Peptide inhibitors against herpes simplex virus infections(1074 views) Galdiero S, Falanga A, Tarallo R, Russo L, Galdiero E, Cantisani M, Morelli G, Galdiero M
Department of Pharmacy, University of Naples 'Federico II', Via Mezzocannone 16, 80134 Napoli, Italy
Centro Interuniversitario di Ricerca sui Peptidi Bioattivi, University of Naples 'Federico II', Via Mezzocannone 16, Napoli, 80134, Italy
Istituto di Biostrutture e Bioimmagini-CNR, Via Mezzocannone 16, Napoli, 80134, Italy
Department of Biostructural and Fisiological Science, University of Naples 'Federico II', Via Cinzia, Monte Sant'Angelo, Napoli, Italy
Department of Experimental Medicine, II University of Naples, Via De Crecchio 7, Napoli, 80138, Italy
References: Pellet, P., Roizman, B., (2007) The Family Herpesviridae: A Brief Introduction, pp. 2479-2499. , Knipe PHDM, Griffin DE, Lamb RA, Martin MA, Roizman B, Straus SE (eds). Lippincott-Williams and Wilkins: New York, N.
Roizman, B., Knipe, D.M., Whitley, R.J., (2007) The Replication of Herpes Simplex Viruses, pp. 2501-2601. , Knipe PHDM, Griffin DE, Lamb RA, Martin MA, Roizman B, Straus SE (eds). Lippincott-Williams and Wilkins: New York, N.Y
Milne, R.S., Nicola, A.V., Whitbeck, J.C., Eisenberg, R.J., Cohen, G.H., Glycoprotein D receptor-dependent, low-pH-independent endocytic entry of herpes simplex virus type 1 (2005) J. Virol., 79, pp. 6655-6663
Nicola, A.V., McEvoy, A.M., Straus, S.E., Roles for endocytosis and low pH in herpes simplex virus entry into HeLa and Chinese hamster ovary cells (2003) J. Virol., 77, pp. 5324-5332
Montgomery, R.I., Warner, M.S., Lum, B.J., Spear, P.G., Herpes simplex virus-1 entry into cells mediated by a novel member of the TNF/NGF receptor family (1996) Cell, 87, pp. 427-436
Geraghty, R.J., Krummenacher, C., Cohen, G.H., Eisenberg, R.J., Spear, P.G., Entry of alphaherpesviruses mediated by poliovirus receptor-related protein 1 and poliovirus receptor (1998) Science, 280, pp. 1618-1620
Shukla, D., Liu, J., Blaiklock, P., Shworak, N.W., Bai, X., Esko, J.D., Cohen, G.H., Spear, P.G., A novel role for 3-O-sulfated heparan sulfate in herpes simplex virus 1 entry (1999) Cell, 99, pp. 13-22
Cocchi, F., Fusco, D., Menotti, L., Gianni, T., Eisenberg, R.J., Cohen, G.H., Campadelli-Fiume, G., The soluble ectodomain of herpes simplex virus gD contains a membrane-proximal pro-fusion domain and suffices to mediate virus entry (2004) Proc. Natl. Acad. Sci. U.S.A., 101, pp. 7445-7450
Kwon, H., Bai, Q., Baek, H.J., Felmet, K., Burton, E.A., Goins, W.F., Cohen, J.B., Glorioso, J.C., Soluble V domain of Nectin-1/HveC enables entry of herpes simplex virus type 1 (HSV-1) into HSV-resistant cells by binding to viral glycoprotein D (2006) J. Virol., 80, pp. 138-148
Tsvitov, M., Frampton Jr., A.R., Shah, W.A., Wendell, S.K., Ozuer, A., Kapacee, Z., Goins, W.F., Glorioso, J.C., Characterization of soluble glycoprotein D-mediated herpes simplex virus type 1 infection (2007) Virology, 360, pp. 477-491
Lazear, E., Carfi, A., Whitbeck, J.C., Cairns, T.M., Krummenacher, C., Cohen, G.H., Eisenberg, R.J., Engineered disulfide bonds in herpes simplex virus type 1 gD separate receptor binding from fusion initiation and viral entry (2008) J. Virol., 82, pp. 700-709
Satoh, T., Arii, J., Suenaga, T., Wang, J., Kogure, A., Uehori, J., Arase, N., Arase, H., PILRalpha is a herpes simplex virus-1 entry coreceptor that associates with glycoprotein B (2008) Cell, 132, pp. 935-944
Galdiero, M., Whiteley, A., Bruun, B., Bell, S., Minson, T., Browne, H., Site-directed and linker insertion mutagenesis of herpes simplex virus type 1 glycoprotein H (1997) J. Virol., 71, pp. 2163-2170
Parry, C., Bell, S., Minson, T., Browne, H., Herpes simplex virus type 1 glycoprotein H binds to alphavbeta3 integrins (2005) J. Gen. Virol., 86, pp. 7-10
Gianni, T., Gatta, V., Campadelli-Fiume, G., {Alpha}V{beta}3-integrin routes herpes simplex virus to an entry pathway dependent on cholesterol-rich lipid rafts and dynamin2 (2010) Proc. Natl. Acad. Sci. U.S.A., 107, pp. 22260-22265
Connolly, S.A., Jackson, J.O., Jardetzky, T.S., Longnecker, R., Fusing structure and function: a structural view of the herpesvirus entry machinery (2011) Nat. Rev. Microbiol., 9, pp. 369-381
Turner, A., Bruun, B., Minson, T., Browne, H., Glycoproteins gB, gD, and gHgL of herpes simplex virus type 1 are necessary and sufficient to mediate membrane fusion in a Cos cell transfection system (1998) J. Virol., 72, pp. 873-875
Avitabile, E., Forghieri, C., Campadelli-Fiume, G., Complexes between herpes simplex virus glycoproteins gD, gB, and gH detected in cells by complementation of split enhanced green fluorescent protein (2007) J. Virol., 81, pp. 11532-11537
Atanasiu, D., Whitbeck, J.C., Cairns, T.M., Reilly, B., Cohen, G.H., Eisenberg, R.J., Bimolecular complementation reveals that glycoproteins gB and gH/gL of herpes simplex virus interact with each other during cell fusion (2007) Proc. Natl. Acad. Sci. U.S.A., 104, pp. 18718-18723
Matsuura, H., Kirschner, A.N., Longnecker, R., Jardetzky, T.S., Crystal structure of the Epstein-Barr virus (EBV) glycoprotein H/glycoprotein L (gH/gL) complex (2010) Proc. Natl. Acad. Sci. U.S.A., 107, pp. 22641-22646
Backovic, M., DuBois, R.M., Cockburn, J.J., Sharff, A.J., Vaney, M.C., Granzow, H., Klupp, B.G., Rey, F.A., Structure of a core fragment of glycoprotein H from pseudorabies virus in complex with antibody (2010) Proc. Natl. Acad. Sci. U.S.A., 107, pp. 22635-22640
Chowdary, T.K., Cairns, T.M., Atanasiu, D., Cohen, G.H., Eisenberg, R.J., Heldwein, E.E., Crystal structure of the conserved herpesvirus fusion regulator complex gH-gL (2010) Nat. Struct. Mol. Biol., 17, pp. 882-888
Jackson, J.O., Longnecker, R., Reevaluating herpes simplex virus hemifusion (2010) J. Virol., 84, pp. 11814-11821
Suenaga, T., Satoh, T., Somboonthum, P., Kawaguchi, Y., Mori, Y., Arase, H., Myelin-associated glycoprotein mediates membrane fusion and entry of neurotropic herpesviruses (2010) Proc. Natl. Acad. Sci. U.S.A., 107, pp. 866-871
Galdiero, S., Vitiello, M., D'Isanto, M., Falanga, A., Collins, C., Raieta, K., Pedone, C., Galdiero, M., Analysis of synthetic peptides from heptad-repeat domains of herpes simplex virus type 1 glycoproteins H and B (2006) J. Gen. Virol., 87, pp. 1085-1097
Galdiero, S., Falanga, A., Vitiello, M., D'Isanto, M., Cantisani, M., Kampanaraki, A., Benedetti, E., Galdiero, M., Peptides containing membrane-interacting motifs inhibit herpes simplex virus type 1 infectivity (2008) Peptides, 29, pp. 1461-1471
Gianni, T., Fato, R., Bergamini, C., Lenaz, G., Campadelli-Fiume, G., Hydrophobic alpha-helices 1 and 2 of herpes simplex virus gH interact with lipids, and their mimetic peptides enhance virus infection and fusion (2006) J. Virol., 80, pp. 8190-8198
Gianni, T., Martelli, P.L., Casadio, R., Campadelli-Fiume G The ectodomain of herpes simplex virus glycoprotein H contains a membrane alpha-helix with attributes of an internal fusion peptide, positionally conserved in the herpesviridae family (2005) J. Virol., 79, pp. 2931-2940
Gianni, T., Menotti, L., Campadelli-Fiume, G., A heptad repeat in herpes simplex virus 1 gH, located downstream of the alpha-helix with attributes of a fusion peptide, is critical for virus entry and fusion (2005) J. Virol., 79, pp. 7042-7049
Gianni, T., Piccoli, A., Bertucci, C., Campadelli-Fiume, G., Heptad repeat 2 in herpes simplex virus 1 gH interacts with heptad repeat 1 and is critical for virus entry and fusion (2006) J. Virol., 80, pp. 2216-2224
Farnsworth, A., Wisner, T.W., Webb, M., Roller, R., Cohen, G., Eisenberg, R., Johnson, D.C., Herpes simplex virus glycoproteins gB and gH function in fusion between the virion envelope and the outer nuclear membrane (2007) Proc. Natl. Acad. Sci. U.S.A., 104, pp. 10187-10192
Heldwein, E.E., Lou, H., Bender, F.C., Cohen, G.H., Eisenberg, R.J., Harrison, S.C., Crystal structure of glycoprotein B from herpes simplex virus 1 (2006) Science, 313, pp. 217-220
Backovic, M., Longnecker, R., Jardetzky, T.S., Structure of a trimeric variant of the Epstein-Barr virus glycoprotein B (2009) Proc. Natl. Acad. Sci. U.S.A., 106, pp. 2880-2885
Roche, S., Bressanelli, S., Rey, F.A., Gaudin, Y., Crystal structure of the low-pH form of the vesicular stomatitis virus glycoprotein G (2006) Science, 313, pp. 187-191
Kadlec, J., Loureiro, S., Abrescia, N.G., Stuart, D.I., Jones, I.M., The postfusion structure of baculovirus gp64 supports a unified view of viral fusion machines (2008) Nat. Struct. Mol. Biol., 15, pp. 1024-1030
Falanga, A., Tarallo, R., Vitiello, G., Vitiello, M., Perillo, E., Cantisani, M., D'Errico, G., Galdiero, S., Biophysical characterization and membrane interaction of the two fusion loops of glycoprotein B from herpes simplex type I virus (2012) PLoS One, 7, pp. e32186
Kimberlin, D.W., Whitley, R.J., (2007) Antiviral Therapy of HSV-1 and -2, , Arvin A, Campadelli-Fiume G, Mocarski E, Moore PS, Roizman B, Whitley R, Yamanishi K (eds). Cambridge University Press 2007: Cambridge
Englund, J.A., Zimmerman, M.E., Swierkosz, E.M., Goodman, J.L., Scholl, D.R., Balfour Jr., H.H., Herpes simplex virus resistant to acyclovir. A study in a tertiary care center (1990) Ann. Intern. Med., 112, pp. 416-422
Field, A.K., Biron, K.K., 'The end of innocence' revisited: resistance of herpesviruses to antiviral drugs (1994) Clin. Microbiol. Rev., 7, pp. 1-13
Morfin, F., Thouvenot, D., Herpes simplex virus resistance to antiviral drugs (2003) J. Clin. Virol., 26, pp. 29-37
Wagstaff, A.J., Faulds, D., Goa, K.L., Aciclovir. A reappraisal of its antiviral activity, pharmacokinetic properties and therapeutic efficacy (1994) Drugs, 47, pp. 153-205
Lalezari, J.P., Drew, W.L., Glutzer, E., James, C., Miner, D., Flaherty, J., Fisher, P.E., Martin, J.C., (S)-1-[3-hydroxy-2-(phosphonylmethoxy)propyl]cytosine (cidofovir): results of a phase I/II study of a novel antiviral nucleotide analogue (1995) J. Infect. Dis., 171, pp. 788-796
Safrin, S., Cherrington, J., Jaffe, H.S., Cidofovir. Review of current and potential clinical uses (1999) Adv. Exp. Med. Biol., 458, pp. 111-120
Witvrouw, M., De Clercq, E., Sulfated polysaccharides extracted from sea algae as potential antiviral drugs (1997) Gen. Pharmacol., 29, pp. 497-511
Liu, Y.Q., Liu, Z.L., Tian, X., Yang, L., Anti-HSV activity of camptothecin analogues (2010) Nat. Prod. Res., 24, pp. 509-514
Sagar, S., Kaur, M., Minneman, K.P., Antiviral lead compounds from marine sponges (2010) Mar. Drugs, 8, pp. 2619-2638
Khan, M.T., Ather, A., Thompson, K.D., Gambari, R., Extracts and molecules from medicinal plants against herpes simplex viruses (2005) Antiviral Res., 67, pp. 107-119
Dalla Bona, A., Formaggio, F., Peggion, C., Kaptein, B., Broxterman, Q.B., Galdiero, S., Galdiero, M., Toniolo, C., Synthesis, conformation, and bioactivity of novel analogues of the antiviral lipopeptide halovir A (2006) J. Pept. Sci., 12, pp. 748-757
Jenssen, H., Therapeutic approaches using host defence peptides to tackle herpes virus infections (2009) Viruses, 1, pp. 939-964
Xie, D., Yao, C., Wang, L., Min, W., Xu, J., Xiao, J., Huang, M., Jiang, H., An albumin-conjugated peptide exhibits potent anti-HIV activity and long in vivo half-life (2010) Antimicrob. Agents Chemother., 54, pp. 191-196
Edwards, C.M., Cohen, M.A., Bloom, S.R., Peptides as drugs (1999) QJM, 92, pp. 1-4
Groner, B., (2009) Peptide as Drugs: Discovery and Development, pp. 1-8. , Groner B (ed.). Wiley-VCH Verlag GmbH & Co. KGaA Weinheim: Germany
Matsuzaki, K., Control of cell selectivity of antimicrobial peptides (2009) Biochim. Biophys. Acta, 1788, pp. 1687-1692
Jenssen, H., Andersen, J.H., Mantzilas, D., Gutteberg, T.J., A wide range of medium-sized, highly cationic, alpha-helical peptides show antiviral activity against herpes simplex virus (2004) Antiviral Res., 64, pp. 119-126
Fjell, C.D., Hancock, R.E., Cherkasov, A., AMPer: a database and an automated discovery tool for antimicrobial peptides (2007) Bioinformatics, 23, pp. 1148-1155
Zasloff, M., Antimicrobial peptides of multicellular organisms (2002) Nature, 415, pp. 389-395
Belaid, A., Aouni, M., Khelifa, R., Trabelsi, A., Jemmali, M., Hani, K., In vitro antiviral activity of dermaseptins against herpes simplex virus type 1 (2002) J. Med. Virol., 66, pp. 229-234
Robinson Jr., W.E., McDougall, B., Tran, D., Selsted, M.E., Anti-HIV-1 activity of indolicidin, an antimicrobial peptide from neutrophils (1998) J. Leukoc. Biol., 63, pp. 94-100
Yasin, B., Wang, W., Pang, M., Cheshenko, N., Hong, T., Waring, A.J., Herold, B.C., Lehrer, R.I., Theta defensins protect cells from infection by herpes simplex virus by inhibiting viral adhesion and entry (2004) J Virol, 78, pp. 5147-5156
Daher, K.A., Selsted, M.E., Lehrer, R.I., Direct inactivation of viruses by human granulocyte defensins (1986) J. Virol., 60, pp. 1068-1074
Nakamura, T., Furunaka, H., Miyata, T., Tokunaga, F., Muta, T., Iwanaga, S., Niwa, M., Shimonishi, Y., Tachyplesin, a class of antimicrobial peptide from the hemocytes of the horseshoe crab (Tachypleus tridentatus). Isolation and chemical structure (1988) J. Biol. Chem., 263, pp. 16709-16713
Scudiero, O., Galdiero, S., Cantisani, M., Di Noto, R., Vitiello, M., Galdiero, M., Naclerio, G., Salvatore, F., Novel synthetic, salt-resistant analogs of human beta-defensins 1 and 3 endowed with enhanced antimicrobial activity (2010) Antimicrob. Agents Chemother., 54, pp. 2312-2322
Yasin, B., Pang, M., Turner, J.S., Cho, Y., Dinh, N.N., Waring, A.J., Lehrer, R.I., Wagar, E.A., Evaluation of the inactivation of infectious herpes simplex virus by host-defense peptides (2000) Eur. J. Clin. Microbiol. Infect. Dis., 19, pp. 187-194
Carriel-Gomes, M.C., Kratz, J.M., Barracco, M.A., Bachere, E., Barardi, C.R., Simoes, C.M., In vitro antiviral activity of antimicrobial peptides against herpes simplex virus 1, adenovirus, and rotavirus (2007) Mem. Inst. Oswaldo Cruz, 102, pp. 469-472
Yang, Y., Poncet, J., Garnier, J., Zatylny, C., Bachere, E., Aumelas, A., Solution structure of the recombinant penaeidin-3, a shrimp antimicrobial peptide (2003) J. Biol. Chem., 278, pp. 36859-36867
Hancock, R.E., Diamond, G., The role of cationic antimicrobial peptides in innate host defences (2000) Trends Microbiol., 8, pp. 402-410
Wachinger, M., Kleinschmidt, A., Winder, D., von Pechmann, N., Ludvigsen, A., Neumann, M., Holle, R., Brack-Werner, R., Antimicrobial peptides melittin and cecropin inhibit replication of human immunodeficiency virus 1 by suppressing viral gene expression (1998) J. Gen. Virol., 79 (PART 4), pp. 731-740
Wachinger, M., Saermark, T., Erfle, V., Influence of amphipathic peptides on the HIV-1 production in persistently infected T lymphoma cells (1992) FEBS Lett., 309, pp. 235-241
Baghian, A., Kousoulas, K.G., Role of the Na+,K+pump in herpes simplex type 1-induced cell fusion: melittin causes specific reversion of syncytial mutants with the syn1 mutation to Syn+(wild-type) phenotype (1993) Virology, 196, pp. 548-556
Nicolas, P., Mor, A., Peptides as weapons against microorganisms in the chemical defense system of vertebrates (1995) Annu. Rev. Microbiol., 49, pp. 277-304
Nissen-Meyer, J., Nes, I.F., Ribosomally synthesized antimicrobial peptides: their function, structure, biogenesis, and mechanism of action (1997) Arch. Microbiol., 167, pp. 67-77
Egal, M., Conrad, M., MacDonald, D.L., Maloy, W.L., Motley, M., Genco, C.A., Antiviral effects of synthetic membrane-active peptides on herpes simplex virus, type 1 (1999) Int. J. Antimicrob. Agents, 13, pp. 57-60
Mor, A., Nguyen, V.H., Delfour, A., Migliore-Samour, D., Nicolas, P., Isolation, amino acid sequence, and synthesis of dermaseptin, a novel antimicrobial peptide of amphibian skin (1991) Biochemistry, 30, pp. 8824-8830
Zanetti, M., Cathelicidins, multifunctional peptides of the innate immunity (2004) J. Leukoc. Biol., 75, pp. 39-48
Porcelli, F., Verardi, R., Shi, L., Henzler-Wildman, K.A., Ramamoorthy, A., Veglia, G., NMR structure of the cathelicidin-derived human antimicrobial peptide LL-37 in dodecylphosphocholine micelles (2008) Biochemistry, 47, pp. 5565-5572
Skerlavaj, B., Gennaro, R., Bagella, L., Merluzzi, L., Risso, A., Zanetti, M., Biological characterization of two novel cathelicidin-derived peptides and identification of structural requirements for their antimicrobial and cell lytic activities (1996) J. Biol. Chem., 271, pp. 28375-28381
Benincasa, M., Skerlavaj, B., Gennaro, R., Pellegrini, A., Zanetti, M., In vitro and in vivo antimicrobial activity of two alpha-helical cathelicidin peptides and of their synthetic analogs (2003) Peptides, 24, pp. 1723-1731
Morikawa, N., Hagiwara, K., Nakajima, T., Brevinin-1 and -2, unique antimicrobial peptides from the skin of the frog, Rana brevipoda porsa (1992) Biochem. Biophys. Res. Commun., 189, pp. 184-190
Andersen, J.H., Osbakk, S.A., Vorland, L.H., Traavik, T., Gutteberg, T.J., Lactoferrin and cyclic lactoferricin inhibit the entry of human cytomegalovirus into human fibroblasts (2001) Antiviral Res., 51, pp. 141-149
Tomita, M., Bellamy, W., Takase, M., Yamauchi, K., Wakabayashi, H., Kawase, K., Potent antibacterial peptides generated by pepsin digestion of bovine lactoferrin (1991) J. Dairy Sci., 74, pp. 4137-4142
van der Strate, B.W., Beljaars, L., Molema, G., Harmsen, M.C., Meijer, D.K., Antiviral activities of lactoferrin (2001) Antiviral Res., 52, pp. 225-239
Shestakov, A., Jenssen, H., Nordstrom, I., Eriksson, K., Lactoferricin but not lactoferrin inhibit herpes simplex virus type 2 infection in mice (2012) Antiviral Res., 93, pp. 340-345
Baker, E.N., Anderson, B.F., Baker, H.M., Day, C.L., Haridas, M., Norris, G.E., Rumball, S.V., Thomas, D.H., Three-dimensional structure of lactoferrin in various functional states (1994) Adv. Exp. Med. Biol., 357, pp. 1-12
Haridas, M., Anderson, B.F., Baker, H.M., Norris, G.E., Baker, E.N., X-ray structural analysis of bovine lactoferrin at 2.5 A resolution (1994) Adv. Exp. Med. Biol., 357, pp. 235-238
Hwang, P.M., Zhou, N., Shan, X., Arrowsmith, C.H., Vogel, H.J., Three-dimensional solution structure of lactoferricin B, an antimicrobial peptide derived from bovine lactoferrin (1998) Biochemistry, 37, pp. 4288-4298
Kuczer, M., Dziubasik, K., Midak-Siewirska, A., Zahorska, R., Luczak, M., Konopinska, D., Studies of insect peptides alloferon, Any-GS and their analogues. Synthesis and antiherpes activity (2010) J. Pept. Sci., 16, pp. 186-189
Eckert, D.M., Kim, P.S., Mechanisms of viral membrane fusion and its inhibition (2001) Annu. Rev. Biochem., 70, pp. 777-810
Earp, L.J., Delos, S.E., Park, H.E., White, J.M., The many mechanisms of viral membrane fusion proteins (2005) Curr. Top. Microbiol. Immunol., 285, pp. 25-66
Dimitrov, D.S., Virus entry: molecular mechanisms and biomedical applications (2004) Nat. Rev. Microbiol., 2, pp. 109-122
Chang, A., Dutch, R.E., Paramyxovirus fusion and entry: multiple paths to a common end (2012) Viruses, 4, pp. 613-636
Garg, H., Viard, M., Jacobs, A., Blumenthal, R., Targeting HIV-1 gp41-induced fusion and pathogenesis for anti-viral therapy (2011) Curr. Top. Med. Chem., 11, pp. 2947-2958
Galdiero, S., Russo, L., Falanga, A., Cantisani, M., Vitiello, M., Fattorusso, R., Malgieri, G., Isernia, C., Structure and orientation of the gH625-644 membrane interacting region of herpes simplex virus type 1 in a membrane mimetic system (2012) Biochemistry, 51, pp. 3121-3128
Lopper, M., Compton, T., Coiled-coil domains in glycoproteins B and H are involved in human cytomegalovirus membrane fusion (2004) J. Virol., 78, pp. 8333-8341
Okazaki, K., Kida, H., A synthetic peptide from a heptad repeat region of herpesvirus glycoprotein B inhibits virus replication (2004) J. Gen. Virol., 85, pp. 2131-2137
Matthews, T., Salgo, M., Greenberg, M., Chung, J., DeMasi, R., Bolognesi, D., Enfuvirtide: the first therapy to inhibit the entry of HIV-1 into host CD4 lymphocytes (2004) Nat. Rev. Drug Discov., 3, pp. 215-225
Wild, C., Oas, T., McDanal, C., Bolognesi, D., Matthews, T., A synthetic peptide inhibitor of human immunodeficiency virus replication: correlation between solution structure and viral inhibition (1992) Proc. Natl. Acad. Sci. U.S.A., 89, pp. 10537-10541
Chan, D.C., Kim, P.S., HIV entry and its inhibition (1998) Cell, 93, pp. 681-684
Kliger, Y., Aharoni, A., Rapaport, D., Jones, P., Blumenthal, R., Shai, Y., Fusion peptides derived from the HIV type 1 glycoprotein 41 associate within phospholipid membranes and inhibit cell-cell fusion. Structure-function study (1997) J. Biol. Chem., 272, pp. 13496-13505
Richardson, C.D., Scheid, A., Choppin, P.W., Specific inhibition of paramyxovirus and myxovirus replication by oligopeptides with amino acid sequences similar to those at the N-termini of the F1 or HA2 viral polypeptides (1980) Virology, 105, pp. 205-222
Silburn, K.A., McPhee, D.A., Maerz, A.L., Poumbourios, P., Whittaker, R.G., Kirkpatrick, A., Reilly, W.G., Curtain, C.C., Efficacy of fusion peptide homologs in blocking cell lysis and HIV-induced fusion (1998) AIDS Res. Hum. Retroviruses, 14, pp. 385-392
Jesus, T., Rogelio, L., Abraham, C., Uriel, L., J-Daniel, G., Alfonso, M.T., Lilia, B.B., Prediction of antiviral peptides derived from viral fusion proteins potentially active against herpes simplex and influenza A viruses (2012) Bioinformation, 8, pp. 870-874
Xu, Y., Rahman, N.A., Othman, R.B., Hu, P., Huang, M., Computational identification of self-inhibitory peptides from envelope proteins (2012) Proteins, 80, pp. 2154-2168
Saez-Cirion, A., Arrondo, J.L., Gomara, M.J., Lorizate, M., Iloro, I., Melikyan, G., Nieva, J.L., Structural and functional roles of HIV-1 gp41 pretransmembrane sequence segmentation (2003) Biophys. J., 85, pp. 3769-3780
Wimley, W.C., White, S.H., Experimentally determined hydrophobicity scale for proteins at membrane interfaces (1996) Nat. Struct. Biol., 3, pp. 842-848
Akkarawongsa, R., Pocaro, N.E., Case, G., Kolb, A.W., Brandt, C.R., Multiple peptides homologous to herpes simplex virus type 1 glycoprotein B inhibit viral infection (2009) Antimicrob. Agents Chemother., 53, pp. 987-996
Cloninger, M.J., Biological applications of dendrimers (2002) Curr. Opin. Chem. Biol., 6, pp. 742-748
Sebestik, J., Niederhafner, P., Jezek, J., Peptide and glycopeptide dendrimers and analogous dendrimeric structures and their biomedical applications (2011) Amino Acids, 40, pp. 301-370
Carberry, T.P., Tarallo, R., Falanga, A., Finamore, E., Galdiero, M., Weck, M., Galdiero, S., Dendrimer functionalization with a membrane-interacting domain of herpes simplex virus type 1: towards intracellular delivery (2012) Chemistry, 18, pp. 13678-13685
Lee, C.C., MacKay, J.A., Fréchet, J.M.J., Szoka, F.C., Designing dendrimers for biological applications (2005) Nat. Biotech., 23, pp. 1517-1526
Tarallo, R., Accardo, A., Falanga, A., Guarnieri, D., Vitiello, G., Netti, P., D'Errico, G., Galdiero, S., Clickable functionalization of liposomes with the gH625 peptide from herpes simplex virus type I for intracellular drug delivery (2011) Chemistry, 17, pp. 12659-12668
Heegaard, P.M., Boas, U., Dendrimer based anti-infective and anti-inflammatory drugs (2006) Recent Pat. Antiinfect. Drug Discov., 1, pp. 331-351
Rosa Borges, A., Schengrund, C.L., Dendrimers and antivirals: a review (2005) Curr. Drug Targets Infect. Disord., 5, pp. 247-254
Bourne, N., Stanberry, L.R., Kern, E.R., Holan, G., Matthews, B., Bernstein, D.I., Dendrimers, a new class of candidate topical microbicides with activity against herpes simplex virus infection (2000) Antimicrob. Agents Chemother., 44, pp. 2471-2474
Gong, E., Matthews, B., McCarthy, T.D., Chu, J., Holan, G., Raff, J., Sacks, S., Evaluation of dendrimer SPL7013, a lead microbicide candidate against herpes simplex viruses (2005) Antivir. Res., 68, pp. 139-146
McCarthy, T.D., Karellas, P., Henderson, S.A., Giannis, M., O'Keefe, D.F., Heery, G., Paull, J.R., Holan, G., Dendrimers as drugs: discovery and preclinical and clinical development of dendrimer-based microbicides for HIV and STI prevention (2005) Mol Pharm, 2, pp. 312-318
Rupp, R., Rosenthal, S.L., Stanberry, L.R., VivaGel (SPL7013 Gel): a candidate dendrimer - microbicide for the prevention of HIV and HSV infection (2007) Int. J. Nanomedicine, 2, pp. 561-566
Tarallo, R., Carberry, T., Falanga, A., Vitiello, M., Galdiero, S., Galdiero, M., Weck, M., Dendrimers functionalized with membrane-interacting peptides for viral inhibition (2013) Int. J. Nanomedicine, 8
Milne, R. S., Nicola, A. V., Whitbeck, J. C., Eisenberg, R. J., Cohen, G. H., Glycoprotein D receptor-dependent, low-pH-independent endocytic entry of herpes simplex virus type 1 (2005) J. Virol., 79, pp. 6655-6663
Nicola, A. V., McEvoy, A. M., Straus, S. E., Roles for endocytosis and low pH in herpes simplex virus entry into HeLa and Chinese hamster ovary cells (2003) J. Virol., 77, pp. 5324-5332
Montgomery, R. I., Warner, M. S., Lum, B. J., Spear, P. G., Herpes simplex virus-1 entry into cells mediated by a novel member of the TNF/NGF receptor family (1996) Cell, 87, pp. 427-436
Geraghty, R. J., Krummenacher, C., Cohen, G. H., Eisenberg, R. J., Spear, P. G., Entry of alphaherpesviruses mediated by poliovirus receptor-related protein 1 and poliovirus receptor (1998) Science, 280, pp. 1618-1620
Connolly, S. A., Jackson, J. O., Jardetzky, T. S., Longnecker, R., Fusing structure and function: a structural view of the herpesvirus entry machinery (2011) Nat. Rev. Microbiol., 9, pp. 369-381
Chowdary, T. K., Cairns, T. M., Atanasiu, D., Cohen, G. H., Eisenberg, R. J., Heldwein, E. E., Crystal structure of the conserved herpesvirus fusion regulator complex gH-gL (2010) Nat. Struct. Mol. Biol., 17, pp. 882-888
Jackson, J. O., Longnecker, R., Reevaluating herpes simplex virus hemifusion (2010) J. Virol., 84, pp. 11814-11821
Heldwein, E. E., Lou, H., Bender, F. C., Cohen, G. H., Eisenberg, R. J., Harrison, S. C., Crystal structure of glycoprotein B from herpes simplex virus 1 (2006) Science, 313, pp. 217-220
Kimberlin, D. W., Whitley, R. J., (2007) Antiviral Therapy of HSV-1 and -2, , Arvin A, Campadelli-Fiume G, Mocarski E, Moore PS, Roizman B, Whitley R, Yamanishi K (eds). Cambridge University Press 2007: Cambridge
Englund, J. A., Zimmerman, M. E., Swierkosz, E. M., Goodman, J. L., Scholl, D. R., Balfour Jr., H. H., Herpes simplex virus resistant to acyclovir. A study in a tertiary care center (1990) Ann. Intern. Med., 112, pp. 416-422
Field, A. K., Biron, K. K., 'The end of innocence' revisited: resistance of herpesviruses to antiviral drugs (1994) Clin. Microbiol. Rev., 7, pp. 1-13
Wagstaff, A. J., Faulds, D., Goa, K. L., Aciclovir. A reappraisal of its antiviral activity, pharmacokinetic properties and therapeutic efficacy (1994) Drugs, 47, pp. 153-205
Lalezari, J. P., Drew, W. L., Glutzer, E., James, C., Miner, D., Flaherty, J., Fisher, P. E., Martin, J. C., (S) -1- [3-hydroxy-2- (phosphonylmethoxy) propyl] cytosine (cidofovir): results of a phase I/II study of a novel antiviral nucleotide analogue (1995) J. Infect. Dis., 171, pp. 788-796
Liu, Y. Q., Liu, Z. L., Tian, X., Yang, L., Anti-HSV activity of camptothecin analogues (2010) Nat. Prod. Res., 24, pp. 509-514
Khan, M. T., Ather, A., Thompson, K. D., Gambari, R., Extracts and molecules from medicinal plants against herpes simplex viruses (2005) Antiviral Res., 67, pp. 107-119
Edwards, C. M., Cohen, M. A., Bloom, S. R., Peptides as drugs (1999) QJM, 92, pp. 1-4
Hancock, R. E., Chapple, D. S., Peptide antibiotics (1999) Antimicrob. Agents Chemother., 43, pp. 1317-1323
Fjell, C. D., Hancock, R. E., Cherkasov, A., AMPer: a database and an automated discovery tool for antimicrobial peptides (2007) Bioinformatics, 23, pp. 1148-1155
Robinson Jr., W. E., McDougall, B., Tran, D., Selsted, M. E., Anti-HIV-1 activity of indolicidin, an antimicrobial peptide from neutrophils (1998) J. Leukoc. Biol., 63, pp. 94-100
Daher, K. A., Selsted, M. E., Lehrer, R. I., Direct inactivation of viruses by human granulocyte defensins (1986) J. Virol., 60, pp. 1068-1074
Carriel-Gomes, M. C., Kratz, J. M., Barracco, M. A., Bachere, E., Barardi, C. R., Simoes, C. M., In vitro antiviral activity of antimicrobial peptides against herpes simplex virus 1, adenovirus, and rotavirus (2007) Mem. Inst. Oswaldo Cruz, 102, pp. 469-472
Hancock, R. E., Diamond, G., The role of cationic antimicrobial peptides in innate host defences (2000) Trends Microbiol., 8, pp. 402-410
Andersen, J. H., Osbakk, S. A., Vorland, L. H., Traavik, T., Gutteberg, T. J., Lactoferrin and cyclic lactoferricin inhibit the entry of human cytomegalovirus into human fibroblasts (2001) Antiviral Res., 51, pp. 141-149
van der Strate, B. W., Beljaars, L., Molema, G., Harmsen, M. C., Meijer, D. K., Antiviral activities of lactoferrin (2001) Antiviral Res., 52, pp. 225-239
Baker, E. N., Anderson, B. F., Baker, H. M., Day, C. L., Haridas, M., Norris, G. E., Rumball, S. V., Thomas, D. H., Three-dimensional structure of lactoferrin in various functional states (1994) Adv. Exp. Med. Biol., 357, pp. 1-12
Hwang, P. M., Zhou, N., Shan, X., Arrowsmith, C. H., Vogel, H. J., Three-dimensional solution structure of lactoferricin B, an antimicrobial peptide derived from bovine lactoferrin (1998) Biochemistry, 37, pp. 4288-4298
Eckert, D. M., Kim, P. S., Mechanisms of viral membrane fusion and its inhibition (2001) Annu. Rev. Biochem., 70, pp. 777-810
Earp, L. J., Delos, S. E., Park, H. E., White, J. M., The many mechanisms of viral membrane fusion proteins (2005) Curr. Top. Microbiol. Immunol., 285, pp. 25-66
Dimitrov, D. S., Virus entry: molecular mechanisms and biomedical applications (2004) Nat. Rev. Microbiol., 2, pp. 109-122
Dimitrov, D. S., Therapeutic proteins (2012) Methods Mol. Biol., 899, pp. 1-26
Chan, D. C., Kim, P. S., HIV entry and its inhibition (1998) Cell, 93, pp. 681-684
Richardson, C. D., Scheid, A., Choppin, P. W., Specific inhibition of paramyxovirus and myxovirus replication by oligopeptides with amino acid sequences similar to those at the N-termini of the F1 or HA2 viral polypeptides (1980) Virology, 105, pp. 205-222
Silburn, K. A., McPhee, D. A., Maerz, A. L., Poumbourios, P., Whittaker, R. G., Kirkpatrick, A., Reilly, W. G., Curtain, C. C., Efficacy of fusion peptide homologs in blocking cell lysis and HIV-induced fusion (1998) AIDS Res. Hum. Retroviruses, 14, pp. 385-392
Xu, Y., Rahman, N. A., Othman, R. B., Hu, P., Huang, M., Computational identification of self-inhibitory peptides from envelope proteins (2012) Proteins, 80, pp. 2154-2168
Wimley, W. C., White, S. H., Experimentally determined hydrophobicity scale for proteins at membrane interfaces (1996) Nat. Struct. Biol., 3, pp. 842-848
Cloninger, M. J., Biological applications of dendrimers (2002) Curr. Opin. Chem. Biol., 6, pp. 742-748
Carberry, T. P., Tarallo, R., Falanga, A., Finamore, E., Galdiero, M., Weck, M., Galdiero, S., Dendrimer functionalization with a membrane-interacting domain of herpes simplex virus type 1: towards intracellular delivery (2012) Chemistry, 18, pp. 13678-13685
Lee, C. C., MacKay, J. A., Fr chet, J. M. J., Szoka, F. C., Designing dendrimers for biological applications (2005) Nat. Biotech., 23, pp. 1517-1526
Heegaard, P. M., Boas, U., Dendrimer based anti-infective and anti-inflammatory drugs (2006) Recent Pat. Antiinfect. Drug Discov., 1, pp. 331-351
McCarthy, T. D., Karellas, P., Henderson, S. A., Giannis, M., O'Keefe, D. F., Heery, G., Paull, J. R., Holan, G., Dendrimers as drugs: discovery and preclinical and clinical development of dendrimer-based microbicides for HIV and STI prevention (2005) Mol Pharm, 2, pp. 312-318
Peptide inhibitors against herpes simplex virus infections
Herpes simplex virus (HSV) is a significant human pathogen causing mucocutaneous lesions primarily in the oral or genital mucosa. Although acyclovir (ACV) and related nucleoside analogs provide successful treatment, HSV remains highly prevalent worldwide and is a major cofactor for the spread of human immunodeficiency virus. Encephalitis, meningitis, and blinding keratitis are among the most severe diseases caused by HSV. ACV resistance poses an important problem for immunocompromised patients and highlights the need for new safe and effective agents; therefore, the development of novel strategies to eradicate HSV is a global public health priority. Despite the continued global epidemic of HSV and extensive research, there have been few major breakthroughs in the treatment or prevention of the virus since the introduction of ACV in the 1980s. A therapeutic strategy at the moment not fully addressed is the use of small peptide molecules. These can be either modeled on viral proteins or derived from antimicrobial peptides. Any peptide that interrupts proteinprotein or viral proteinhost cell membrane interactions is potentially a novel antiviral drug and may be a useful tool for elucidating the mechanisms of viral entry. This review summarizes current knowledge and strategies in the development of synthetic and natural peptides to inhibit HSV infectivity. Copyright (c) 2013 European Peptide Society and John Wiley & Sons, Ltd.
Peptide inhibitors against herpes simplex virus infections