Novel N-Phenyl-Substituted Thiazolidinediones Protect Neural Cells against Glutamate- and tBid-Induced Toxicity(595 views) Oppermann S, Schrader FC, Elsasser K, Dolga AM, Kraus AL, Doti N, Wegscheid-Gerlach C, Schlitzer M, Culmsee C
Institute for Pharmacology and Clinical Pharmacy, Faculty of Pharmacy (S.O., K.E., A.M.D., C.C.) and Institute for Pharmaceutical Chemistry, Faculty of Pharmacy, Philipps University of Marburg, Marburg, Germany (F.C.S., A.L.K., C.W.-G., M.S.)
and Institute of Biostructures and Bioimaging, Naples, Italy (N.D.).
References: Becattini, B., Culmsee, C., Leone, M., Zhai, D., Zhang, X., Crowell, K.J., Rega, M.F., Plesnila, N., Structure-activity relationships by interligand NOE-based design and synthesis of antiapoptotic compounds targeting Bid (2006) Proc Natl Acad Sci USA, 103, pp. 12602-1260
Becattini, B., Sareth, S., Zhai, D., Crowell, K.J., Leone, M., Reed, J.C., Pellecchia, M., Targeting apoptosis via chemical design: Inhibition of bid-induced cell death by small organic molecules (2004) Chem Biol, 11, pp. 1107-1117
Bermpohl, D., You, Z., Korsmeyer, S.J., Moskowitz, M.A., Whalen, M.J., Traumatic brain injury in mice deficient in Bid: Effects on histopathology and functional outcome (2006) J Cereb Blood Flow Metab, 26, pp. 625-633
Brustovetsky, N., Dubinsky, J.M., Antonsson, B., Jemmerson, R., Two pathways for tBID-induced cytochrome c release from rat brain mitochondria: Bak-versus BAX-dependence (2003) J Neurochem, 84, pp. 196-207
Burdo, J., Dargusch, R., Schubert, D., Distribution of the cystine/glutamate antiporter system xc-in the brain, kidney, and duodenum (2006) J Histochem Cytochem, 54, pp. 549-557
Clerc, P., Polster, B.M., Investigation of mitochondrial dysfunction by sequential microplate-based respiration measurements from intact and permeabilized neurons (2012) PLoS ONE, 7, pp. e34465
Culmsee, C., Landshamer, S., Molecular insights into mechanisms of the cell death program: Role in the progression of neurodegenerative disorders (2006) Curr Alzheimer Res, 3, pp. 269-283
Culmsee, C., Plesnila, N., Targeting Bid to prevent programmed cell death in neurons (2006) Biochem Soc Trans, 34, pp. 1334-1340
Culmsee, C., Zhu, C., Landshamer, S., Becattini, B., Wagner, E., Pellecchia, M., Blomgren, K., Plesnila, N., Apoptosis-inducing factor triggered by poly(ADP-ribose) polymerase and Bid mediates neuronal cell death after oxygen-glucose deprivation and focal cerebral ischemia (2005) J Neurosci, 25, pp. 10262-10272
Diemert, S., Dolga, A.M., Tobaben, S., Grohm, J., Pfeifer, S., Oexler, E., Culmsee, C., Impedance measurement for real time detection of neuronal cell death (2012) J Neurosci Methods, 203, pp. 69-77
Friedlander, R.M., Apoptosis and caspases in neurodegenerative diseases (2003) N Engl J Med, 348, pp. 1365-1375
Geffken, D., Synthesis and properties of 3-alkoxy(hydroxy)thiazolidine-2,4-diones (1987) Zeitschrift für Naturforschung, B: Chemical Sciences, 42 B, pp. 1202-1206
Gohil, V.M., Sheth, S.A., Nilsson, R., Wojtovich, A.P., Lee, J.H., Perocchi, F., Chen, W., Brookes, P.S., Nutrient-sensitized screening for drugs that shift energy metabolism from mitochondrial respiration to glycolysis (2010) Nat Biotechnol, 28, pp. 249-255
Grohm, J., Kim, S.W., Mamrak, U., Tobaben, S., Cassidy-Stone, A., Nunnari, J., Plesnila, N., Culmsee, C., Inhibition of Drp1 provides neuroprotection in vitro and in vivo (2012) Cell Death Differ, 19, pp. 1446-1458
Grohm, J., Plesnila, N., Culmsee, C., Bid mediates fission, membrane permeabilization and peri-nuclear accumulation of mitochondria as a prerequisite for oxidative neuronal cell death (2010) Brain Behav Immun, 24, pp. 831-838
Gross, A., Yin, X.M., Wang, K., Wei, M.C., Jockel, J., Milliman, C., Erdjument-Bromage, H., Korsmeyer, S.J., Caspase cleaved BID targets mitochondria and is required for cytochrome c release, while BCL-XL prevents this release but not tumor necrosis factor-R1/Fas death (1999) J Biol Chem, 274, pp. 1156-1163
Guégan, C., Vila, M., Teismann, P., Chen, C., Onténiente, B., Li, M., Friedlander, R.M., Przedborski, S., Instrumental activation of bid by caspase-1 in a transgenic mouse model of ALS (2002) Mol Cell Neurosci, 20, pp. 553-562
Kazhdan, I., Long, L., Montellano, R., Cavazos, D.A., Marciniak, R.A., Targeted gene therapy for breast cancer with truncated Bid (2006) Cancer Gene Ther, 13, pp. 141-149
König, H.G., Rehm, M., Gudorf, D., Krajewski, S., Gross, A., Ward, M.W., Prehn, J.H., Full length Bid is sufficient to induce apoptosis of cultured rat hippocampal neurons (2007) BMC Cell Biol, 8, p. 7
Kroemer, G., Galluzzi, L., Brenner, C., Mitochondrial membrane permeabilization in cell death (2007) Physiol Rev, 87, pp. 99-163
Landshamer, S., Hoehn, M., Barth, N., Duvezin-Caubet, S., Schwake, G., Tobaben, S., Kazhdan, I., Vollmar, A., Bid-induced release of AIF from mitochondria causes immediate neuronal cell death (2008) Cell Death Differ, 15, pp. 1553-1563
Li, H., Zhu, H., Xu, C.J., Yuan, J., Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis (1998) Cell, 94, pp. 491-501
McDonnell, J.M., Fushman, D., Milliman, C.L., Korsmeyer, S.J., Cowburn, D., Solution structure of the proapoptotic molecule BID: A structural basis for apoptotic agonists and antagonists (1999) Cell, 96, pp. 625-634
Murphy, T.H., Miyamoto, M., Sastre, A., Schnaar, R.L., Coyle, J.T., Glutamate toxicity in a neuronal cell line involves inhibition of cystine transport leading to oxidative stress (1989) Neuron, 2, pp. 1547-1558
Plesnila, N., Zinkel, S., Le, D.A., Amin-Hanjani, S., Wu, Y., Qiu, J., Chiarugi, A., Korsmeyer, S.J., BID mediates neuronal cell death after oxygen/glucose deprivation and focal cerebral ischemia (2001) Proc Natl Acad Sci USA, 98, pp. 15318-15323
Rarey, M., Kramer, B., Lengauer, T., Klebe, G., A fast flexible docking method using an incremental construction algorithm (1996) J Mol Biol, 261, pp. 470-489
Stierand, K., Rarey, M., From modeling to medicinal chemistry: Automatic generation of two-dimensional complex diagrams (2007) ChemMedChem, 2, pp. 853-860
Waldmeier, P.C., Prospects for antiapoptotic drug therapy of neurodegenerative diseases (2003) Prog Neuropsychopharmacol Biol Psychiatry, 27, pp. 303-321
Ward, M.W., Rehm, M., Duessmann, H., Kacmar, S., Concannon, C.G., Prehn, J.H., Real time single cell analysis of Bid cleavage and Bid translocation during caspase-dependent and neuronal caspase-independent apoptosis (2006) J Biol Chem, 281, pp. 5837-5844
Yin, X.M., Luo, Y., Cao, G., Bai, L., Pei, W., Kuharsky, D.K., Chen, J., Bid-mediated mitochondrial pathway is critical to ischemic neuronal apoptosis and focal cerebral ischemia (2002) J Biol Chem, 277, pp. 42074-42081
Friedlander, R. M., Apoptosis and caspases in neurodegenerative diseases (2003) N Engl J Med, 348, pp. 1365-1375
Gohil, V. M., Sheth, S. A., Nilsson, R., Wojtovich, A. P., Lee, J. H., Perocchi, F., Chen, W., Brookes, P. S., Nutrient-sensitized screening for drugs that shift energy metabolism from mitochondrial respiration to glycolysis (2010) Nat Biotechnol, 28, pp. 249-255
Grohm, J., Kim, S. W., Mamrak, U., Tobaben, S., Cassidy-Stone, A., Nunnari, J., Plesnila, N., Culmsee, C., Inhibition of Drp1 provides neuroprotection in vitro and in vivo (2012) Cell Death Differ, 19, pp. 1446-1458
Gross, A., Yin, X. M., Wang, K., Wei, M. C., Jockel, J., Milliman, C., Erdjument-Bromage, H., Korsmeyer, S. J., Caspase cleaved BID targets mitochondria and is required for cytochrome c release, while BCL-XL prevents this release but not tumor necrosis factor-R1/Fas death (1999) J Biol Chem, 274, pp. 1156-1163
Gu gan, C., Vila, M., Teismann, P., Chen, C., Ont niente, B., Li, M., Friedlander, R. M., Przedborski, S., Instrumental activation of bid by caspase-1 in a transgenic mouse model of ALS (2002) Mol Cell Neurosci, 20, pp. 553-562
K nig, H. G., Rehm, M., Gudorf, D., Krajewski, S., Gross, A., Ward, M. W., Prehn, J. H., Full length Bid is sufficient to induce apoptosis of cultured rat hippocampal neurons (2007) BMC Cell Biol, 8, p. 7
McDonnell, J. M., Fushman, D., Milliman, C. L., Korsmeyer, S. J., Cowburn, D., Solution structure of the proapoptotic molecule BID: A structural basis for apoptotic agonists and antagonists (1999) Cell, 96, pp. 625-634
Murphy, T. H., Miyamoto, M., Sastre, A., Schnaar, R. L., Coyle, J. T., Glutamate toxicity in a neuronal cell line involves inhibition of cystine transport leading to oxidative stress (1989) Neuron, 2, pp. 1547-1558
O'Malley, S. M., Xie, X., Frutos, A. G., Label-free high-throughput functional lytic assays (2007) J Biomol Screen, 12, pp. 117-125
Waldmeier, P. C., Prospects for antiapoptotic drug therapy of neurodegenerative diseases (2003) Prog Neuropsychopharmacol Biol Psychiatry, 27, pp. 303-321
Ward, M. W., Rehm, M., Duessmann, H., Kacmar, S., Concannon, C. G., Prehn, J. H., Real time single cell analysis of Bid cleavage and Bid translocation during caspase-dependent and neuronal caspase-independent apoptosis (2006) J Biol Chem, 281, pp. 5837-5844
Yin, X. M., Luo, Y., Cao, G., Bai, L., Pei, W., Kuharsky, D. K., Chen, J., Bid-mediated mitochondrial pathway is critical to ischemic neuronal apoptosis and focal cerebral ischemia (2002) J Biol Chem, 277, pp. 42074-42081
Novel N-Phenyl-Substituted Thiazolidinediones Protect Neural Cells against Glutamate- and tBid-Induced Toxicity
Mitochondrial demise is a key feature of progressive neuronal death contributing to acute and chronic neurological disorders. Recent studies identified a pivotal role for the BH3-only protein B-cell lymphoma-2 interacting domain death antagonist (Bid) for such mitochondrial damage and delayed neuronal death after oxygen-glucose deprivation, glutamate-induced excitotoxicity, or oxidative stress in vitro and after cerebral ischemia in vivo. Therefore, we developed new N-phenyl-substituted thiazolidine-2,4-dione derivatives as potent inhibitors of Bid-dependent neurotoxicity. The new compounds 6, 7, and 16 were identified as highly protective by extensive screening in a model of glutamate toxicity in immortalized mouse hippocampal neurons (HT-22 cells). These compounds significantly prevent truncated Bid-induced toxicity in the neuronal cell line, providing strong evidence that inhibition of Bid was the underlying mechanism of the observed protective effects. Furthermore, Bid-dependent hallmarks of mitochondrial dysfunction, such as loss of mitochondrial membrane potential, ATP depletion, as well as impairments in mitochondrial respiration, are significantly prevented by compounds 6, 7, and 16. Therefore, the present study identifies a class of N-phenyl thiazolidinediones as novel Bid-inhibiting neuroprotective agents that provide promising therapeutic perspectives for neurodegenerative diseases, in which Bid-mediated mitochondrial damage and associated intrinsic death pathways contribute to the underlying progressive loss of neurons.
Novel N-Phenyl-Substituted Thiazolidinediones Protect Neural Cells against Glutamate- and tBid-Induced Toxicity
No results.
Novel N-Phenyl-Substituted Thiazolidinediones Protect Neural Cells against Glutamate- and tBid-Induced Toxicity