Keywords: Aptamer, Biosensors, Dnazyme, Lna, Artificial Dna, Beta Globin, Beta3 Integrin, C Reactive Protein, Gamma Interferon, Genomic Dna, Gold Nanoparticle, Immunoglobulin E, Influenza Virus Hemagglutinin, K Ras Protein, Locked Nucleic Acid, Messenger Rna, Microrna, Peptide Nucleic Acid, Retinol Binding Protein 4, Single Stranded Dna, Thrombin, Transactivator Protein, Unclassified Drug, Vasculotropin, Oligonucleotide, Dna Determination, Dna Hybridization, Dna Probe, Gene Amplification, Human, Influenza Virus A H3n2, Limit Of Detection, Nonhuman, Point Mutation, Protein Analysis, Review, Rna Hybridization, Rna Sequence, Sensitivity And Specificity, Single Nucleotide Polymorphism, Surface Plasmon Resonance, Chemistry, Conformation, Metabolism, Methodology, Nucleic Acid Conformation,
Affiliations: *** IBB - CNR ***
Dipartimento di Scienze Chimiche, Università di Catania, Catania, Italy
Istituto Biostrutture e Bioimmagini, CNR, Catania, Italy
References: El-Sagheer, A.H., Brown, T., Click chemistry with DNA (2010) Chem Soc Rev, 39, pp. 1388-1405. , PMID: 20309492
Sinha, N.D., Michaud, D.P., Recent developments in the chemistry, analysis and control for the manufacture of therapeutic-grade synthetic oligonucleotides (2007) Curr Opin Drug Discov Devel, 10, pp. 807-818. , PMID: 17987530
Navani, N.K., Li, Y., Nucleic acid aptamers and enzymes as sensors (2006) Curr Opin Chem Biol, 10, pp. 272-281. , PMID: 16678470
DOI: 10.1016/j.cbpa.2006.04.003
Di Giusto, D.A., King, G.C., Special-Purpose Modifications and Immobilized Functional Nucleic Acids for Biomolecular Interactions (2006) Top Curr Chem, 261, pp. 131-168. , DOI: 10.1007/b136673
Micklefield, J., Backbone modification of nucleic acids: Synthesis, structure and therapeutic applications (2001) Curr Med Chem, 8, pp. 1157-1179. , PMID: 11472234
Bell, N.M., Micklefield, J., Chemical modification of oligonucleotides for therapeutic, bioanalytical and other applications (2009) Chembiochem, 10, pp. 2691-2703. , PMID: 19739190
DOI: 10.1002/cbic.200900341
Weigand, B.-S., Zerressen, A., Schlatterer, J.C., Helm, M., Jaschke, A., In vitro selection of short, catalytically active oligonucleotides (2006) The Aptamer Handbook: Functional Oligonucleotides and Their Applications, 1, pp. 211-227. , In, Klussmann, S., Ed.
Pan, W., Clawson, G.A., Catalytic DNAzymes: Derivations and functions (2008) Expert Opin Biol Ther, 8, pp. 1071-1085. , PMID: 18613760
DOI: 10.1517/14712598.8.8.1071
Doessing, H., Vester, B., Locked and unlocked nucleosides in functional nucleic acids (2011) Molecules, 16, pp. 4511-4526. , PMID: 21629180
DOI: 10.3390/molecules16064511
Nagaswamy, U., Voss, N., Zhang, Z., Fox, G.E., Database of non-canonical base pairs found in known RNA structures (2000) Nucleic Acids Res, 28, pp. 375-376. , PMID: 10592279
DOI: 10.1093/nar/28.1.375
Nielsen, P.E., Peptide nucleic acids (PNA) in chemical biology and drug discovery (2010) Chem Biodivers, 7, pp. 786-804. , PMID: 20397216
DOI: 10.1002/cbdv.201000005
Koshkin, A.A., Singh, S.K., Nielsen, P., Rajwanshi, V.K., Kumar, R., Meldgaard, M., LNA (Locked Nucleic Acids): Synthesis of the adenine, cytosine, guanine, 5-methylcytosine, thymine and uracil bicyclonucleoside monomers, oligomerisation, and unprecedented nucleic acid recognition (1998) Tetrahedron, 54, pp. 3607-3630. , DOI: 10.1016/S0040-4020(98)00094-5
Hendrix, C., Rosemeyer, H., Verheggen, I., Seela, F., van Aerschot, A., Herdewijn, P., 1′, 5′-Anhydrohexitol Oligonucleotides: Synthesis, Base Pairing and Recognition by Regular Oligodeoxyribonucleotides and Oligoribonucleotides (1997) Chemistry, 3, pp. 110-120. , DOI: 10.1002/chem.19970030118
Liedberg, B., Nylander, C., Lundström, I., Biosensing with surface plasmon resonance-how it all started (1995) Biosens Bioelectron, 10, pp. R1-R9. , DOI: 10.1016/0956-5663(95)96965-2
Chandra, H., Reddy, P.J., Srivastava, S., Protein microarrays and novel detection platforms (2011) Expert Rev Proteomics, 8, pp. 61-79. , PMID: 21329428
DOI: 10.1586/epr.10.99
Phillips, K.S., Cheng, Q., Recent advances in surface plasmon resonance based techniques for bioanalysis (2007) Anal Bioanal Chem, 387, pp. 1831-1840. , PMID: 17203259
DOI: 10.1007/s00216-006-1052-7
Piliarik, M., Vaisocherová, H., Homola, J., Surface plasmon resonance biosensing (2009) Methods Mol Biol, 503, pp. 65-88. , PMID: 19151937
DOI: 10.1007/978-1-60327-567-5_5
Haes, A.J., Duyne, R.P., Preliminary studies and potential applications of localized surface plasmon resonance spectroscopy in medical diagnostics (2004) Expert Rev Mol Diagn, 4, pp. 527-537. , PMID: 15225100
DOI: 10.1586/14737159.4.4.527
Shalabney, A., Abdulhalim, I., Sensitivity-enhancement methods for surface plasmon sensors (2011) Laser Photonics Rev, 5, pp. 571-606. , DOI: 10.1002/lpor.201000009
Jonnson, U., Malmqvist, M., (1992) In Advances in Biosensors, p. 291. , Turner, A., Ed.
JAI Press Ltd.: San Diego
DOI: 10.1021/cr068107d
Schasfoort, R.B.M., Tudos, A.J., (2008) Handbook of Surface Plasmon Resonance, p. 401. , eds, Springer
Jayasena, S.D., Aptamers: An emerging class of molecules that rival antibodies in diagnostics (1999) Clin Chem, 45, pp. 1628-1650. , PMID: 10471678
Mascini, M., (2009) Aptamers in Bioanalysis, pp. 63-86. , (Ed.), John Wiley & Sons, Inc., New Jersey, U.S.A
Bhosale, A.V., Hardikar, S.R., Naresh, P., Bhujbal, P.U., Khirsagar, A.A., Malvankar, S.R., Oligonucleotide based therapeutics: Aptamers (2009) Res J Phar Tec, 2, pp. 449-455
Di Fusco, M., Tortolini, C., Frasconi, M., Mazzei, F., Aptamer-based and DNAzyme-based biosensors for environmental monitoring (2011) Int J Environ Health, 5, pp. 186-204. , DOI: 10.1504/IJENVH.2011.041327
Ellington, A.D., Szostak, J.W., In vitro selection of RNA molecules that bind specific ligands (1990) Nature, 346, pp. 818-822. , PMID: 1697402
DOI: 10.1038/346818a0
Robertson, D.L., Joyce, G.F., Selection in vitro of an RNA enzyme that specifically cleaves single-stranded DNA (1990) Nature, 344, pp. 467-468. , PMID: 1690861
Mascini, M., Palchetti, I., Tombelli, S., Nucleic acid and peptide aptamers: Fundamentals and bioanalytical aspects (2012) Angew Chem Int Ed Engl, 51, pp. 1316-1332. , PMID: 22213382
DOI: 10.1002/anie.201006630
Misono, T.S., Kumar, P.K.R., Selection of RNA aptamers against human influenza virus hemagglutinin using surface plasmon resonance (2005) Anal Biochem, 342, pp. 312-317. , PMID: 15913532
DOI: 10.1016/j.ab.2005.04.013
Kim, Y.H., Kim, J.P., Han, S.J., Sim, S.J., Aptamer biosensor for label-free detection of human immunoglobulin E based on surface plasmon resonance (2009) Sens Actuators B Chem, 139, pp. 471-475. , DOI: 10.1016/j.snb.2009.03.013
Bini, A., Centi, S., Tombelli, S., Minunni, M., Mascini, M., Development of an optical RNA-based aptasensor for C-reactive protein (2008) Anal Bioanal Chem, 390, pp. 1077-1086. , PMID: 18066708
DOI: 10.1016/j.bioelechem.2004.04.011
Li, Y., Lee, H.J., Corn, R.M., Detection of protein biomarkers using RNA aptamer microarrays and enzymatically amplified surface plasmon resonance imaging (2007) Anal Chem, 79, pp. 1082-1088. , PMID: 17263339
DOI: 10.1021/ac061849m
Kuramochi, H., Hayashi, K., Uchida, K., Miyakura, S., Shimizu, D., Vallböhmer, D., Vascular endothelial growth factor messenger RNA expression level is preserved in liver metastases compared with corresponding primary colorectal cancer (2006) Clin Cancer Res, 12, pp. 29-33. , PMID: 16397020
DOI: 10.1158/1078-0432.CCR-05-1275
Lee, S.J., Youn, B.S., Park, J.W., Niazi, J.H., Kim, Y.S., Gu, M.B., SSDNA aptamer-based surface plasmon resonance biosensor for the detection of retinol binding protein 4 for the early diagnosis of type 2 diabetes (2008) Anal Chem, 80, pp. 2867-2873. , PMID: 18324839
DOI: 10.1021/ac800050a
Zanoli, L.M., D'Agata, R., Spoto, G., Functionalized gold nanoparticles for ultrasensitive DNA detection (2012) Anal Bioanal Chem, 402, pp. 1759-1771. , PMID: 21866403
Wang, J., Zhou, H.S., Aptamer-based Au nanoparticles-enhanced surface plasmon resonance detection of small molecules (2008) Anal Chem, 80, pp. 7174-7178. , PMID: 18707133
DOI: 10.1021/ac801281c
Wang, J., Munir, A., Li, Z., Zhou, H.S., Aptamer-Au NPs conjugates-enhanced SPR sensing for the ultrasensitive sandwich immunoassay (2009) Biosens Bioelectron, 25, pp. 124-129. , PMID: 19592231
DOI: 10.1016/j.bios.2009.06.016
Tuleuova, N., Jones, C.N., Yan, J., Ramanculov, E., Yokobayashi, Y., Revzin, A., Development of an aptamer beacon for detection of interferon-gamma (2010) Anal Chem, 82, pp. 1851-1857. , PMID: 20121141
DOI: 10.1021/ac9025237
Liu, Y., Tuleouva, N., Ramanculov, E., Revzin, A., Aptamer-based electrochemical biosensor for interferon gamma detection (2010) Anal Chem, 82, pp. 8131-8136. , PMID: 20815336
DOI: 10.1021/ac101409t
Willner, I., Shlyahovsky, B., Zayats, M., Willner, B., DNAzymes for sensing, nanobiotechnology and logic gate applications (2008) Chem Soc Rev, 37, pp. 1153-1165. , PMID: 18497928
DOI: 10.1039/b718428j
Li, D., Shlyahovsky, B., Elbaz, J., Willner, I., Amplified analysis of low-molecular-weight substrates or proteins by the self-assembly of DNAzyme-aptamer conjugates (2007) J Am Chem Soc, 129, pp. 5804-5805. , PMID: 17432859
DOI: 10.1021/ja070180d
Travascio, P., Bennet, A.J., Wang, D.Y., Sen, D., A ribozyme and a catalytic DNA with peroxidase activity: Active sites versus cofactor-binding sites (1999) Chem Biol, 6, pp. 779-787. , PMID: 10574780
DOI: 10.1016/S1074-5521(99)80125-2
Breaker, R.R., Natural and engineered nucleic acids as tools to explore biology (2004) Nature, 432, pp. 838-845. , PMID: 15602549
DOI: 10.1038/nature03195
Teller, C., Shimron, S., Willner, I., Aptamer-DNAzyme hairpins for amplified biosensing (2009) Anal Chem, 81, pp. 9114-9119. , PMID: 19780593
DOI: 10.1021/ac901773b
Breaker, R.R., DNA enzymes (1997) Nat Biotechnol, 15, pp. 427-431. , PMID: 9131619
DOI: 10.1038/nbt0597-427
Achenbach, J.C., Chiuman, W., Cruz, R.P.G., Li, Y., DNAzymes: From creation in vitro to application in vivo (2004) Curr Pharm Biotechnol, 5, pp. 321-336. , PMID: 15320762
DOI: 10.2174/1389201043376751
Santoro, S.W., Joyce, G.F., A general purpose RNA-cleaving DNA enzyme (1997) Proc Natl Acad Sci U S A, 94, pp. 4262-4266. , PMID: 9113977
DOI: 10.1073/pnas.94.9.4262
Cieslak, M., Szymanski, J., Adamiak, R.W., Cierniewski, C.S., Structural rearrangements of the 10-23 DNAzyme to beta 3 integrin subunit mRNA induced by cations and their relations to the catalytic activity (2003) J Biol Chem, 278, pp. 47987-47996. , PMID: 12952967
DOI: 10.1074/jbc.M300504200
Tarkoy, M., Leumann, C., Synthesis and Pairing Properties of Decanucleotides from (3′S,5′R)-2′-Deoxy-3′, 5′-ethanoß-D-ribofuranosyladenine and-thymine (1993) Angew Chem Int Ed Engl, 32, pp. 1432-1434. , DOI: 10.1002/anie.199314321
DOI: 10.1016/S0958-1669(00)00170-1
Gambari, R., Peptide-nucleic acids (PNAs): A tool for the development of gene expression modifiers (2001) Curr Pharm Des, 7, pp. 1839-1862. , PMID: 11562312
DOI: 10.2174/1381612013397087
Chu, L.Q., Foerch, R., Knoll, W., Surface-Plasmon-Enhanced Fluorescence Spectroscopy for DNA Detection Using Fluorescently Labeled PNA as "DNA Indicator" (2007) Angew Chem, 119, pp. 5032-5035. , DOI: 10.1002/ange.200605247
Sforza, S., Corradini, R., Tedeschi, T., Marchelli, R., Food analysis and food authentication by peptide nucleic acid (PNA)-based technologies (2011) Chem Soc Rev, 40, pp. 221-232. , PMID: 20882238
DOI: 10.1039/b907695f
Zanoli, L.M., Licciardello, M., D'Agata, R., Lantano, C., Calabretta, A., Corradini, R., Peptide nucleic acid molecular beacons for the detection of PCR amplicons in droplet-based microfluidic devices (2012) Anal Bioanal Chem, , PMID: 22212864
Sawata, S., Kai, E., Ikebukuro, K., Iida, T., Honda, T., Karube, I., Application of peptide nucleic acid to the direct detection of deoxyribonucleic acid amplified by polymerase chain reaction (1999) Biosens Bioelectron, 14, pp. 397-404. , PMID: 10422241
DOI: 10.1016/S0956-5663(99)00018-4
Burgener, M., Sänger, M., Candrian, U., Synthesis of a stable and specific surface plasmon resonance biosensor surface employing covalently immobilized peptide nucleic acids (2000) Bioconjug Chem, 11, pp. 749-754. , PMID: 11087321
DOI: 10.1021/bc0000029
Jensen, K.K., Ørum, H., Nielsen, P.E., Nordén, B., Kinetics for hybridization of peptide nucleic acids (PNA) with DNA and RNA studied with the BIAcore technique (1997) Biochemistry, 36, pp. 5072-5077. , PMID: 9125529
DOI: 10.1021/bi9627525
Kambhampati, D., Nielsen, P.E., Knoll, W., Investigating the kinetics of DNA-DNA and PNA-DNA interactions using surface plasmon resonance-enhanced fluorescence spectroscopy (2001) Biosens Bioelectron, 16, pp. 1109-1118. , PMID: 11679296
Knoll, W., Park, H., Sinner, E.K., Yao, D., Yu, F., Supramolecular interfacial architectures for optical biosensing with surface plasmons (2004) Surf Sci, 570, pp. 30-42. , DOI: 10.1016/j.susc.2004.06.192
Yu, F., Persson, B., Löfås, S., Knoll, W., Attomolar sensitivity in bioassays based on surface plasmon fluorescence spectroscopy (2004) J Am Chem Soc, 126, pp. 8902-8903. , PMID: 15264814
DOI: 10.1021/ja048583q
DOI: 10.1111/j.1574-695X.2000.tb01535.x
Ratilainen, T., Holmén, A., Tuite, E., Nielsen, P.E., Nordén, B., Thermodynamics of sequence-specific binding of PNA to DNA (2000) Biochemistry, 39, pp. 7781-7791. , PMID: 10869183
DOI: 10.1021/bi000039g
Wang, J., Rivas, G., Cai, X., Chicharro, M., Parrado, C., Dontha, N., Detection of point mutation in the p53 gene using a peptide nucleic acid biosensor (1997) Anal Chim Acta, 344, pp. 111-118. , DOI: 10.1016/S0003-2670(97)00039-1
Sato, Y., Fujimoto, K., Kawaguchi, H., Detection of a K-ras point mutation employing peptide nucleic acid at the surface of a SPR biosensor (2003) Colloids Surf B Biointerfaces, 27, pp. 23-31. , DOI: 10.1016/S0927-7765(02)00027-9
Corradini, R., Feriotto, G., Sforza, S., Marchelli, R., Gambari, R., Enhanced recognition of cystic fibrosis W1282X DNA point mutation by chiral peptide nucleic acid probes by a surface plasmon resonance biosensor (2004) J Mol Recognit, 17, pp. 76-84. , PMID: 14872540
Sforza, S., Galaverna, G., Dossena, A., Corradini, R., Marchelli, R., Role of chirality and optical purity in nucleic acid recognition by PNA and PNA analogs (2002) Chirality, 14, pp. 591-598. , PMID: 12112334
DOI: 10.1002/chir.10087
Neilson, P.E., Haaima, G., Peptide nucleic acid (PNA) (1997) A DNA mimic with a pseudopeptide backbone. Chem Soc Rev, 26, pp. 73-78. , DOI: 10.1039/cs9972600073
Rothenhausler, B., Knoll, W., Surface-plasmon microscopy (1988) Nature, 332, pp. 615-617. , DOI: 10.1038/332615a0
Liu, J., Tian, S., Tiefenauer, L., Nielsen, P.E., Knoll, W., Simultaneously amplified electrochemical and surface plasmon optical detection of DNA hybridization based on ferrocene-streptavidin conjugates (2005) Anal Chem, 77, pp. 2756-2761. , PMID: 15859590
DOI: 10.1021/ac048088c
Spoto, G., Corradini, R., (2012) Detection of non-amplified genomic DNA, , eds, Springer
D'Agata, R., Corradini, R., Grasso, G., Marchelli, R., Spoto, G., Ultrasensitive detection of DNA by PNA and nanoparticle-enhanced surface plasmon resonance imaging (2008) Chembiochem, 9, pp. 2067-2070. , PMID: 18680134
Zanoli, L., D'Agata, R., Spoto, G., Surface plasmon-based optical detection of DNA by peptide nucleic acids (2008) Minerva Biotec, 20, pp. 165-174
D'Agata, R., Breveglieri, G., Zanoli, L.M., Borgatti, M., Spoto, G., Gambari, R., Direct detection of point mutations in nonamplified human genomic DNA (2011) Anal Chem, 83, pp. 8711-8717. , PMID: 21978174
DOI: 10.1021/ac2021932
Joung, H.A., Lee, N.R., Lee, S.K., Ahn, J., Shin, Y.B., Choi, H.S., High sensitivity detection of 16s rRNA using peptide nucleic acid probes and a surface plasmon resonance biosensor (2008) Anal Chim Acta, 630, pp. 168-173. , PMID: 19012828
DOI: 10.1016/j.aca.2008.10.001
Vester, B., Wengel, J., LNA (locked nucleic acid): High-affinity targeting of complementary RNA and DNA (2004) Biochem, 43, pp. 3233-13241
Petersen, M., Wengel, J., LNA: A versatile tool for therapeutics and genomics (2003) Trends Biotechnol, 21, pp. 74-81. , PMID: 12573856
DOI: 10.1016/S0167-7799(02)00038-0
Natsume, T., Ishikawa, Y., Dedachi, K., Tsukamoto, T., Kurita, N., Hybridization energies of double strands composed of DNA, RNA, PNA and LNA (2007) Chem Phys Lett, 434, pp. 133-138. , PMID: 18548123
DOI: 10.1016/j.cplett.2006.12.017
Demidov, V.V., PNA and LNA throw light on DNA (2003) Trends Biotechnol, 21, pp. 4-7. , PMID: 12480343
Bartel, D.P., MicroRNAs: Genomics, biogenesis, mechanism, and function (2004) Cell, 116, pp. 281-297. , PMID: 14744438
DOI: 10.1016/S0092-8674(04)00045-5
Fang, S., Lee, H.J., Wark, A.W., Corn, R.M., Attomole microarray detection of microRNAs by nanoparticle-amplified SPR imaging measurements of surface polyadenylation reactions (2006) J Am Chem Soc, 128, pp. 14044-14046. , PMID: 17061884
DOI: 10.1021/ja065223p
Castoldi, M., Schmidt, S., Benes, V., Noerholm, M., Kulozik, A.E., Hentze, M.W., A sensitive array for microRNA expression profiling (miChip) based on locked nucleic acids (LNA) (2006) RNA, 12, pp. 913-920. , PMID: 16540696
DOI: 10.1261/rna.2332406
Kerremans, L., Schepers, G., Rozenski, J., Busson, R., van Aerschot, A., Herdewijn, P., Hybridization between "six-membered" nucleic acids: RNA as a universal information system (2001) Org Lett, 3, pp. 4129-4132. , PMID: 11784159
DOI: 10.1021/ol016183r
Herdewijn, P., Nucleic acids with a six-membered 'carbohydrate' mimic in the backbone (2010) Chem Biodivers, 7, pp. 1-59. , PMID: 20087996
Kolb, G., Reigadas, S., Boiziau, C., van Aerschot, A., Arzumanov, A., Gait, M.J., Hexitol nucleic acid-containing aptamers are efficient ligands of HIV-1 TAR RNA (2005) Biochemistry, 44, pp. 2926-2933. , PMID: 15723535
DOI: 10.1021/bi048393s
Boder, E.T., Jiang, W., Engineering antibodies for cancer therapy (2011) Annu Rev Chem Biomol Eng, 2, pp. 53-75. , PMID: 22432610
DOI: 10.1146/annurev-chembioeng-061010-114142
He, J., Liu, G., Vanderheyden, J.L., Dou, S., Mary, R., Hnatowich, D.J., Affinity enhancement bivalent morpholino for pretargeting: Initial evidence by surface plasmon resonance (2005) Bioconjug Chem, 16, pp. 338-345. , PMID: 15769087
DOI: 10.1021/bc049719c
Artificial DNA and surface plasmon resonance
The combined use of surface plasmon resonance (SPR) and modified or mimic oligonucleotides have expanded diagnostic capabilities of SPR-based biosensors and have allowed detailed studies of molecular recognition processes. This review summarizes the most significant advances made in this area over the past 15 years. Functional and conformationally restricted DNA analogs (e.g., aptamers and PNAs) when used as components of SPR biosensors contribute to enhance the biosensor sensitivity and selectivity. At the same time, the SPR technology brings advantages that allows forbetter exploration of underlying properties of non-natural nucleic acid structures such us DNAzymes, LNA and HNA.