A peptide containing residues 26-44 of tau protein impairs mitochondrial oxidative phosphorylation acting at the level of the adenine nucleotide translocator
A peptide containing residues 26-44 of tau protein impairs mitochondrial oxidative phosphorylation acting at the level of the adenine nucleotide translocator(509 views) Atlante A, Amadoro G, Bobba A, de Bari L, Corsetti V, Pappalardo G, Marra E, Calissano P, Passarella S
Keywords: Atp Synthesis, Cerebellar Granule Cells, Mitochondria, Neurotoxicity, Oxidative Phosphorylation, Tau Fragment, Adenine Nucleotide Translocase, Cytochrome C Oxidase, Proton Transporting Adenosine Triphosphate Synthase, Tau Protein, Amino Terminal Sequence, Animal Cell, Animal Tissue, Article, Cerebellum Cortex, Controlled Study, Electron Transport, Enzyme Activity, Membrane Potential, Mitochondrial Membrane Potential, Mitochondrial Respiration, Nonhuman, Oxygen Consumption, Priority Journal, Respiratory Chain, Adenosine Diphosphate, Electron Transport Complex Iv, Mitochondrial Adp, Atp Translocases, Mitochondrial Proton-Translocating Atpases, Peptide Fragments, Wistar, Adenoviridae,
Affiliations: *** IBB - CNR ***
Institute of Biomembranes and Bioenergetics, CNR, Via G. Amendola 165 /A, 70126 Bari, Italy
Institute of Neurobiology and Molecular Medicine, CNR, Via del Fosso di Fiorano 64-65, 00143 Rome, Italy
European Brain Research Institute (EBRI), Via del Fosso di Fiorano 64-65, 00143 Rome, Italy
Institute of Biostructures and Bioimaging, CNR, Viale A. Doria 6, 95125 Catania, Italy
Department of Health Sciences, University of Molise, Via F. De Sanctis, 86100 Campobasso, Italy
References: Amadoro, G., Serafino, A.L., Barbato, C., Ciotti, M.T., Sacco, A., Calissano, P., Canu, N., Role of N-terminal tau domain integrity on the survival of cerebellar granule neurons (2004) Cell Death Differ., 11, pp. 217-23
Rohn, T.T., Rissman, R.A., Davis, M.C., Kim, Y.E., Cotman, C.W., Head, E., Caspase-9 activation and caspase cleavage of tau in the Alzheimer's disease brain (2002) Neurobiol. Dis., 11, pp. 341-354
Fasulo, L., Ugolini, G., Visentin, M., Bradbury, A., Brancolini, C., Verzillo, V., Novak, M., Cattaneo, A., The neuronal microtubule-associated protein tau is substrate of caspase-3 and an effector of apoptosis (2000) J. Neurochem., 75, pp. 624-633
Chung, C.W., Song, Y.H., Kim, I.K., Yoon, W.J., Ryu, B.R., Jo, D.G., Woo, H.N., Jung, Y.K., Proapoptotic effects of tau cleavage product generated by caspase-3 (2001) Neurobiol. Dis., 8, pp. 162-172
Avila, J., Lucas, J.J., Perez, M., Hernandez, F., Role of tau protein in both physiological and pathological conditions (2004) Physiol. Rev., 84, pp. 361-384. , (Review)
Amadoro, G., Ciotti, M.T., Costanzi, M., Cestari, V., Calissano, P., Canu, N., NMDA receptor mediates tau-induced neurotoxicity by calpain and ERK/MAPK activation (2006) Proc. Natl. Acad. Sci. U. S. A., 103, pp. 2892-2897
Levi, G., Aloisi, F., Ciotti, M.T., Gallo, V., Autoradiographic localization and depolarization-induced release of acidic amino acids in differentiating cerebellar granule cell cultures (1984) Brain Res., 290, pp. 77-86
Almeida, A., Medina, J.M., A rapid method for the isolation of metabolically mitochondria form rat neurons and astrocytes in primary culture (1998) Brain Res. Brain Res. Protoc., 3, pp. 209-214
Waddel, W.J., Hill, C., A simple ultraviolet spectrophotometer method for the determination of protein (1956) J. Lab. Clin. Med., 48, pp. 311-314
Atlante, A., Bobba, A., de Bari, L., Fontana, F., Calissano, P., Marra, E., Passarella, S., Caspase-dependent alteration of the ADP/ATP translocator triggers the mitochondrial permeability transition which is not required for the low-potassium-dependent apoptosis of cerebellar granule cells (2006) J. Neurochem., 97, pp. 1166-1181
Trumbeckaite, S., Opalka, J.R., Neuhof, C., Zierz, S., Gellerich, F.N., Different sensitivity of rabbit heart and skeletal muscle to endotoxin-induced impairment of mitochondrial function (2001) Eur. J. Biochem., 268, pp. 1422-1429
Wharton, D.C., Tzagaloff, A., Cytochrome c oxidase from beef heart mitochondria (1967) Methods Enzymol., 10, pp. 245-253
Atlante, A., de Bari, L., Bobba, A., Marra, E., Calissano, P., Passarella, S., Cytochrome c, released from cerebellar granule cells undergoing apoptosis or excytotoxic death, can generate protonmotive force and drive ATP synthesis in isolated mitochondria (2003) J. Neurochem., 86, pp. 591-604
Atlante, A., Passarella, S., Quagliariello, E., Moreno, G., Salet, C., Haematoporphyrin derivative (Photofrin II) photosensitization of isolated mitochondria: inhibition of ADP/ATP translocator (1989) J. Photochem. Photobiol. B, 4, pp. 35-46
Canu, N., Dus, L., Barbato, C., Ciotti, M.T., Brancolini, C., Rinaldi, A.M., Novak, M., Calissano, P., Tau cleavage and dephosphorylation in cerebellar granule neurons undergoing apoptosis (1998) J. Neurosci., 18, pp. 7061-7074
Rohn, T.T., Head, E., Su, J.H., Anderson, A.J., Bahr, B.A., Cotman, C.W., Cribbs, D.H., Correlation between caspase activation and neurofibrillary tangle formation in Alzheimer's disease (2001) Am. J. Pathol., 158, pp. 189-198
Ugolini, G., Cattaneo, A., Novak, M., Co-localization of truncated tau and DNA fragmentation in Alzheimer's diseases neurons (1997) Neuroreport, 8, pp. 3709-3712
Gastard, M.C., Troncoso, J.C., Koliatsos, V.E., Caspase activation in the limbic cortex of subjects with early Alzheimer's disease (2003) Ann. Neurol., 54, pp. 393-398
Saito, K., Elce, J.S., Hamos, J.E., Nixon, R.A., Widespread activation of calcium-activated neutral proteinase (calpain) in the brain in Alzheimer disease: a potential molecular basis for neuronal degeneration (1993) Proc. Natl. Acad. Sci. U. S. A., 90, pp. 26-28
Veeranna, Kaji, T., Boland, B., Odrljin, T., Mohan, P., Basavarajappa, B.S., Peterhoff, C., Nixon, R.A., Calpain mediates calcium-induced activation of the ERK1/2, MAPK pathway and cytoskeletal phosphorylation in neurons: relevance to Alzheimer's disease (2004) Am. J. Pathol., 165, pp. 795-805
Cardoso, S.M., Santana, I., Swerdlow, R.H., Oliveira, C.R., Mitochondria dysfunction of Alzheimer's disease cybrids enhances Abeta toxicity (2004) J. Neurochem., 89, pp. 1417-1426
Mancuso, M., Coppedè, F., Murri, L., Siciliano, G., Mitochondrial cascade hypothesis of Alzheimer's disease: myth or reality? (2007) Antioxid. Redox Signal., 9, pp. 1631-1646
Kish, S.J., Bergeron, C., Rajput, A., Dozic, S., Mastrogiacomo, F., Chang, L.J., Wilson, J.M., Nobrega, J.N., Brain cytochrome oxidase in Alzheimer's disease (1992) J. Neurochem., 59, pp. 776-779
Davis, R.E., Miller, S., Herrnstadt, C., Ghosh, S.S., Fahy, E., Shinobu, L.A., Galasko, D., Jr Parker, W.D., Mutations in mitochondrial cytochrome c oxidase genes segregate with late-onset Alzheimer disease (1997) Proc. Natl. Acad. Sci. U. S. A., 94, pp. 4526-4531
Beal, M.F., Oxidative metabolism (2000) Ann. N. Y. Acad. Sci., 924, pp. 164-169
Mutisya, E.M., Bowling, A.C., Beal, M.F., Cortical cytochrome oxidase activity is reduced in Alzheimer's disease (1994) J. Neurochem., 63, pp. 2179-2184
Sims, N.R., Finegan, J.M., Blass, J.P., Bowen, D.M., Neary, D., Mitochondrial function in brain tissue in primary degenerative dementia (1987) Brain Res., 436, pp. 30-38
Reynolds, M.R., Berry, R.W., Binder, L.I., Site-specific nitration differentially influences tau assembly in vitro (2005) Biochemistry, 44, pp. 13997-14009
Gamblin, T.C., Berry, R.W., Binder, L.I., Modeling tau polymerization in vitro. A review and synthesis (2003) Biochemistry, 42, pp. 15009-15017
Yang, L.S., Ksiezak-Reding, H., Calpain-induced proteolysis of normal human tau and tau associated with paired helical filaments (1995) Eur. J. Biochem., 233, pp. 9-17
Cente, M., Filipcik, P., Pevalova, M., Novak, M., Expression of a truncated tau protein induces oxidative stress in a rodent model of tauopathy (2006) Eur. J. Neurosci., 24, pp. 1085-1090
Chothia, C., Janin, J., Principles of protein-protein recognition (1975) Nature, 256, pp. 705-708
Tsai, C.J., Lin, S.L., Wolfson, H.J., Nussinov, R., Studies of protein-protein interfaces: a statistical analysis of the hydrophobic effect (1997) Protein Sci., 6, pp. 53-64
Janin, J., Chothia, C., The structure of protein-protein recognition sites (1990) J. Biol. Chem., 265, pp. 16027-16030
Korn, A.P., Burnett, R.M., Distribution and complementarity of hydropathy in multisubunit proteins (1991) Proteins, 9, pp. 37-55
Vakser, I.A., Aflalo, C., Hydrophobic docking: a proposed enhancement to molecular recognition techniques (1994) Proteins, 20, pp. 320-329
Young, L., Jernigan, R.L., Covell, D.G., A role for surface hydrophobicity in protein-protein recognition (1994) Protein Sci., 3, pp. 717-729
Jones, S., Thornton, J.M., Protein-protein interaction: a review of protein dimer structures (1995) Prog. Biophys. Mol. Biol., 63, pp. 131-165
Larsen, T.A., Olson, A.J., Goodsell, D.S., Morphology of protein-protein interfaces (1998) Structure, 6, pp. 421-427
Lo Conte, L., Chothia, C., Janin, J., The atomic structure of protein-protein recognition sites (1999) J. Mol. Biol., 285, pp. 2177-2198
Glaser, F., Steinberg, D.M., Vakser, A., Ben-Tal, N., Residue frequencies and pairing preferences at protein-protein interfaces (2001) Proteins, 43, pp. 89-102
Klingenberg, M., Molecular aspects of the adenine nucleotide carrier from mitochondria (1989) Arch. Biochem. Biophys., 270, pp. 1-14
Majima, E., Yamaguchi, N., Chuman, H., Shinohara, Y., Ishida, M., Goto, S., Terada, H., Binding of the fluorescein derivative eosin Y to the mitochondrial ADP/ATP carrier: characterization of the adenine nucleotide binding site (1998) Biochemistry, 37, pp. 424-432
Kini, R.M., Evans, H.J., Prediction of potential protein-protein interaction sites from amino acid sequence identification of a fibrin polymerization site (1996) FEBS Lett., 385, pp. 81-86
Stamer, K., Vogel, R., Thies, E., Mandelkow, E., Mandelkow, E.M., Tau blocks traffic of organelles, neurofilaments, and APP vesicles in neurons and enhance oxidative stress (2002) J. Cell Biol., 156, pp. 1051-1063
Ebneth, A., Godemann, R., Stamer, K., Illenberger, S., Trinczek, B., Mandelkow, E., Overexpression of tau protein inhibits kinesin-dependent trafficking of vesicles, mitochondria, and endoplasmic reticulum: implication for Alzheimer's disease (1998) J. Cell Biol., 143, pp. 777-794
Santagata, D.D., Fulga, T., Duttaroy, A., Feany, M.B., Oxidative stress mediates tau-induced neurodegeneration in Drosophila (2007) J. Clin. Inv., 117, pp. 236-245
David, D.C., Hauptmann, S., Scherping, I., Schuessel, K., Keil, U., Rizzu, P., Ravid, R., Gotz, J., Proteomic and functional analyses reveal a mitochondrial dysfunction in P3201L tau transgenic mice (2005) J. Biol. Chem., 280, pp. 23802-23814
Zilka, N., Filipcik, P., Koson, P., Fialova, L., Skrabana, R., Zilkova, M., Rolkova, G., Novak, M., Truncated tau form sporadic Alzheimer's disease suffices to drive neurofibrillary degeneration in vivo (2006) FEBS Lett., 580, pp. 3582-3588
Liu, R., Yuan, B., Emadi, S., Zameer, A., Schulz, P., McAllister, C., Lyubchenko, Y., Sierks, M.R., Single chain variable fragments against beta-amyloid (Abeta) can inhibit Abeta aggregation and prevent abeta-induced neurotoxicity (2004) Biochemistry, 43, pp. 6959-6967
Ferri, A., Cozzolino, M., Crosio, C., Nencini, M., Casciati, A., Gralla, E.B.V., Rotilio, G., Carrì, M.T., familial ALS-superoxide dismutases associate with mitochondria and shift their redox potentials (2006) Proc. Natl. Acad. Sci., 103, pp. 13860-13865
Panov, A.V., Gutekunst, C.A., Leavitt, B.R., Hayden, M.R., Burke, J.R., Strittmatter, W.J., Greenamyre, J.T., Early mitochondrial calcium defects in Hungtington's disease are direct effect of polyglutamines (2002) N. Neurosci., 5, pp. 731-736
Panov, A.V., Burke, J.R., Strittmatter, W.J., Greenamyre, J.T., In vitro effects pf polyglutamine tracts on Ca2+-dependent depolarization of rat and human mitochondria: relevance to Hungtington's disease (2003) Arch. Biochem. Biophys., 410, pp. 1-6
Seong, I.S., Ivanova, E., Lee, J.M., Choo, Y.S., Fossale, E., Anderson, M.A., Gusella, J.F., MacDonald, M.E., HD CAG repeat implicates a dominant property of huntingtin in mitochondrial energy metabolism (2005) Hum. Mol. Genet., 14, pp. 2871-2880
Rendon, A., Jung, D., Jancsik, V., Interaction of microtubules and microtubule-associated proteins (MAPs) with rat brain mitochondria (1990) Biochem. J., 269, pp. 555-556
Lustbader, J.W., Cirilli, M., Lin, C., Xu, H.W., Takuma, K., Wang, N., Caspersen, C., Wu, H., ABAD directly links Abeta to mitochondrial toxicity in Alzheimer's disease (2004) Science, 304, pp. 448-452
Lipton, P., Ischemic cell death in brain neurons (1999) Physiol. Rev., 79, pp. 1431-1568. , (Review)
Pettmann, B., Henderson, C.E., Neuronal cell death (1998) Neuron, 20, pp. 633-647. , (Review)
Rothman, S.M., Olney, J.W., Excitotoxicity and the NMDA receptor-still lethal after eight years (1995) Trends Neurosci., 18, pp. 57-58. , (Review)
Danbolt, N.C., Glutamate uptake (2001) Prog. Neurobiol., 65, pp. 1-105
Choi, D.W., Glutamate receptors and the induction of excitotoxic neuronal death (1994) Prog. Brain Res., 100, pp. 47-51
Rohn, T. T., Rissman, R. A., Davis, M. C., Kim, Y. E., Cotman, C. W., Head, E., Caspase-9 activation and caspase cleavage of tau in the Alzheimer's disease brain (2002) Neurobiol. Dis., 11, pp. 341-354
Chung, C. W., Song, Y. H., Kim, I. K., Yoon, W. J., Ryu, B. R., Jo, D. G., Woo, H. N., Jung, Y. K., Proapoptotic effects of tau cleavage product generated by caspase-3 (2001) Neurobiol. Dis., 8, pp. 162-172
Waddel, W. J., Hill, C., A simple ultraviolet spectrophotometer method for the determination of protein (1956) J. Lab. Clin. Med., 48, pp. 311-314
Wharton, D. C., Tzagaloff, A., Cytochrome c oxidase from beef heart mitochondria (1967) Methods Enzymol., 10, pp. 245-253
Rohn, T. T., Head, E., Su, J. H., Anderson, A. J., Bahr, B. A., Cotman, C. W., Cribbs, D. H., Correlation between caspase activation and neurofibrillary tangle formation in Alzheimer's disease (2001) Am. J. Pathol., 158, pp. 189-198
Gastard, M. C., Troncoso, J. C., Koliatsos, V. E., Caspase activation in the limbic cortex of subjects with early Alzheimer's disease (2003) Ann. Neurol., 54, pp. 393-398
Cardoso, S. M., Santana, I., Swerdlow, R. H., Oliveira, C. R., Mitochondria dysfunction of Alzheimer's disease cybrids enhances Abeta toxicity (2004) J. Neurochem., 89, pp. 1417-1426
Kish, S. J., Bergeron, C., Rajput, A., Dozic, S., Mastrogiacomo, F., Chang, L. J., Wilson, J. M., Nobrega, J. N., Brain cytochrome oxidase in Alzheimer's disease (1992) J. Neurochem., 59, pp. 776-779
Davis, R. E., Miller, S., Herrnstadt, C., Ghosh, S. S., Fahy, E., Shinobu, L. A., Galasko, D., Jr Parker, W. D., Mutations in mitochondrial cytochrome c oxidase genes segregate with late-onset Alzheimer disease (1997) Proc. Natl. Acad. Sci. U. S. A., 94, pp. 4526-4531
Beal, M. F., Oxidative metabolism (2000) Ann. N. Y. Acad. Sci., 924, pp. 164-169
Mutisya, E. M., Bowling, A. C., Beal, M. F., Cortical cytochrome oxidase activity is reduced in Alzheimer's disease (1994) J. Neurochem., 63, pp. 2179-2184
Sims, N. R., Finegan, J. M., Blass, J. P., Bowen, D. M., Neary, D., Mitochondrial function in brain tissue in primary degenerative dementia (1987) Brain Res., 436, pp. 30-38
Reynolds, M. R., Berry, R. W., Binder, L. I., Site-specific nitration differentially influences tau assembly in vitro (2005) Biochemistry, 44, pp. 13997-14009
Gamblin, T. C., Berry, R. W., Binder, L. I., Modeling tau polymerization in vitro. A review and synthesis (2003) Biochemistry, 42, pp. 15009-15017
Yang, L. S., Ksiezak-Reding, H., Calpain-induced proteolysis of normal human tau and tau associated with paired helical filaments (1995) Eur. J. Biochem., 233, pp. 9-17
Tsai, C. J., Lin, S. L., Wolfson, H. J., Nussinov, R., Studies of protein-protein interfaces: a statistical analysis of the hydrophobic effect (1997) Protein Sci., 6, pp. 53-64
Korn, A. P., Burnett, R. M., Distribution and complementarity of hydropathy in multisubunit proteins (1991) Proteins, 9, pp. 37-55
Vakser, I. A., Aflalo, C., Hydrophobic docking: a proposed enhancement to molecular recognition techniques (1994) Proteins, 20, pp. 320-329
Larsen, T. A., Olson, A. J., Goodsell, D. S., Morphology of protein-protein interfaces (1998) Structure, 6, pp. 421-427
Kini, R. M., Evans, H. J., Prediction of potential protein-protein interaction sites from amino acid sequence identification of a fibrin polymerization site (1996) FEBS Lett., 385, pp. 81-86
Santagata, D. D., Fulga, T., Duttaroy, A., Feany, M. B., Oxidative stress mediates tau-induced neurodegeneration in Drosophila (2007) J. Clin. Inv., 117, pp. 236-245
David, D. C., Hauptmann, S., Scherping, I., Schuessel, K., Keil, U., Rizzu, P., Ravid, R., Gotz, J., Proteomic and functional analyses reveal a mitochondrial dysfunction in P3201L tau transgenic mice (2005) J. Biol. Chem., 280, pp. 23802-23814
Panov, A. V., Gutekunst, C. A., Leavitt, B. R., Hayden, M. R., Burke, J. R., Strittmatter, W. J., Greenamyre, J. T., Early mitochondrial calcium defects in Hungtington's disease are direct effect of polyglutamines (2002) N. Neurosci., 5, pp. 731-736
Panov, A. V., Burke, J. R., Strittmatter, W. J., Greenamyre, J. T., In vitro effects pf polyglutamine tracts on Ca2+-dependent depolarization of rat and human mitochondria: relevance to Hungtington's disease (2003) Arch. Biochem. Biophys., 410, pp. 1-6
Seong, I. S., Ivanova, E., Lee, J. M., Choo, Y. S., Fossale, E., Anderson, M. A., Gusella, J. F., MacDonald, M. E., HD CAG repeat implicates a dominant property of huntingtin in mitochondrial energy metabolism (2005) Hum. Mol. Genet., 14, pp. 2871-2880
Lustbader, J. W., Cirilli, M., Lin, C., Xu, H. W., Takuma, K., Wang, N., Caspersen, C., Wu, H., ABAD directly links Abeta to mitochondrial toxicity in Alzheimer's disease (2004) Science, 304, pp. 448-452
Rothman, S. M., Olney, J. W., Excitotoxicity and the NMDA receptor-still lethal after eight years (1995) Trends Neurosci., 18, pp. 57-58. , (Review)
Danbolt, N. C., Glutamate uptake (2001) Prog. Neurobiol., 65, pp. 1-105
Choi, D. W., Glutamate receptors and the induction of excitotoxic neuronal death (1994) Prog. Brain Res., 100, pp. 47-51
A peptide containing residues 26-44 of tau protein impairs mitochondrial oxidative phosphorylation acting at the level of the adenine nucleotide translocator
A peptide containing residues 26-44 of tau protein impairs mitochondrial oxidative phosphorylation acting at the level of the adenine nucleotide translocator
A peptide containing residues 26-44 of tau protein impairs mitochondrial oxidative phosphorylation acting at the level of the adenine nucleotide translocator
Ciccarelli M, Sorriento D, Coscioni E, Iaccarino G, Santulli G * Adrenergic Receptors(273 views) Endocrinol Of The Heart In Health And Dis (ISSN: 9780-1280311249780128031117), 2016; N/D: 285-315. Impact Factor:0 ViewExport to BibTeXExport to EndNote