Small-molecule inhibitors of histone acetyltransferase activity: Identification and biological properties(508 views) Mai A, Rotili D, Tarantino D, Ornaghi P, Tosi F, Vicidomini C, Sbardella G, Nebbioso A, Miceli M, Altucci L, Filetici P
J Med Chem (ISSN: 0022-2623, 1520-4804, 0022-2623print), 2006 Nov 16; 49(23): 6897-6907.
Dipartimento di Studi Farmaceutici, Istituto Pasteur-Fondazione Cenci Bolognetti, Universita degli Studi di Roma La Sapienza, P.le A. Moro 5, 00185 Roma, Italy
Dipartimento di Genetica e Biologia Molecolare, Università degli Studi di Roma La Sapienza, P.le A. Moro 5, 00185 Roma, Italy
Dipartimento di Scienze Farmaceutiche, Università degli Studi di Salerno, Via Ponte Don Melillo, 84084 Fisciano (SA), Italy
Dipartimento di Patologia Generale, Seconda Università degli Studi di Napoli, Vico L. De Crecchio 7, 80138 Napoli, Italy
Centro di Oncogenomica AIRC, CEINGE Biotecnologia Avanzata, Napoli, Italy
References: Davie, J.R., Covalent modifications of histones: Expression from chromatin templates (1998) Curr. Opin. Genet. Dev., 8, pp. 173-17
Kouzarides, T., Histone acetylases and deacetylases in cell proliferation (1999) Curr. Opin. Genet. Dev., 9, pp. 40-48
Strahl, B.D., Allis, C.D., The language of covalent histone modifications (2000) Nature, 403, pp. 41-45
Pazin, M.J., Kadonaga, J.T., What's up and down with histone deacetylation and transcription? (1997) Cell, 89, pp. 325-328
Glass, C.K., Rosenfeld, M.G., The coregulator exchange in transcriptional functions of nuclear receptors (2000) Genes Dev., 14, pp. 121-141
Luger, K., Mader, A.W., Richmond, R.K., Sargent, D.F., Richmond, T.J., Crystal structure of the nucleosome core particle at 2.8 Å resolution (1998) Nature, 389, pp. 251-260
Urnov, F.D., Wolffe, A., Chromatin organization and human disease (2000) Emerging Ther. Targets, 4, pp. 665-685
Fischle, W., Wang, Y., Allis, C.D., Histone and chromatin crosstalk (2003) Curr. Opin. Cell Biol., 15, pp. 172-183
Akey, C.W., Luger, K., Histone chaperones and nucleosome assembly (2003) Curr. Opin. Struct. Biol., 13, pp. 6-14
Sterner, D.E., Berger, S.L., Acetylation of histones and transcription-related factors (2000) Microbiol. Mol. Biol. Rev., 64, pp. 435-459
Marmorstein, R., Structure of histone acetyltransferases (2001) J. Mol. Biol., 311, pp. 433-444
Schiltz, R.L., Mizzen, C.A., Vassilev, A., Cook, R.G., Allis, C.D., Nakatani, Y., Overlapping but distinct patterns of histone acetylation by the human coactivators p300 and PCAF within nucleosomal substrates (1999) J. Biol. Chem., 274, pp. 1189-1192
Lau, O.D., Courtney, A.D., Vassilev, A., Marzilli, L.A., Cotter, R.J., Nakatani, Y., Cole, P.A., p300/CBP-associated factor histone acetyltransferase processing of a peptide substrate. Kinetic analysis of the catalytic mechanism (2000) J. Biol. Chem., 275, pp. 21953-21959
Grant, P.A., Duggan, L., Cote, J., Roberts, S.M., Brownell, J.E., Candau, R., Ohba, R., Workman, J.L., Yeast Gcn5 functions in two multisubunit complexes to acetylate nucleosomal histones: Characterization of an Ada complex and the SAGA (Spt/Ada) complex (1997) Genes Dev., 11, pp. 1640-1650
Grant, P.A., Eberharter, A., John, S., Cook, R.G., Turner, B.M., Workman, J.L., Expanded lysine acetylation specificity of Gcn5 in native complexes (1999) J. Biol. Chem., 274, pp. 5895-5900
Liu, Y., Colosimo, A.L., Yang, X.-J., Liao, D., Adenovirus E1B 55-kilodalton oncoprotein inhibits p53 acetylation by PCAF (2000) Mol. Cell Biol., 20, pp. 5540-5553
Hubbert, C., Guardiola, A., Shao, R., Kawaguchi, Y., Ito, A., Nixon, A., Yoshida, M., Yao, T.P., HDAC6 is a microtubule-associated deacetylase (2002) Nature, 417, pp. 455-458
Mai, A., Massa, S., Rotili, D., Cerbara, I., Valente, S., Pezzi, R., Simeoni, S., Ragno, R., Histone deacetylation in epigenetics: An attractive target for anticancer therapy (2005) Med. Res. Rev., 25, pp. 261-309
Minucci, S., Pelicci, P.G., Histone deacetylase inhibitors and the promise of epigenetic (and more) treatments for cancer (2006) Nat. Rev. Cancer, 6, pp. 38-51
Muraoka, M., Konishi, M., Kikuchi-Yanoshita, R., Tanaka, K., Shitara, N., Chong, J.M., Iwama, T., Miyaki, M., p300 gene alterations in colorectal and gastic carcinomas (1996) Oncogene, 12, pp. 1565-1569
Phillips, A.C., Vousden, K.H., Acetyltransferases and tumor suppression (2000) Breast Cancer Res., 2, pp. 244-246
Anzick, S.L., Kononen, J., Walker, R.L., Azorsa, D.O., Tanner, M.M., Guan, X.Y., Sauter, G., Meltzer, P.S., AIB1, a steroid receptor coactivator amplified in breast and ovarian cancer (1997) Science, 277, pp. 965-969
Sakakura, C., Hagiwara, A., Yasuoka, R., Fujita, Y., Nakanishi, M., Masuda, K., Kimura, A., Yamagishi, H., Amplification and overexpression of the AIB1 nuclear receptor co-activator gene in primary gastric cancers (2000) Int. J. Cancer, 89, pp. 217-223
Aguiar, R.C., Chase, A., Coulthard, S., Macdonald, D.H., Carapeti, M., Reiter, A., Sohal, J., Cross, N.C., Abnormalities of chromosome band 8p11 in leukaemia: Two clinical syndromes can be distinguished on the basis of MOZ involvement (1997) Blood, 90, pp. 3130-3135
Panagopoulos, I., Fioretos, T., Isaksson, M., Isaksson, M., Samuelsson, U., Billstrom, R., Strombeck, B., Johansson, B., Fusion of the MORF and CBP genes in acute myeloid leukemia with the t(10
p13) (2001) Hum. Mol. Genet., 10, pp. 395-404
Puri, P.L., Sartorelli, V., Yang, X.J., Hamamori, Y., Ogryzko, V.V., Howard, B.H., Kedes, L., Levrero, M., Differential roles of p300 and PCAF acetyltransferases in muscle differentiation (1997) Mol. Cell, 1, pp. 35-45
Lehrmann, H., Pritchard, L.L., Harel-Bellan, A., Histone acetyltransferases and deacetylases in the control of cell proliferation and differentiation (2002) Adv. Cancer Res., 86, pp. 41-65
Zheng, Y., Thompson, P.R., Cebrat, M., Wang, L., Devlin, M., Alani, R.M., Cole, P.A., Selective HAT inhibitors as mechanistic tools for protein acetylation (2004) Methods Enzymol., 376, pp. 188-199
Lau, O.D., Kundu, T.K., Soccio, R.E., Ait-Si-Ali, S., Khalil, E.M., Vassilev, A., Wolffe, A.P., Cole, P.A., HATs off: Selective synthetic inhibitors of the histone acetyltransferases p300 and PCAF (2000) Mol. Cell, 5, pp. 589-595
Balasubramanyam, K., Swaminathan, V., Ranganathan, A., Kundu, T.K., Small molecule modulators of histone acetyltransferase p300 (2003) J. Biol. Chem., 278, pp. 19134-19140
Biel, M., Kretsovali, A., Karatzali, E., Papamatheakis, J., Giannis, A., Design, synthesis and biological evaluation of a small molecule inhibitor of the histone acetyltransferase GCN5 (2004) Angew. Chem., Int. Ed., 43, pp. 3974-3976
Stimson, L., Rowlands, M.G., Newbatt, Y.M., Smith, N.F., Raynaud, F.I., Rogers, P., Bavetsias, V., Aherne, G.W., Isothiazolones as inhibitors of PCAF and p300 histone acetyltransferase activity (2005) Mol. Cancer Ther., 4, pp. 1521-1532
Massa, S., Mai, A., Sbardella, G., Esposito, M., Ragno, R., Loidl, P., Brosch, G., 3-(4-Aroyl-1H-pyrrol-2-yl)-N-hydroxy-2-propenamides, a new class of synthetic histone deacetylase inhibitors (2001) J. Med. Chem., 44, pp. 2069-2072
Ragno, R., Mai, A., Massa, S., Cerbara, I., Valente, S., Bottoni, P., Scatena, R., Brosch, G., 3-(4-Aroyl-1-methyl-1H-pyrrol-2-yl)-N-hydroxy-2-propenamides as a new class of synthetic histone deacetylase inhibitors. 3. Discovery of novel lead compounds through structure-based drug design and docking studies (2004) J. Med. Chem., 47, pp. 1351-1359
Georgakopoulos, T., Thireos, G., Two distinct yeast transcriptional activators require the function of the GCN5 protein to promote normal levels of transcription (1992) EMBO J., 11, pp. 4145-4152
Warrell Jr., R.P., Frankel, S.R., Miller Jr., W.H., Scheinberg, D.A., Itri, L.M., Hittelman, W.N., Vyas, R., Jakubowski, A.N., (1991) Engl. J. Med., 324, p. 1385
Man, J.W., Ahn, S.H., Park, S.H., Wang, S.Y., Bae, G.U., Seo, D.W., Known, H.K., Lee, H.W., Apicidin, a histone deacetylase inhibitor, inhibits proliferation of tumor cells via induction of p21WAF1/Cip1 and gelsolin (2000) Cancer Res., 60, pp. 6068-6074
Shute, R.E., Dunlap, B., Rich, D.H., Analogues of the cytostatic and antimitogenic agents chlamydocin and HC-toxin: Synthesis and biological activity of chloromethyl ketone and diazomethyl ketone functionalized cyclic tetrapeptides (1987) J. Med. Chem., 30, pp. 71-78
Diana, G.D., McKinlay, M.A., Otto, M.J., Akullian, V., Oglesby, C., [[(4,5-Dihydro-2-oxazolyl)phenoxy]alkyl]isoxazoles. Inhibitors of picornavirus uncoating (1985) J. Med. Chem., 28, pp. 1906-1910
Ornaghi, P., Rotili, D., Sbardella, G., Mai, A., Filetici, P., A novel Gcn5p inhibitor represses cell growth, gene transcription and histone acetylation in budding yeast (2005) Biochem. Pharmacol., 70, pp. 911-917
Ladner, D.W., Oxidation of methylquinolines with nickel peroxide (1986) Synth. Commun., 16, pp. 157-162
Ech-Chahad, A., Minassi, A., Berton, L., Appendino, G., An expeditious hydroxyamidation of carboxylic acids (2005) Tetrahedron Lett., 46, pp. 5113-5115
Mori, K., Koseki, K., Synthesis of trichostatin A, a potent differentiation inducer of Friend leukemic cells, and its antipode (1988) Tetrahedron, 44, pp. 6013-6020
Nyoung Kim, J., Mi Chung, Y., Jin Im, Y., Synthesis of quinolines from the Baylis-Hillman acetates via the oxidative cyclization of sulfonamidyl radical as the key step (2002) Tetrahedron Lett., 43, pp. 6209-6211
Ma, Z., Hano, Y., Nomura, T., Chen, Y., Novel quinazoline-quinoline alkaloids with cytotoxic and DNA topoisomerase 11 inhibitory activities (2004) Bioorg. Med. Chem. Lett., 14, pp. 1193-1196
Asao, N., Nogami, T., Lee, S., Yamamoto, Y., Lewis acid-catalyzed benzannulation via unprecedented [4 + 2] cycloaddition of o-alkynyl-(oxo)benzenes and enynals with alkynes (2003) J. Am. Chem. Soc., 125, pp. 10921-10925
Howe, L.A., Auston, D., Grant, P., John, S., Cook, R.G., Workman, J.L., Pillus, L., Histone H3 specific acetyltransferases are essential for cell cycle progression (2001) Genes Dev., 15, pp. 3144-3154
Kuo, M.-H., Zhou, J., Jambeck, P., Churcill, M.E.A., Allis, C.D., Histone acetyltransferase activity of yeast Gcn5p is required for the activation of target genes in vivo (1998) Genes Dev., 12, pp. 627-639
Tanner, K.G., Trievel, L.C., Kuo, M.-H., Howard, R.M., Berger, S.L., Allis, C.D., Marmorstein, R., Denu, J.M., Catalytic mechanism and function of invariant glutamic acid 173 from the histone acetyltransferase GCN5 transcriptional coactivator (1999) J. Biol. Chem., 274, pp. 18157-18160
Roberts, S.M., Winston, F., SPT20/ADA5 encodes a novel protein functionally related to the TATA-binding protein and important for transcription in Saccharomyces cerevisiae (1996) Mol. Cell. Biol., 16, pp. 3206-3213
Sterner, D.E., Grant, P.A., Roberts, S.M., Duggan, L.J., Belotserkovskaya, R., Pacella, L.A., Winston, F., Berger, S.L., Functional organization of the yeast SAGA complex: Distinct components involved in structural integrity, nucleosome acetylation, and TATA-binding protein interaction (1999) Mol. Cell. Biol., 19, pp. 86-98
Kang, J., Chen, J., Shi, Y., Jia, J., Zhang, Y., Curcumin-induced histone hypoacetylation: The role of reactive oxygen species (2005) Biochem. Pharmacol, 69, pp. 1205-1213
Marcu, M.G., Jung, Y.-J., Lee, S., Chung, E.-J., Lee, M.-J., Trepel, J., Neckers, L., Curcumin is an inhibitor of p300 histone acetyltransferase (2006) Med. Chem., 2, pp. 169-174
Richon, V.M., Emiliani, S., Verdin, E., Webb, Y., Breslow, R., Rifkind, R.A., Marks, P.A., A class of hybrid polar inducers of transformed cell differentiation inhibits histone deacetylases (1998) Proc. Natl. Acad. Sci. U.S.A., 95, pp. 3003-3007
Mai, A., Esposito, M., Sbardella, G., Massa, S., A new facile and expeditious synthesis of N-hydroxy-N′- phenyloctanediamide, a potent inducer of terminal cytodifferentiation (2001) Org. Prep. Proced. Int., 33, pp. 391-394
Wach, A., Brachat, A., Pohlmann, R., Philippsen, P., New heterologous modules for classical or PCR based gene disruptions in Saccharomyces cerevisiae (1994) Yeast, 10, pp. 1793-1808
Guarente, L., Yocum, R.R., Gifford, P., A GAL10-CYC1 hybrid yeast promoter identifies the GAL4 regulatory region as an upstream site (1982) Proc. Natl Acad. Sci. U.S.A., 79, pp. 7410-7414
Bradford, M.M., A dye binding assay for protein (1976) Anal. Biochem., 72, pp. 248-254
Valenzuela, L., Ballario, P., Aranda, C., Filetici, P., Gonzalez, A., Regulation of expression of GLT1, the gene encoding glutamate synthase in Saccharomyces cerevisiae (1998) J. Bacteriol., 180, pp. 3533-3540
Kushnirov, V.V., Rapid and reliable protein extraction from yeast (2000) Yeast, 16, pp. 857-860
Altucci, L., Rossin, A., Raffelsberger, W., Reitmair, A., Chomienne, C., Gronemeyer, H., Retinoic acid-induced apoptosis in leukemia cells is mediated by paracrine action of tumor-selective death ligand TRAIL (2001) Nat. Med., 7, pp. 680-686
Nebbioso, A., Clarke, N., Voltz, E., Germain, E., Ambrosino, C., Bontempo, P., Alvarez, R., Altucci, L., Tumor-selective action of HDAC inhibitors involves TRAIL induction in acute myeloid leukemia cells (2005) Nat. Med., 11, pp. 77-84
Small-molecule inhibitors of histone acetyltransferase activity: Identification and biological properties
Starting from a yeast phenotypic screening performed on 21 compounds, we described the identification of two small molecules ( 9 and 18) able to significantly reduce the S. cerevisiae cell growth, thus miming the effect of GCN5 deletion mutant. Tested on a GCN5-dependent gene transcription assay, compounds 9 and 18 gave a high reduction of the reporter activity. In S. cerevisiae histone H3 terminal tails assay, the H3 acetylation levels were highly reduced by treatment with 0.6-1 mM 9, while 18 was effective only at 1.5 mM. In human leukemia U937 cell line, at 1 mM 9 and 18 showed effects on cell cycle ( arrest in G1 phase, 9), apoptosis ( 9), and granulocytic differentiation ( 18). When tested on U937 cell nuclear extracts to evaluate their histone acetyltransferase ( HAT) inhibitory action, both compounds were able to reduce the enzyme activity when used at 500 AM. Another quinoline, compound 22, was synthesized with the aim to improve the activity observed with 9 and 18. Tested in the HAT assay, 22 was able to reduce the HAT catalytic action at 50 and 25 AM, thereby being comparable to anacardic acid, curcumin, and MB- 3 used as references. Finally, in U937 cells, compounds 9 and 18 used at 2.5 mM were able to reduce the extent of the acetylation levels of histone H3 ( 9) and alpha-tubulin ( 9 and 18). In the same assay, 22 at lower concentration ( 100 AM) showed the same hypoacetylating effects with both histone and non-histone substrates.
Small-molecule inhibitors of histone acetyltransferase activity: Identification and biological properties