Design, structural and functional characterization of a Temporin-1b analog active against Gram-negative bacteria(489 views) Avitabile C, Netti F, Orefice G, Palmieri M, Nocerino N, Malgieri G, D'Andrea LD, Capparelli R, Fattorusso R, Romanelli A
Università di Napoli Federico II, Dipartimento Delle Scienze Biologiche, Via Mezzocannone 16, 80134 Napoli, Italy
Seconda Università Degli Studi di Napoli, Dipartimento di Scienze Ambientali, Via Vivaldi 43, 81100 Caserta, Italy
Istituto di Biostrutture e Bioimmagini (CNR), Via Mezzocannone 16, 80134 Napoli, Italy
Universit di Napoli Federico II, Dipartimento Delle Scienze Biologiche, Via Mezzocannone 16, 80134 Napoli, Italy
Seconda Universit Degli Studi di Napoli, Dipartimento di Scienze Ambientali, Via Vivaldi 43, 81100 Caserta, Italy
References: Boman, H.G., Peptide antibiotics and their role in innate immunity (1995) Annu. Rev. Immunol., 13, pp. 61-9
Rinaldi, A.C., Antimicrobial peptides from amphibian skin: An expanding scenario (2002) Curr. Opin. Chem. Biol., 6, pp. 799-804
Hoskin, D.W., Ramamoorthy, A., Studies on anticancer activities of antimicrobial peptides (2008) Biochim. Biophys. Acta, 1778, pp. 357-375
Papo, N., Shai, Y., Host defense peptides as new weapons in cancer treatment (2005) Cell. Mol. Life Sci., 62, pp. 784-790
Mor, A., Multifunctional host defense peptides: Antiparasitic activities (2009) FEBS J., 276, pp. 6474-6482
Pereira, H.A., Novel therapies based on cationic antimicrobial peptides (2006) Curr. Pharm. Biotechnol., 7, pp. 229-234
Finlay, B.B., Hancock, R.E., Can innate immunity be enhanced to treat microbial infections? (2004) Nat. Rev. Microbiol., 2, pp. 497-504
Hancock, R.E., Patrzykat, A., Clinical development of cationic antimicrobial peptides: From natural to novel antibiotics (2002) Curr. Drug Targets Infect. Disord., 2, pp. 79-83
Rosenfeld, Y., Shai, Y., Lipopolysaccharide (Endotoxin)-host defense antibacterial peptides interactions: Role in bacterial resistance and prevention of sepsis (2006) Biochim. Biophys. Acta, 1758, pp. 1513-1522
Bhattacharjya, S., Ramamoorthy, A., Multifunctional host defense peptides: Functional and mechanistic insights from NMR structures of potent antimicrobial peptides (2009) FEBS J., 276, pp. 6465-6473
Blondelle, S.E., Lohner, K., Combinatorial libraries: A tool to design antimicrobial and antifungal peptide analogues having lytic specificities for structure-activity relationship studies (2000) Biopolymers, 55, pp. 74-87
Papo, N., Oren, Z., Pag, U., Sahl, H.G., Shai, Y., The consequence of sequence alteration of an amphipathic alpha-helical antimicrobial peptide and its diastereomers (2002) J. Biol. Chem., 277, pp. 33913-33921
Nikaido, H., Prevention of drug access to bacterial targets: Permeability barriers and active efflux (1994) Science (New York, N.Y.), 264, pp. 382-388
Hancock, R.E., Alterations in outer membrane permeability (1984) Annu. Rev. Microbiol., 38, pp. 237-264
Mahalka, A.K., Kinnunen, P.K., Binding of amphipathic alpha-helical antimicrobial peptides to lipid membranes: Lessons from temporins B and L (2009) Biochim. Biophys. Acta, 1788, pp. 1600-1609
Mangoni, M.L., Shai, Y., Temporins and their synergism against Gram-negative bacteria and in lipopolysaccharide detoxification (2009) Biochim. Biophys. Acta, 1788, pp. 1610-1619
Mangoni, M.L., Epand, R.F., Rosenfeld, Y., Peleg, A., Barra, D., Epand, R.M., Shai, Y., Lipopolysaccharide, a key molecule involved in the synergism between temporins in inhibiting bacterial growth and in endotoxin neutralization (2008) J. Biol. Chem., 283, pp. 22907-22917
Romanelli, A., Moggio, L., Montella, R.C., Campiglia, P., Iannaccone, M., Capuano, F., Pedone, C., Capparelli, R., Peptides from Royal Jelly: Studies on the antimicrobial activity of jelleins, jelleins analogs and synergy with temporins (2011) J. Pept. Sci., 17, pp. 348-352
Shai, Y., Mode of action of membrane active antimicrobial peptides (2002) Biopolymers, 66, pp. 236-248
Bhunia, A., Ramamoorthy, A., Bhattacharjya, S., Helical hairpin structure of a potent antimicrobial peptide MSI-594 in lipopolysaccharide micelles by NMR spectroscopy (2009) Chemistry, 15, pp. 2036-2040
Zasloff, M., Antimicrobial peptides of multicellular organisms (2002) Nature, 415, pp. 389-395
Rinaldi, A.C., Mangoni, M.L., Rufo, A., Luzi, C., Barra, D., Zhao, H., Kinnunen, P.K., Simmaco, M., Temporin L: Antimicrobial, haemolytic and cytotoxic activities, and effects on membrane permeabilization in lipid vesicles (2002) Biochem. J., 368, pp. 91-100
Conlon, J.M., Al-Ghafari, N., Coquet, L., Leprince, J., Jouenne, T., Vaudry, H., Davidson, C., Evidence from peptidomic analysis of skin secretions that the red-legged frogs, Rana aurora draytonii and Rana aurora aurora, are distinct species (2006) Peptides, 27, pp. 1305-1312
Rosenfeld, Y., Barra, D., Simmaco, M., Shai, Y., Mangoni, M.L., A synergism between temporins toward Gram-negative bacteria overcomes resistance imposed by the lipopolysaccharide protective layer (2006) J. Biol. Chem., 281, pp. 28565-28574
Capparelli, R., Romanelli, A., Iannaccone, M., Nocerino, N., Ripa, R., Pensato, S., Pedone, C., Iannelli, D., Synergistic antibacterial and anti-inflammatory activity of temporin A and modified temporin B in vivo (2009) PLoS One, 4, p. 7191
Carotenuto, A., Malfi, S., Saviello, M.R., Campiglia, P., Gomez-Monterrey, I., Mangoni, M.L., Gaddi, L.M., Grieco, P., A different molecular mechanism underlying antimicrobial and hemolytic actions of temporins A and L (2008) J. Med. Chem., 51, pp. 2354-2362
Bhunia, A., Saravanan, R., Mohanram, H., Mangoni, M.L., Bhattacharjya, S., NMR structures and interactions of temporin-1Tl and temporin-1Tb with lipopolysaccharide micelles: Mechanistic insights into outer membrane permeabilization and synergistic activity (2011) J. Biol. Chem., 286, pp. 24394-24406
Grieco, P., Luca, V., Auriemma, L., Carotenuto, A., Saviello, M.R., Campiglia, P., Barra, D., Mangoni, M.L., Alanine scanning analysis and structure-function relationships of the frog-skin antimicrobial peptide temporin-1Ta (2011) J. Pept. Sci., 17, pp. 358-365
Chen, X., Howe, J., Andra, J., Rossle, M., Richter, W., Da Silva, A.P., Krensky, A.M., Brandenburg, K., Biophysical analysis of the interaction of granulysin-derived peptides with enterobacterial endotoxins (2007) Biochim. Biophys. Acta, 1768, pp. 2421-2431
Ananias, M., Yano, T., Serogroups and virulence genotypes of Escherichia coli isolated from patients with sepsis (2008) Braz. J. Med. Biol. Res., 41, pp. 877-883
Hong, Y., Liu, T., Lee, M.D., Hofacre, C.L., Maier, M., White, D.G., Ayers, S., Maurer, J.J., Rapid screening of Salmonella enterica serovars Enteritidis, Hadar, Heidelberg and Typhimurium using a serologically-correlative allelotyping PCR targeting the O and H antigen alleles (2008) BMC Microbiol., 8, p. 178
Pechorsky, A., Nitzan, Y., Lazarovitch, T., Identification of pathogenic bacteria in blood cultures: Comparison between conventional and PCR methods (2009) J. Microbiol. Methods, 78, pp. 325-330
Lee, J., Choi, Y., Woo, E.R., Lee, D.G., Isocryptomerin, a novel membrane-active antifungal compound from Selaginella tamariscina (2009) Biochem. Biophys. Res. Commun., 379, pp. 676-680
Mayer, M., Meyer, B., Characterization of ligand binding by saturation transfer difference NMR spectroscopy (1999) Angew. Chem. Int. Ed., 38, pp. 1784-1788
Bhunia, A., Mohanram, H., Bhattacharjya, S., Lipopolysaccharide bound structures of the active fragments of fowlicidin-1, a cathelicidin family of antimicrobial and antiendotoxic peptide from chicken, determined by transferred nuclear Overhauser effect spectroscopy (2009) Biopolymers, 92, pp. 9-22
Bhunia, A., Domadia, P.N., Bhattacharjya, S., Structural and thermodynamic analyses of the interaction between melittin and lipopolysaccharide (2007) Biochim. Biophys. Acta, 1768, pp. 3282-3291
Herrmann, T., Guntert, P., Wuthrich, K., Protein NMR structure determination with automated NOE assignment using the new software CANDID and the torsion angle dynamics algorithm DYANA (2002) J. Mol. Biol., 319, pp. 209-227
Guntert, P., Automated NMR structure calculation with CYANA (2004) Meth. Mol. Biol. (Clifton, N.J.), 278, pp. 353-378
Koradi, R., Billeter, M., Wuthrich, K., MOLMOL: A program for display and analysis of macromolecular structures (1996) J. Mol. Graph., 14, pp. 51-55. , (29-32)
Laskowski, R.A., Rullmannn, J.A., MacArthur, M.W., Kaptein, R., Thornton, J.M., AQUA and PROCHECK-NMR: Programs for checking the quality of protein structures solved by NMR (1996) J. Biomol. NMR, 8, pp. 477-486
Wade, D., Silveira, A., Silberring, J., Kuusela, P., Lankinen, H., Temporin antibiotic peptides: A review and derivation of a consensus sequence (2000) Protein Pept. Lett., 7, pp. 349-357
Rosenfeld, Y., Papo, N., Shai, Y., Endotoxin (lipopolysaccharide) neutralization by innate immunity host-defense peptides. Peptide properties and plausible modes of action (2006) J. Biol. Chem., 281, pp. 1636-1643
Wuthrich, K., (1986) NMR of Proteins and Nucleic Acids, p. 292. , John Wiley & Sons Inc. New York
Wang, Z., Jones, J.D., Rizo, J., Gierasch, L.M., Membrane-bound conformation of a signal peptide: A transferred nuclear Overhauser effect analysis (1993) Biochemistry, 32, pp. 13991-13999
Galdiero, S., Russo, L., Falanga, A., Cantisani, M., Vitiello, M., Fattorusso, R., Malgieri, G., Isernia, C., Structure and orientation of the gH625-644 membrane interacting region of herpes simplex virus type 1 in a membrane mimetic system (2012) Biochemistry, 51, pp. 3121-3128
Mihajlovic, M., Lazaridis, T., Charge distribution and imperfect amphipathicity affect pore formation by antimicrobial peptides (2012) Biochim. Biophys. Acta, 1818, pp. 1274-1283
Nagaoka, I., Hirota, S., Niyonsaba, F., Hirata, M., Adachi, Y., Tamura, H., Heumann, D., Cathelicidin family of antibacterial peptides CAP18 and CAP11 inhibit the expression of TNF-alpha by blocking the binding of LPS to CD14(+) cells (2001) J. Immunol., 167, pp. 3329-3338
Ding, L., Yang, L., Weiss, T.M., Waring, A.J., Lehrer, R.I., Huang, H.W., Interaction of antimicrobial peptides with lipopolysaccharides (2003) Biochemistry, 42, pp. 12251-12259
Epand, R.M., Vogel, H.J., Diversity of antimicrobial peptides and their mechanisms of action (1999) Biochim. Biophys. Acta, 1462, pp. 11-28
Andra, J., Lamata, M., Martinez De Tejada, G., Bartels, R., Koch, M.H., Brandenburg, K., Cyclic antimicrobial peptides based on Limulus anti-lipopolysaccharide factor for neutralization of lipopolysaccharide (2004) Biochem. Pharmacol., 68, pp. 1297-1307
Schuerholz, T., Brandenburg, K., Marx, G., Antimicrobial peptides and their potential application in inflammation and sepsis (2012) Crit. Care, 16, p. 207
Andra, J., Garidel, P., Majerle, A., Jerala, R., Ridge, R., Paus, E., Novitsky, T., Brandenburg, K., Biophysical characterization of the interaction of Limulus polyphemus endotoxin neutralizing protein with lipopolysaccharide (2004) Eur. J. Biochem., 271, pp. 2037-2046
Andra, J., Howe, J., Garidel, P., Rossle, M., Richter, W., Leiva-Leon, J., Moriyon, I., Brandenburg, K., Mechanism of interaction of optimized Limulus-derived cyclic peptides with endotoxins: Thermodynamic, biophysical and microbiological analysis (2007) Biochem. J., 406, pp. 297-307
Dathe, M., Wieprecht, T., Structural features of helical antimicrobial peptides: Their potential to modulate activity on model membranes and biological cells (1999) Biochim. Biophys. Acta, 1462, pp. 71-87
Chen, Y., Mant, C.T., Farmer, S.W., Hancock, R.E., Vasil, M.L., Hodges, R.S., Rational design of alpha-helical antimicrobial peptides with enhanced activities and specificity/therapeutic index (2005) J. Biol. Chem., 280, pp. 12316-12329
Boman, H. G., Peptide antibiotics and their role in innate immunity (1995) Annu. Rev. Immunol., 13, pp. 61-9
Rinaldi, A. C., Antimicrobial peptides from amphibian skin: An expanding scenario (2002) Curr. Opin. Chem. Biol., 6, pp. 799-804
Hoskin, D. W., Ramamoorthy, A., Studies on anticancer activities of antimicrobial peptides (2008) Biochim. Biophys. Acta, 1778, pp. 357-375
Pereira, H. A., Novel therapies based on cationic antimicrobial peptides (2006) Curr. Pharm. Biotechnol., 7, pp. 229-234
Finlay, B. B., Hancock, R. E., Can innate immunity be enhanced to treat microbial infections? (2004) Nat. Rev. Microbiol., 2, pp. 497-504
Hancock, R. E., Patrzykat, A., Clinical development of cationic antimicrobial peptides: From natural to novel antibiotics (2002) Curr. Drug Targets Infect. Disord., 2, pp. 79-83
Blondelle, S. E., Lohner, K., Combinatorial libraries: A tool to design antimicrobial and antifungal peptide analogues having lytic specificities for structure-activity relationship studies (2000) Biopolymers, 55, pp. 74-87
Hancock, R. E., Alterations in outer membrane permeability (1984) Annu. Rev. Microbiol., 38, pp. 237-264
Mahalka, A. K., Kinnunen, P. K., Binding of amphipathic alpha-helical antimicrobial peptides to lipid membranes: Lessons from temporins B and L (2009) Biochim. Biophys. Acta, 1788, pp. 1600-1609
Mangoni, M. L., Shai, Y., Temporins and their synergism against Gram-negative bacteria and in lipopolysaccharide detoxification (2009) Biochim. Biophys. Acta, 1788, pp. 1610-1619
Mangoni, M. L., Epand, R. F., Rosenfeld, Y., Peleg, A., Barra, D., Epand, R. M., Shai, Y., Lipopolysaccharide, a key molecule involved in the synergism between temporins in inhibiting bacterial growth and in endotoxin neutralization (2008) J. Biol. Chem., 283, pp. 22907-22917
Bradbury, A. F., Smyth, D. G., Peptide amidation (1991) Trends Biochem. Sci., 16, pp. 112-115
Rinaldi, A. C., Mangoni, M. L., Rufo, A., Luzi, C., Barra, D., Zhao, H., Kinnunen, P. K., Simmaco, M., Temporin L: Antimicrobial, haemolytic and cytotoxic activities, and effects on membrane permeabilization in lipid vesicles (2002) Biochem. J., 368, pp. 91-100
Conlon, J. M., Al-Ghafari, N., Coquet, L., Leprince, J., Jouenne, T., Vaudry, H., Davidson, C., Evidence from peptidomic analysis of skin secretions that the red-legged frogs, Rana aurora draytonii and Rana aurora aurora, are distinct species (2006) Peptides, 27, pp. 1305-1312
Laskowski, R. A., Rullmannn, J. A., MacArthur, M. W., Kaptein, R., Thornton, J. M., AQUA and PROCHECK-NMR: Programs for checking the quality of protein structures solved by NMR (1996) J. Biomol. NMR, 8, pp. 477-486
Epand, R. M., Vogel, H. J., Diversity of antimicrobial peptides and their mechanisms of action (1999) Biochim. Biophys. Acta, 1462, pp. 11-28
Chen, Y., Mant, C. T., Farmer, S. W., Hancock, R. E., Vasil, M. L., Hodges, R. S., Rational design of alpha-helical antimicrobial peptides with enhanced activities and specificity/therapeutic index (2005) J. Biol. Chem., 280, pp. 12316-12329
Design, structural and functional characterization of a Temporin-1b analog active against Gram-negative bacteria
Background: Temporins are small antimicrobial peptides secreted by the Rana temporaria showing mainly activity against Gram-positive bacteria. However, different members of the temporin family, such as Temporin B, act in synergy also against Gram-negative bacteria. With the aim to develop a peptide with a wide spectrum of antimicrobial activity we designed and analyzed a series of Temporin B analogs. Methods: Peptides were initially obtained by Ala scanning on Temporin B sequence; antimicrobial activity tests allowed to identify the TB_G6A sequence, which was further optimized by increasing the peptide positive charge (TB_KKG6A). Interactions of this active peptide with the LPS of E. coli were investigated by CD, fluorescence and NMR. Results: TB_KKG6A is active against Gram-positive and Gram-negative bacteria at low concentrations. The peptide strongly interacts with the LPS of Gram-negative bacteria and folds upon interaction into a kinked helix. Conclusion: Our results show that it is possible to widen the activity spectrum of an antimicrobial peptide by subtle changes of the primary structure. TB_KKG6A, having a simple composition, a broad spectrum of antimicrobial activity and a very low hemolytic activity, is a promising candidate for the design of novel antimicrobial peptides. General significance: The activity of antimicrobial peptides is strongly related to the ability of the peptide to interact and break the bacterial membrane. Our studies on TB_KKG6A indicate that efficient interactions with LPS can be achieved when the peptide is not perfectly amphipathic, since this feature seems to help the toroidal pore formation process. (C) 2013 Elsevier B.V. All rights reserved.
Design, structural and functional characterization of a Temporin-1b analog active against Gram-negative bacteria