Keywords: 4 Amino 2 Oxabicyclo[3 1 0]hexane 4, 6 Dicarboxylic Acid, Alpha Amino 3 Hydroxy 5 Methyl 4 Isoxazolepropionic Acid, Amyloid Beta Protein, Bci 632, Bci 838, Beta Secretase 1, Excitatory Amino Acid Transporter 2, Gamma Secretase, Ionotropic Receptor, Kainic Acid Receptor, Ly566332, Metabotropic Receptor, Metabotropic Receptor Antagonist, Mitogen Activated Protein Kinase, Mitogen Activated Protein Kinase P38, N Methyl Dextro Aspartic Acid, N Methyl Dextro Aspartic Acid Receptor, Presenilin 1, Protein Tyrosine Phosphatase, Tau Protein, Transforming Growth Factor Beta1, Unclassified Drug, 4 Aminobutyric Acid Release, Alzheimer Disease, Amnesia, Animal Cell, Animal Experiment, Complex Formation, Controlled Study, Diffuse Lewy Body Disease, Dimerization, Disease Exacerbation, Down Regulation, Excitotoxicity, Gabaergic Transmission, Genetic Risk, Long Term Potentiation, Mouse, Nerve Cell Plasticity, Nervous System Development, Neuroprotection, Nonhuman, Priority Journal, Protein Aggregation, Protein Expression, Protein Folding, Protein Function, Protein Localization, Pyramidal Nerve Cell, Review, Signal Transduction, Synapse, Working Memory,
Affiliations: *** IBB - CNR ***
Department of Drug Sciences, University of Catania, Catania, Italy; Oasi Institute for Research on Mental Retardation and Brain Aging (IRCCS), Troina, Italy., Department of Physiology and Pharmacology, University of Rome Sapienza, Rome, Italy; Neuromed (IRCCS), Pozzilli, Italy., Department of Drug Sciences, University of Catania, Catania, Italy; Institute of Biostructure and Bioimaging, National Research Council, Catania, Italy. Electronic address: acopani@katamail.com.,
References: Beydoun, M.A., Beydoun, H.A., Gamaldo, A.A., Teel, A., Zonderman, A.B., Wang, Y., Epidemiologic studies of modifiable factors associated with cognition and dementia: systematic review and meta-analysis (2014) BMC Public Health, 14, p. 64
Selkoe, D.J., Hardy, J., The amyloid hypothesis of Alzheimer's disease at 25 years (2016) EMBO Mol Med, 8, pp. 595-608. , This review is crucial in understanding the role of Aβ in the pathophysiology of AD. It examines all preclinical and clinical evidence in favor of Aβ dyshomeostasis as a validated therapeutic target
McKhann, G.M., Knopman, D.S., Chertkow, H., Hyman, B.T., Jack, C.R., Jr., Kawas, C.H., Klunk, W.E., Mayeux, R., The diagnosis of dementia due to Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease (2011) Alzheimers Dement, 7, pp. 263-269
Jonsson, T., Atwal, J.K., Steinberg, S., Snaedal, J., Jonsson, P.V., Bjornsson, S., Stefansson, H., Maloney, J., A mutation in APP protects against Alzheimer's disease and age-related cognitive decline (2012) Nature, 488, pp. 96-99
Haass, C., Kaether, C., Thinakaran, G., Sisodia, S., Trafficking and proteolytic processing of APP (2012) Cold Spring Harb Perspect Med, 2, p. a006270
Copani, A., The underexplored question of β-amyloid monomers (2017) Eur J Pharmacol
Giuffrida, M.L., Tomasello, M.F., Pandini, G., Caraci, F., Battaglia, G., Busceti, C., Di Pietro, P., Chiechio, S., Monomeric β-amyloid interacts with type-1 insulin-like growth factor receptors to provide energy supply to neurons (2015) Front Cell Neurosci, 9, p. 297. , This study identified a precise role for Aβ monomers in maintaining neuronal glucose homeostasis
Mc Donald, J.M., O'Malley, T.T., Liu, W., Mably, A.J., Brinkmalm, G., Portelius, E., Wittbold, W.M., 3rd, Walsh, D.M., The aqueous phase of Alzheimer's disease brain contains assemblies built from ∼4 and ∼7 kDa Aβ species (2015) Alzheimers Dement, 11, pp. 1286-1305
Bloom, G.S., Amyloid-β and tau: the trigger and bullet in Alzheimer disease pathogenesis (2014) JAMA Neurol, 71, pp. 505-508
De Strooper, B., Karran, E., The cellular phase of Alzheimer's disease (2016) Cell, 164, pp. 603-615
Geddes, J.W., Cotman, C.W., Plasticity in hippocampal excitatory amino acid receptors in Alzheimer's disease (1986) Neurosci Res, 3, pp. 672-678
Hynd, M.R., Scott, H.L., Dodd, P.R., Glutamate-mediated excitotoxicity and neurodegeneration in Alzheimer's disease (2004) Neurochem Int, 45, pp. 583-595
Deng, Y., Xiong, Z., Chen, P., Wei, J., Chen, S., Yan, Z., β-Amyloid impairs the regulation of N-methyl-D-aspartate receptors by glycogen synthase kinase 3 (2014) Neurobiol Aging, 35, pp. 449-459
Zhang, D., Jin, B., Ondrejcak, T., Rowan, M.J., Opposite in vivo effects of agents that stimulate or inhibit the glutamate/cysteine exchanger system xc- on the inhibition of hippocampal LTP by Aβ (2016) Hippocampus, 26, pp. 1655-1665
Scimemi, A., Meabon, J.S., Woltjer, R.L., Sullivan, J.M., Diamond, J.S., Cook, D.G., Amyloid-β1-42 slows clearance of synaptically released glutamate by mislocalizing astrocytic GLT-1 (2013) J Neurosci, 33, pp. 5312-5318
Zumkehr, J., Rodriguez-Ortiz, C.J., Cheng, D., Kieu, Z., Wai, T., Hawkins, C., Kilian, J., Kitazawa, M., Ceftriaxone ameliorates tau pathology and cognitive decline via restoration of glial glutamate transporter in a mouse model of Alzheimer's disease (2015) Neurobiol Aging, 36, pp. 2260-2271. , This study strongly suggests that a functional loss of the glial glutamate transporter GLT-1 is a major pathological link between Aβ and tau pathology
Schallier, A., Smolders, I., Van Dam, D., Loyens, E., De Deyn, P.P., Michotte, A., Michotte, Y., Massie, A., Region- and age-specific changes in glutamate transport in the AβPP23 mouse model for Alzheimer's disease (2011) J Alzheimers Dis, 24, pp. 287-300
Pin, J.P., Galvez, T., Prézeau, L., Evolution, structure, and activation mechanism of family 3/C G-protein-coupled receptors (2003) Pharmacol Ther, 98, pp. 325-354
Chuang, S.C., Bianchi, R., Wong, R.K., Group I mGluR activation turns on a voltage-gated inward current in hippocampal pyramidal cells (2000) J Neurophysiol, 83, pp. 2844-2853
Ferraguti, F., Baldani-Guerra, B., Corsi, M., Nakanishi, S., Corti, C., Activation of the extracellular signal-regulated kinase 2 by metabotropic glutamate receptors (1999) Eur J Neurosci, 11, pp. 2073-2082
Iacovelli, L., Bruno, V., Salvatore, L., Melchiorri, D., Gradini, R., Caricasole, A., Barletta, E., Nicoletti, F., Native group-III metabotropic glutamate receptors are coupled to the mitogen-activated protein kinase/phosphatidylinositol-3-kinase pathways (2002) J Neurochem, 82, pp. 216-223
Lujan, R., Nusser, Z., Roberts, J.D., Shigemoto, R., Somogyi, P., Perisynaptic location of metabotropic glutamate receptors mGluR1 and mGluR5 on dendrites and dendritic spines in the rat hippocampus (1996) Eur J Neurosci, 8, pp. 1488-1500
Schoepp, D.D., Unveiling the functions of presynaptic metabotropic glutamate receptors in the central nervous system (2001) J Pharmacol Exp Ther, 299, pp. 12-20
Tamaru, Y., Nomura, S., Mizuno, N., Shigemoto, R., Distribution of metabotropic glutamate receptor mGluR3 in the mouse CNS: differential location relative to pre- and postsynaptic sites (2001) Neuroscience, 106, pp. 481-503
Kinoshita, A., Shigemoto, R., Ohishi, H., van der Putten, H., Mizuno, N., Immunohistochemical localization of metabotropic glutamate receptors, mGluR7a and mGluR7b, in the central nervous system of the adult rat and mouse: a light and electron microscopic study (1998) J Comp Neurol, 393, pp. 332-352
Ohishi, H., Shigemoto, R., Nakanishi, S., Mizuno, N., Distribution of the messenger RNA for a metabotropic glutamate receptor, mGluR2, in the central nervous system of the rat (1993) Neuroscience, 53, pp. 1009-1018
Corti, C., Aldegheri, L., Somogyi, P., Ferraguti, F., Distribution and synaptic localisation of the metabotropic glutamate receptor 4 (mGluR4) in the rodent CNS (2002) Neuroscience, 110, pp. 403-420
Saugstad, J.A., Kinzie, J.M., Shinohara, M.M., Segerson, T.P., Westbrook, G.L., Cloning and expression of rat metabotropic glutamate receptor 8 reveals a distinct pharmacological profile (1997) Mol Pharmacol, 51, pp. 119-125
Nakajima, Y., Iwakabe, H., Akazawa, C., Nawa, H., Shigemoto, R., Mizuno, N., Nakanishi, S., Molecular characterization of a novel retinal metabotropic glutamate receptor mGluR6 with a high agonist selectivity for L-2-amino-4-phosphonobutyrate (1993) J Biol Chem, 268, pp. 11868-11873
Zhang, Y., Chen, K., Sloan, S.A., Bennett, M.L., Scholze, A.R., O'Keeffe, S., Phatnani, H.P., Ruderisch, N., An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex (2014) J Neurosci, 34, pp. 11929-11947
Tallaksen-Greene, S.J., Kaatz, K.W., Romano, C., Albin, R.L., Localization of mGluR1a-like immunoreactivity and mGluR5-like immunoreactivity in identified populations of striatal neurons (1998) Brain Res, 780, pp. 210-217
Ferraguti, F., Klausberger, T., Cobden, P., Baude, A., Roberts, J.D., Szucs, P., Kinoshita, A., Dalezios, Y., Metabotropic glutamate receptor 8-expressing nerve terminals target subsets of GABAergic neurons in the hippocampus (2005) J Neurosci, 25, pp. 10520-10536
El Moustaine, D., Granier, S., Doumazane, E., Scholler, P., Rahmeh, R., Bron, P., Mouillac, B., Pin, J.P., Distinct roles of metabotropic glutamate receptor dimerization in agonist activation and G-protein coupling (2012) Proc Natl Acad Sci U S A, 109, pp. 16342-16347
Romano, C., Yang, W.L., O'Malley, K.L., Metabotropic glutamate receptor 5 is a disulfide-linked dimer (1996) J Biol Chem, 271, pp. 28612-28616
Moreno Delgado, D., Møller, T.C., Ster, J., Giraldo, J., Maurel, D., Rovira, X., Scholler, P., Durroux, T., Pharmacological evidence for a metabotropic glutamate receptor heterodimer in neuronal cells (2017) Elife, , This study is the first to demonstrate the existence of intergroup mGlu heterodimers in native neurons by using a heterodimer-specific conformational LRET-based biosensor
Pin, J.P., Bettler, B., Organization and functions of mGlu and GABA(B) receptor complexes (2016) Nature, 540, pp. 60-68
Terry, R.D., Masliah, E., Salmon, D.P., Butters, N., DeTeresa, R., Hill, R., Hansen, L.A., Katzman, R., Physical basis of cognitive alterations in Alzheimer's disease: synapse loss is the major correlate of cognitive impairment (1991) Ann Neurol, 30, pp. 572-580
Mucke, L., Masliah, E., Yu, G.Q., Mallory, M., Rockenstein, E.M., Tatsuno, G., Hu, K., McConlogue, L., High-level neuronal expression of abeta 1-42 in wild-type human amyloid protein precursor transgenic mice: synaptotoxicity without plaque formation (2000) J Neurosci, 20, pp. 4050-4058
Bhattacharyya, S., Inside story of group I metabotropic glutamate receptors (mGluRs) (2016) Int J Biochem Cell Biol, 77, pp. 205-212
Wang, Q., Wu, J., Rowan, M.J., Anwyl, R., Beta-amyloid inhibition of long-term potentiation is mediated via tumor necrosis factor (2005) Eur J Neurosci, 22, pp. 2827-2832
Chen, X., Lin, R., Chang, L., Xu, S., Wei, X., Zhang, J., Wang, C., Wang, Q., Enhancement of long-term depression by soluble amyloid β protein in rat hippocampus is mediated by metabotropic glutamate receptor and involves activation of p38MAPK, STEP and caspase-3 (2013) Neuroscience, 253, pp. 435-443. , This study demonstrates that Aβ-enhanced LTD depends on mGlu1/5 receptors but not on NMDA receptors
Lee, H.K., Min, S.S., Gallagher, M., Kirkwood, A., NMDA receptor-independent long-term depression correlates with successful aging in rats (2005) Nat Neurosci, 8, pp. 1657-1659
Ménard, C., Quirion, R., Group 1 metabotropic glutamate receptor function and its regulation of learning and memory in the aging brain (2012) Front Pharmacol, 3, p. 182
D'Amelio, M., Cavallucci, V., Middei, S., Marchetti, C., Pacioni, S., Ferri, A., Diamantini, A., Battistini, L., Caspase-3 triggers early synaptic dysfunction in a mouse model of Alzheimer's disease (2011) Nat Neurosci, 14, pp. 69-76
Um, J.W., Kaufman, A.C., Kostylev, M., Heiss, J.K., Stagi, M., Takahashi, H., Kerrisk, M.E., Koleske, A.J., Metabotropic glutamate receptor 5 is a coreceptor for Alzheimer aβ oligomer bound to cellular prion protein (2013) Neuron, 79, pp. 887-902. , The authors of this study demonstrate that mGlu5 receptor is required for the synaptotoxic signaling of Aβ oligomers bound to cellular prion protein
Dohler, F., Sepulveda-Falla, D., Krasemann, S., Altmeppen, H., Schlüter, H., Hildebrand, D., Zerr, I., Glatzel, M., High molecular mass assemblies of amyloid-β oligomers bind prion protein in patients with Alzheimer's disease (2014) Brain, 137, pp. 873-886
Salazar, S.V., Strittmatter, S.M., Cellular prion protein as a receptor for amyloid-β oligomers in Alzheimer's disease (2017) Biochem Biophys Res Commun, 483, pp. 1143-1147
Haas, L.T., Kostylev, M.A., Strittmatter, S.M., Therapeutic molecules and endogenous ligands regulate the interaction between brain cellular prion protein (PrPC) and metabotropic glutamate receptor 5 (mGluR5) (2014) J Biol Chem, 289, pp. 28460-28477
Hamilton, A., Esseltine, J.L., DeVries, R.A., Cregan, S.P., Ferguson, S.S., Metabotropic glutamate receptor 5 knockout reduces cognitive impairment and pathogenesis in a mouse model of Alzheimer's disease (2014) Mol Brain, 7, p. 40
Hamilton, A., Vasefi, M., Vander Tuin, C., McQuaid, R.J., Anisman, H., Ferguson, S.S., Chronic pharmacological mGluR5 inhibition prevents cognitive impairment and reduces pathogenesis in an Alzheimer disease mouse model (2016) Cell Rep, 15, pp. 1859-1865. , The authors show that chronic administration of the orally bioavailable mGlu5 receptor NAM, CTEP, reverses cognitive decline in APPswe/PS1ΔE9 mice and reduces Aβ concentration and deposition
Malter, J.S., Ray, B.C., Westmark, P.R., Westmark, C.J., Fragile X syndrome and Alzheimer's disease: another story about APP and beta-amyloid (2010) Curr Alzheimer Res, 7, pp. 200-206
Homayoun, H., Moghaddam, B., Group 5 metabotropic glutamate receptors: role in modulating cortical activity and relevance to cognition (2010) Eur J Pharmacol, 639, pp. 33-39
Haas, L.T., Salazar, S.V., Smith, L.M., Zhao, H.R., Cox, T.O., Herber, C.S., Degnan, A.P., Albright, C.F., Silent allosteric modulation of mGluR5 maintains glutamate signaling while rescuing Alzheimer's mouse phenotypes (2017) Cell Rep, 20, pp. 76-88. , This study is highly relevant in validating the role of mGlu5 receptor as a new target for AD. The authors demonstrate that a 4 week treatment with a potent mGlu5 receptor NAL (BMS-984923) spares normal mGlu5 receptor signaling, while rescuing memory deficits in the APPswe/PS1ΔE9 transgenic mouse brain
Foster, D.J., Conn, P.J., Allosteric modulation of GPCRs: new insights and potential utility for treatment of schizophrenia and other CNS disorders (2017) Neuron, 94, pp. 431-446
Blanchard, B.J., Thomas, V.L., Ingram, V.M., Mechanism of membrane depolarization caused by the Alzheimer Abeta1-42 peptide (2002) Biochem Biophys Res Commun, 293, pp. 1197-1203
Ovsepian, S.V., Blazquez-Llorca, L., Freitag, S.V., Rodrigues, E.F., Herms, J., Ambient glutamate promotes paroxysmal hyperactivity in cortical pyramidal neurons at amyloid plaques via presynaptic mGluR1 receptors (2017) Cereb Cortex, 27, pp. 4733-4749
Albasanz, J.L., Dalfó, E., Ferrer, I., Martín, M., Impaired metabotropic glutamate receptor/phospholipase C signaling pathway in the cerebral cortex in Alzheimer's disease and dementia with Lewy bodies correlates with stage of Alzheimer's-disease-related changes (2005) Neurobiol Dis, 20, pp. 685-693
Nitsch, R.M., Deng, A., Wurtman, R.J., Growdon, J.H., Metabotropic glutamate receptor subtype mGluR1alpha stimulates the secretion of the amyloid beta-protein precursor ectodomain (1997) J Neurochem, 69, pp. 704-712
Bruno, V., Battaglia, G., Copani, A., Giffard, R.G., Raciti, G., Raffaele, R., Shinozaki, H., Nicoletti, F., Activation of class II or III metabotropic glutamate receptors protects cultured cortical neurons against excitotoxic degeneration (1995) Eur J Neurosci, 7, pp. 1906-1913
Miyamoto, M., Ishida, M., Shinozaki, H., Anticonvulsive and neuroprotective actions of a potent agonist (DCG-IV) for group II metabotropic glutamate receptors against intraventricular kainate in the rat (1997) Neuroscience, 77, pp. 131-140
Bond, A., Jones, N.M., Hicks, C.A., Whiffin, G.M., Ward, M.A., O'Neill, M.F., Kingston, A.E., Schoepp, D.D., Neuroprotective effects of LY379268, a selective mGlu2/3 receptor agonist: investigations into possible mechanism of action in vivo (2000) J Pharmacol Exp Ther, 294, pp. 800-809
Copani, A., Bruno, V., Battaglia, G., Leanza, G., Pellitteri, R., Russo, A., Stanzani, S., Nicoletti, F., Activation of metabotropic glutamate receptors protects cultured neurons against apoptosis induced by beta-amyloid peptide (1995) Mol Pharmacol, 47, pp. 890-897
Kim, S.H., Fraser, P.E., Westaway, D., St George-Hyslop, P.H., Ehrlich, M.E., Gandy, S., Group II metabotropic glutamate receptor stimulation triggers production and release of Alzheimer's amyloid(beta)42 from isolated intact nerve terminals (2010) J Neurosci, 30, pp. 3870-3875
Higgins, G.A., Ballard, T.M., Kew, J.N., Richards, J.G., Kemp, J.A., Adam, G., Woltering, T., Mutel, V., Pharmacological manipulation of mGlu2 receptors influences cognitive performance in the rodent (2004) Neuropharmacology, 46, pp. 907-917
Yoshimizu, T., Shimazaki, T., Ito, A., Chaki, S., An mGluR2/3 antagonist, MGS0039, exerts antidepressant and anxiolytic effects in behavioral models in rats (2006) Psychopharmacology (Berl), 186, pp. 587-593
Taylor, D.L., Diemel, L.T., Cuzner, M.L., Pocock, J.M., Activation of group II metabotropic glutamate receptors underlies microglial reactivity and neurotoxicity following stimulation with chromogranin A, a peptide up-regulated in Alzheimer's disease (2002) J Neurochem, 82, pp. 1179-1191
Kim, S.H., Steele, J.W., Lee, S.W., Clemenson, G.D., Carter, T.A., Treuner, K., Gadient, R., Barlow, C., Proneurogenic group II mGluR antagonist improves learning and reduces anxiety in Alzheimer Aβ oligomer mouse (2014) Mol Psychiatry, 19, pp. 1235-1242. , Chronic treatment of APP (E693Q) mice with BCI-838 was associated with reversal of amnestic behavior, reduction in anxiety, reduction in Aβ levels, and stimulation of hippocampal neurogenesis
Elder, G.A., Gama Sosa, M.A., De Gasperi, R., Transgenic mouse models of Alzheimer's disease (2010) Mt Sinai J Med, 77, pp. 69-81
Chen, Y.R., Glabe, C.G., Distinct early folding and aggregation properties of Alzheimer amyloid-beta peptides Abeta40 and Abeta42: stable trimer or tetramer formation by Abeta42 (2006) J Biol Chem, 281, pp. 24414-24422
Caraci, F., Molinaro, G., Battaglia, G., Giuffrida, M.L., Riozzi, B., Traficante, A., Bruno, V., Wang, X., Targeting group II metabotropic glutamate (mGlu) receptors for the treatment of psychosis associated with Alzheimer's disease: selective activation of mGlu2 receptors amplifies beta-amyloid toxicity in cultured neurons, whereas dual activation of mGlu2 and mGlu3 receptors is neuroprotective (2011) Mol Pharmacol, 79, pp. 618-626
Caraci, F., Spampinato, S., Sortino, M.A., Bosco, P., Battaglia, G., Bruno, V., Drago, F., Copani, A., Dysfunction of TGF-β1 signaling in Alzheimer's disease: perspectives for neuroprotection (2012) Cell Tissue Res, 347, pp. 291-301
Lee, H.G., Zhu, X., O'Neill, M.J., Webber, K., Casadesus, G., Marlatt, M., Raina, A.K., Smith, M.A., The role of metabotropic glutamate receptors in Alzheimer's disease (2004) Acta Neurobiol Exp (Wars), 64, pp. 89-98
Bruno, V., Copani, A., Bonanno, L., Knoepfel, T., Kuhn, R., Roberts, P.J., Nicoletti, F., Activation of group III metabotropic glutamate receptors is neuroprotective in cortical cultures (1996) Eur J Pharmacol, 310, pp. 61-66
Maj, M., Bruno, V., Dragic, Z., Yamamoto, R., Battaglia, G., Inderbitzin, W., Stoehr, N., Flor, P.J., (−)-PHCCC, a positive allosteric modulator of mGluR4: characterization, mechanism of action, and neuroprotection (2003) Neuropharmacology, 45, pp. 895-906
Coyle, J.T., Price, D.L., DeLong, M.R., Alzheimer's disease: a disorder of cortical cholinergic innervation (1983) Science, 219, pp. 1184-1190
Gu, Z., Cheng, J., Zhong, P., Qin, L., Liu, W., Yan, Z., Aβ selectively impairs mGluR7 modulation of NMDA signaling in basal forebrain cholinergic neurons: implication in Alzheimer's disease (2014) J Neurosci, 34, pp. 13614-13628. , This study demonstrates that Aβ impairs the mGlu7-mediated regulation of NMDA receptor currents in rodent basal forebrain cholinergic neurons, suggesting the potential role of mGlu7 as a new target to prevent the degeneration of cholinergic neurons in AD
Gerlai, R., Roder, J.C., Hampson, D.R., Altered spatial learning and memory in mice lacking the mGluR4 subtype of metabotropic glutamate receptor (1998) Behav Neurosci, 112, pp. 525-532
Hölscher, C., Schmid, S., Pilz, P.K., Sansig, G., van der Putten, H., Plappert, C.F., Lack of the metabotropic glutamate receptor subtype 7 selectively impairs short-term working memory but not long-term memory (2004) Behav Brain Res, 154, pp. 473-481
Goddyn, H., Callaerts-Vegh, Z., Stroobants, S., Dirikx, T., Vansteenwegen, D., Hermans, D., van der Putten, H., D'Hooge, R., Deficits in acquisition and extinction of conditioned responses in mGluR7 knockout mice (2008) Neurobiol Learn Mem, 90, pp. 103-111
Caraci, F., Gulisano, W., Guida, C.A., Impellizzeri, A.A., Drago, F., Puzzo, D., Palmeri, A., A key role for TGF-β1 in hippocampal synaptic plasticity and memory (2015) Sci Rep, 5, p. 11252. , This is the first study that demonstrates the primary role of TGF-β1 in hippocampal long-term potentiation and object recognition memory formation in mice
Di Menna, L., Joffe, M.E., Iacovelli, L., Orlando, R., Lindsley, C.W., Mairesse, J., Gressèns, P., Nicoletti, F., Functional partnership between mGlu3 and mGlu5 metabotropic glutamate receptors in the central nervous system (2017) Neuropharmacology
Metabotropic glutamate receptors: the potential for therapeutic applications in Alzheimer's disease