25,26) or PET (27-29) 
to define a BTV for the prostate, and the most recent of 
them will now be discussed. Casares-Magaz and colleagues 
presented a study where a Poisson-based TCP model was 
combined with MRI and apparent diffusion coefficient (ADC) 
maps in order to distribute the dose to the target according to 
the expected local cancer cell density (26). Their study aimed 
at reproducing the two arms of the FLAME trial (30): the 
standard arm receiving 77 Gy at 2.2 Gy/fraction to the PTV, 
the experimental arm including an additional boost region 
where dose is escalated up to 95 Gy at 2.6 Gy/fraction. The 
information carried by ADC maps obtained for 20 patients 
was converted into single-voxel cell densities using three 
different approaches (linear, binary and sigmoid relations). 
Dose was distributed according to the two trial arms, and 
TCP was then calculated combining the dose information 
with the cell density. Two important results were obtained: 
ADC map-based TCP predictions show greater inter-patient 
variation compared to the assumption of a uniform cell 
density; the mean TCP increased from 70% for the standard 
arm to about 95% for the experimental arm with the boost. 
The study showed that DPBN based on voxel-level cell-
density information is feasible and is expected to yield higher 
TCP, thereby constituting an important step in the direction 
of personalized RT.

As mentioned above, PET has also been employed to 
identify the BTV in prostate cancer. Seppälä et al. presented 
in 2009 a feasibility study (27), and later Kuang and 
colleagues investigated boosting the dose to the PET-based 
BTV with volumetric modulated arc therapy (VMAT) (29).  
They considered 30 patients with localized prostate 
cancer who had undergone PET/CT before treatment. 
The 18F-choline PET tracer was employed, which shows 
increased uptake in regions associated with up-regulated 
choline metabolism. Two different plans were calculated 
for these patients: one with 79 Gy delivered to the whole 
PTV, the other with, in addition, two simultaneous boost 
doses to the dominant intraprostatic lesion (corresponding 
to the BTV). These boost doses were equal to 100 and  
105 Gy, delivered to the volumes defined by 60% and 70% 

of maximum prostatic uptake of the tracer, respectively. 
Poisson statistics based on the LQ model was adopted for 
TCP calculation, including also a sensitivity analysis for 
the α/β ratio (the parameter was varied between 1.5 and  
10 Gy). NTCP was calculated for bladder, femoral head 
and rectum. The results show that a 10% increase in TCP 
is expected for the boost plans, without significant increase 
in NTCP compared to the literature IMRT data. Chang 
et al. also reported similar conclusions in a previous study 
investigating the potential of IMRT (28). Remarkably, 
the increase in TCP seems to be largely unaffected by the 
specific choice of α/β. This is encouraging given the current 
uncertainty in α/β.

Dose escalation for hypoxic tumours

Hypoxic tumours are also candidates for dose escalation due 
to increased radioresistance. Starting in 2007, Thorwarth 
et al. compared conventional IMRT plans with a uniform 
boost to a PET FDG-positive region (related to higher 
proliferation) and with DPBN, for 13 head and neck cancer 
patients (31). The DPBN consisted of a voxel-by-voxel dose 
prescription, based on the identification of hypoxic ‘spots’ in 
a PET map obtained by using as tracer fluoromisonidazole 
(FMISO), which is associated with hypoxia. In both cases 
the maximum dose per fraction was 2.2 Gy. For the DPBN 
approach, TCP calculations were employed in order to 
distribute the dose to single voxels to yield the same TCP 
in all voxels, taking into account hypoxia. The authors used 
their own TCP model, which assigned radiosensitivity to 
single voxels according to tracer retention. Results suggest 
that DPBN is a better strategy to increase TCP in hypoxic 
tumours; it allows localized dose escalation compared to the 
uniform boost. Uniform dose escalation translates into the 
over-treatment of some patients and under-treatment of 
others, and in general in higher doses to normal tissues. A 
similar comparison for eight head and neck cancer patients 
by Chang et al. yielded similar results (32). In addition to 
TCP, these authors also included NTCP evaluation in their 
analysis (parotid, mandible, spinal cord and brainstem). 
Even though similar TCP were obtained for uniform dose 
escalation and for voxel-by-voxel dose painting, due to the 
lower doses released to organs at risk (OARs) the latter 
yielded a higher uncomplicated TCP. FMISO was used also 
by others to demonstrate the feasibility of dose-escalation 
in hypoxic target volumes for head and neck cancer patients 
(33,34), with results consistent with those reported by 
Thorwarth et al. (31). Finally, it is worth mentioning that 
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charged particles have also been discussed as a possible 
modality for the treatment of hypoxic tumours; Bassler 
and colleagues proposed an LET-painting approach for an 
oropharyngeal cancer case (35). The idea is to distribute the 
charged particles in order to concentrate the high-LET track 
sections (close to end of the range) on the hypoxic lesion, 
thus exploiting their higher relative biological effectiveness 
(RBE) compared to photons. Heavy charged particles like 
carbon and oxygen are the optimal candidates for this type 
of treatments, due to their high LET (and thus RBE) over 
the tumour volume (35). For a single patient they were able 
to demonstrate that a high-LET boost should increase the 
TCP. The size of the volume covered by the boost and the 
increase in TCP appeared to depend on the specific charged 
particles adopted, due to the different physics.

Local failures and dose painting

Recently Vogelius et al. proposed a failure-probability driven 
approach (36). The idea is that observed local-failure maps 
can be combined with the delineation of different target 
volumes based on both CT imaging and FDG uptake, in 
order to dose escalate and thus increase the TCP. Specifically, 
they defined five target volumes (CTV-FDG positive, 
GTV, CTV, CTV elective at low and high risk, in order 
of increasing size) for 20 HNSCC patients. These patients 
were extracted from a larger database, for which local failures 
and tumour recurrences were recorded. Thus, an observed 
probability of recurrence was assigned to each sub-volume. 
Dose distributions were calculated for each patient based on 
clinical prescription. TCP was calculated on a voxel basis 
for each of the five sub-volumes and then combined in an 
overall TCP. An expected TCP of about 70% was obtained, 
in line with observed clinical results. In a second step, the 
prescription was optimized maintaining the same integral 
dose to the target, but aiming at TCP maximization taking 
into account the observed failure probability. This resulted 
in increases in the expected TCP up to about 85%. These 
results are also supported by Grönlund and colleagues (37), 
who found a correlation between high FDG uptake regions 
and local recurrences. Based on that, they developed a dose-
optimization strategy that increased the expected TCP by 
up to 14%, depending on the target characteristics for the 
specific patient.

NTCP: trends and issues

The use of NTCP models may help to create the plan that 

either minimizes radiation-induced side effects for a given 
pre-specified dose to the tumour, or that individualizes the 
tumour dose for a given acceptable NTCP, i.e., isotoxic 
prescribing (9,10,22,38). 

Since the QUANTEC reviews (39) were published 
in 2010 there has been a progressive evolution in the 
philosophy of NTCP modelling, and most improvements 
in model predictive ability are based on the indications 
suggested by QUANTEC authors themselves.

Several  studies  (40-42) have demonstrated the 
importance of considering non-dosimetric factors such 
as health status, surgery, chemotherapy, base-line organ 
function or organ co-dependence (i.e., clinical variables). 
In addition, the prediction of individual risk of radiation-
induced normal tissue complications can be further 
improved using biological and imaging predictors of 
radiation toxicity (43,44). Finally, organs are generally not 
homogeneous, so a procedure that reduces the organ dose 
distribution to a DVH or even to a single DVH parameter 
is unlikely to represent the fine-structure biology within 
the organ (45). Recently, models and methods that take into 
account the full three-dimensional (3D) dose distribution 
to evaluate dose-response relationship have been proposed 
(Figure 3) (46-49). 

In the present review, we discuss some of these recent 
developments in the NTCP modelling. 

Clinical features

The need to include non-dosimetric factors in NTCP 
models was one of the issues emphasized by QUANTEC. 
By using pseudo-clinical datasets with varying level of 
patient-specific factors, Onjukka et al. (40) compared the 
performance of different NTCP models subject to the 
influence of clinical confounding factors. The authors 
concluded that identifying confounding factors, and 
developing methods to quantify them, is more important 
than the choice of NTCP model itself. A method to 
generalize the LKB model in order to include clinical 
features (modified LKB) was first proposed in 2006 by 
Peeters et al. through a TD50 dose-modifying factor (50). 
This study included prostate cancer patients and the 
probability of developing late rectal toxicity was fitted with 
the original LKB and a modified model, in which a clinical 
feature (i.e., history of abdominal surgery) was taken into 
account by fitting subset-specific TD50 parameters. The 
ratio of these TD50s was the dose-modifying factor for 
that clinical feature. The modified LKB model resulted 
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in a significantly better fit of the data and an improved 
estimation of NTCP compared with the original LKB 
model. In the same year, a different modelling approach—
let’s call it phenomenological—was successfully proposed 
based on a multivariable logistic regression modelling 
framework (8) in which dose-volume metrics were 
combined with other patient- or disease-based prognostic 
factors using data-driven modelling to improve outcome 
prediction. The authors applied this approach to predict 
esophagitis and xerostomia after lung and head-and-neck 
radiation respectively, balancing complexity and model 
performance. Subsequently, a large number of published 

studies has explored the benefits of incorporating clinical 
factors into NTCP modelling using a logistic regression 
framework or advanced bioinformatics and computational 
statistics (51). Improved statistical machine learning 
methods such as the ‘least absolute shrinkage and selection 
operator’ (LASSO), artificial neural networks (ANN) and 
Bayesian model averaging (BMA), have been applied to 
address the multidimensional nature of NTCP predictions 
(52-56). Below, we focus our discussion on the results for 
two different organs at risk with different dose-volume 
effects: lungs and rectum.

Multiple clinical risk factors are known to influence the 

Figure 3 The inclusion of clinical (xi), image (yi) and biological (zi) features in addition to dosimetric parameters (di) can improve the 
prediction accuracy (area under receiver operating characteristic curve) of normal tissue complication probability (NTCP) models.

S
en

si
tiv

ity

100-Specificity

improved NTCP2 
accuracy

1006020 80400

100

80

60

40

20

0



8 Tommasino et al. Recent trends and current issues in TCP and NTCP modelling

© Translational Cancer Research. All rights reserved.   Transl Cancer Res 2017 tcr.amegroups.com

risk of developing radiation-induced lung disease. In recent 
years many efforts have focused on the determination 
of clinically useful predictors (dosimetric, physical and 
biological parameters) for acute or late pulmonary 
complications after thoracic RT; given the multivariate 
nature of lung complications, data-driven multivariate 
methods for NTCP modelling show much promise.

Age (57,58), the presence of cardiac comorbidities (59), 
and tumour location in the inferior part of the lung (60) are 
some of the clinical factors found to significantly increase 
the risk of lung toxicity. In particular, some clinical studies 
(56,61-63) have highlighted the role of heart irradiation in 
the development of radiation-induced lung toxicity. Of note, 
in contrast to those studies, Tucker et al. (64) found that 
the incorporation of heart parameters did not significantly 
improve radiation pneumonitis risk prediction.

As regards rectal NTCP modelling after RT for prostate 
cancer, the inclusion of factors such as drug prescription 
(anti-hypertensives and/or anti-coagulants), smoking 
history, previous abdominal surgery, pre-treatment 
morbidities (hypertension, cardiovascular history), diabetes 
mellitus and the presence of acute gastro-intestinal toxicity 
improved significantly the predictive power of different 
NTCP modelling approaches for rectal bleeding and high 
stool frequency or faecal incontinence (65-71).

Biological features 

Biological markers of radiation-related side effects can be 
used to identify patients at increased risk of treatment-
related injury. RT patients display different susceptibilities 
in their normal-tissue responses to identical radiation 
dose distributions; therefore, the inclusion of biological 
variability in NTCP modelling could improve predictive 
capability (43). According to Okunieff et al. (72) different 
categories of biomarkers for radiation effects on normal 
tissues can be defined: predictive (73), prognostic (74), 
diagnostic, and dosimetric (75). Predictive and prognostic 
factors, available respectively before or shortly after 
treatment, can be included in outcome models to aid 
prediction. Examples of the most investigated biological 
markers in RT outcome models are plasma biomarkers such 
as inflammatory cytokines and genetic variables such as 
single nucleotide polymorphism (SNPs).

Inf lammatory cytokines ,  known factors  in  the 
pathogenesis of radiation pneumonitis, represent a possible 
serum biomarker for radiation-induced lung injury after 
thoracic irradiation (76). Transforming growth factor 

beta1 (TGF-β1) is the cytokine most extensively studied as 
a potential biomarker in this context. In the late 1990s and 
early 2000s elevation of plasma TGFβ1 above the baseline 
concentration at the end of RT was demonstrated to be a 
risk factor for symptomatic radiation-induced lung injury 
(77,78). In addition to TGF-β1, interleukin-6 (IL-6) and 
IL-8, IL-1β and tumour necrosis factor alpha (TNF-α), 
have been shown to be significantly correlated with the 
risk of lung toxicity (79,80) although conflicting results 
have been reported. However, only very few studies have 
proposed predictive models combining biological markers 
with lung dosimetric parameters. Analysing 78 lung cancer 
patients, the majority of whom received conventionally 
fractionated RT , Fu et al. (78) showed that, using the 
volume of lung irradiated to ≥30 Gy and TGF-β kinetics, 
patients could be divided into three groups having 
significantly different risks for developing symptomatic 
lung injury (6.9%, 22.8%, 42.9%, respectively, P=0.02). 
Stenmark et al. reported that combining IL-8, TGF-β1 
and mean lung dose into a single model improved the 
predictive ability compared to either variable alone (model 
accuracy 80%, P<0.001) (81). 

Additionally, RT-induced cardiac-cell damage and 
changes in the left ventricular loading conditions have been 
linked to several biomarkers including N-terminal pro-B-
type natriuretic peptide (NT-proBNP) and troponins. In 
a retrospective study on left-sided breast cancer patients 
with or without chemotherapy, D’Errico et al. (82) analysed 
the relationship between NT-proBNP plasma levels and a 
large group of dosimetric parameters for the heart and left 
ventricle. Interestingly, in this study chemotherapy did not 
show a significant correlation with NT-proBNP plasma 
level elevations. Significant correlations between NT-
proBNP plasma levels and some dosimetric parameters (high 
doses in small volumes) of the heart and left ventricle were 
found in those patients whose NT-proBNP values were 
above the pathological cut-off threshold (>125 pg/mL).  
More recently, in a prospective study on a relatively small 
number of breast cancer patients, another group (83) 
demonstrated that cardiac troponin T (cTnT) levels, 
detected by high-sensitive cardiac troponin T assay, 
increased during the entire duration of adjuvant breast RT. 
In addition, the increase in the cTnT release was positively 
associated with cardiac radiation doses and with minor 
changes in echocardiographic measurements revealing 
subclinical myocardial damage. There is a need to address 
with further studies the determination of biomarker 
plasma levels, as well as the optimal timing of biomarker 
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measurements to predict the severity and progression 
of lung/cardiac damage after RT. A highly promising 
approach regarding biological features is radiogenomics 
(i.e., genomics of radiation toxicity). In recent years decisive 
evidence has been uncovered that genetic susceptibilities 
are linked to radiation-induced toxicity (84); this is the 
fruit of international collaboration, most notably based on 
the International Radiogenomics Consortium (RGC) (85)  
and the REQUITE project (86), and radiogenomic models 
including genetic, physical and clinical parameters are 
expected to reinforce personalized RT (86). The most 
frequently analysed radiogenomic biomarkers in an 
outcome-modelling framework are SNPs and genome-wide 
association studies (GWAS), with no a priori assumptions 
about which genes might be important, are ongoing 
in order to identify new genes associated with toxicity. 
Examples include the identification of SNPs related to 
radiation toxicity in prostate cancer treatment (85,87,88). 
Depending on the gene, copy number variations (CNVs) 
can span orders of magnitude more nucleotides than SNPs 
and are therefore thought to play an important role in the 
manifestation of toxicities. Coates et al. (89) explored the 
integration of both SNPs and CNVs with dosimetric and 
clinical variables in modelling radiation-induced rectal 
bleeding and erectile dysfunction in 62 prostate cancer 
patients who underwent curative hypofractionated RT and 
who were retrospectively genotyped for CNV and SNP 
rs5489 in the xrcc1 DNA repair gene. By analytical and 
data-driven approaches, the authors showed that biological 
variables added to the LKB model, and logistic-regression 
modelling improved classification performance over 
standard dosimetric models. Similarly, the study performed 
by Tucker et al. (90) on 141 non-small cell lung cancer 
patients receiving thoracic radiation therapy provides 
evidence that the SNPs associated with an increased risk 
of severe radiation pneumonitis were in genes for TGFβ, 
VEGF0, TNFα, XRCC1 and APEX1. The inclusion of 
those SNPs significantly improved the ability of the LKB 
model to predict the risk of severe radiation pneumonitis. 
However, from a statistical point of view, radiogenomic 
studies are challenging due to the high dimensionality of 
genomic data and thus great caution should be exercised 
when models based on multiple genetic-risk factors are both 
established and tested on the same patient cohort (91).

Image features 

Anatomical, functional and molecular imaging for toxicity 

quantification is not new in RT; it has been on the increase 
in recent years (44). Image features are closely connected 
with anatomical, physiological, and molecular changes that 
characterize radiation effects on normal tissues and, similar 
to biomarker classification, they can be both predictive 
and prognostic. Recently, paediatric patients treated for 
ependymoma with proton therapy were analysed in relation 
to changes in normal-brain parenchyma on post-RT MR 
images (92). The authors implemented a voxel-by-voxel 
NTCP model for image changes showing dependence both 
on radiation dose and on linear energy transfer. 

In addition, technological advances in biomedical imaging 
have resulted in the increasing popularity of quantitative 
clinical imaging studies (93). Regarding thoracic imaging, 
several groups have proposed CT-based methods to 
assess radiation-induced lung toxicity in terms of changes 
in density, quantitatively evaluated by Hounsfield unit 
changes. These studies have added information to standard 
clinical endpoints and enabled the identification of patient-
specific susceptibility (94-97). In particular, Defraene and  
colleagues (97) explored the predictive value of CT 
imaging (obtained at baseline and 3 months after the end 
of treatment) for radiation pneumonitis in 130 lung cancer 
patients. Changes in Hounsfield units (ΔHU) were modelled 
as a function of the local dose using linear and sigmoidal 
fits. The authors suggest that a higher baseline lung density 
is significantly associated with a higher ΔHUmax. However, 
they noted that lung density changes did not necessarily 
imply symptomatic toxicity; radiation pneumonitis typically 
manifests itself as increases in density within the healthy lung 
tissue as observed in follow-up CT images.

Another example is the use of mid- or post-treatment 
FDG-PET to image and quantify the inflammatory 
processes as quantitative surrogates of radiation pneumonitis 
and acute esophagitis (98-100). Interestingly, in their 
study, Nijkamp et al. established a local-dose response 
model with post-RT FDG uptake response showing an 
improved prediction capability for severe acute esophagitis. 
Using instead pre-treatment non-target lung FDG-PET 
uptake (101), another group developed a predictive model 
for symptomatic radiation pneumonitis including both 
mean non-target lung uptake and mean lung dose, with a 
prediction accuracy of 80%.

In analogy with ‘genomics’, the increasing use of a 
wide range of specific imaging features (such as those 
inherent to texture analysis) is referred to as ‘radiomics’. 
Radiomic features and their mathematical definitions are 
independent of imaging modality and their definition can 
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be found in the specialized literature (102). The potential 
of radiomics/texture techniques for the prediction of 
radiation-induced effects in organs at risk has been 
recently proposed (102-104). Texture analysis plays an 
important role in assessing the spatial organization of 
different tissues and organs, overcoming the limits of 
the classical global measures like mean CT number or 
standardised uptake value in PET images, which describe 
a region of interest as a homogeneous structure (102). 
Recently, texture analysis has been applied to radiation 
pneumonitis and parotid gland toxicity prediction. In a 
study on patients treated for oesophageal cancer (103), it 
has been demonstrated that quantitative measurement of 
dose-dependent texture changes between pre- and post-
RT CT scans can differentiate between patients with and 
without clinical (grade >2) radiation pneumonitis. Twelve 
intensity- and texture-based classifiers demonstrated 
significantly increased changes for patients who developed 
radiation pneumonitis. The authors could not conclusively 
determine an optimal feature set and model due to the 
small number of cases (20 over 106) and they suggest that 
a non-linear classifier such as a neural network applied 
to a larger database might further improve classification 
accuracy. In their preliminary study on head and neck 
cancer patients, Scalco et al. (104) investigated the 
feasibility of using texture analysis on longitudinal CT 
images to characterize parotid variations induced by 
radiation. In particular, discriminant analysis based on 
volume and fractal dimension was able to predict the 
final parotid shrinkage with an accuracy of 71%. As with 
genomic studies, in order to build robust prediction 
models when using texture analysis, it is necessary to 
reduce the number of features by advanced machine 
learning techniques to avoid the risk of overfitting (105).

Beyond dose volume histogram and dose mapping

NTCP models for a given endpoint have traditionally 
relied on analyses that relate DVH characteristics to the 
risk of complications. However, DVH analyses disregard 
any spatial dose distribution information and possible 
inhomogeneity in regional organ radiosensitivity whereas 
it is known that functionality and repair processes are not 
uniformly distributed and are furthermore not independent 
of each other throughout organs or tissues. Therefore, the 
spatial information that DVH-based models are ‘blind’ to 
is likely to be important with respect to the development of 
toxicity (106).

In contrast to DVH-based NTCP models, Rutkowska 
et al. (47) proposed a radiobiologically based 3D model 
designed to include spatial effects and to explore the 
interface between theoretical radiobiology and clinical RT. 
The same group incorporated local lung-tissue damage and 
loss of global organ function into the modelling of radiation 
pneumonitis, consistent with the hypothesis of the alveolus 
as a functional subunit that can be regenerated from a single 
surviving stem cell (46).

Recently, 2D or 3D methods for dose distribution 
analysis (dose mapping), collectively referred to as pixel- or 
voxel-based methods, which evaluate local dose response 
patterns and go beyond the organ-based philosophy of 
NTCP modelling, have been proposed as alternative 
approaches to the DVH for predicting different toxicity 
endpoints after radiation therapy for prostate cancer  
(48,107-111) and for radiation-induced lung damage (49).

Image features predictive of radiation-induced effects 
on organs at risk could be successfully combined with 
dose distribution analysis to give information on dose 
effects at the spatial level and to elucidate radiobiological 
mechanisms.

Conclusions

The field of TCP and NTCP modelling is poised to go 
beyond the DVH-based models (2,4,5) though explicit 
recommendations on incorporating the extra patient-specific 
information discussed in this article, for specific tumours 
and OARs, are still lacking. The potential advantages that 
could arise from the ‘enhanced’ TCP and NTCP models 
are self evident, but there is a clear need for further research. 
This should involve both mathematical and technical 
aspects, as well as proof-of-concept pre-clinical and (ideally) 
clinical studies. Meanwhile the fact that current DVH- and 
population-based models are not perfect should not be used 
as a justification for not embracing ‘isotoxic’ tumour-dose 
prescribing. The ‘fixed tumour prescription for a fixed type 
of tumour’ paradigm is long past its ‘sell-by date’.
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