ATOX1 gene silencing increases susceptibility to anticancer therapy based on copper ionophores or chelating drugs(724 views) Barresi V, Spampinato G, Musso N, Trovato Salinaro A, Rizzarelli E, Condorelli DF
J Chem Res (ISSN: 0162-0134, 1873-3344, 0162-0134print), 2016; 156: 145-152.
Keywords: Atox1, Chelating Drugs, Colon Cancer, Copper, Ionophores, Adenosine Triphosphatase, Chaperone, Chelating Agent, Cloxiquine, Copper Chelating Agent, Copper Ion, Copper Ionophore, Tetrakis(2 Pyridylmethyl)ethylenediamine, Peroxiredoxin 3, Unclassified Drug, Article, Caco 2 Cell Line, Cell Level, Controlled Study, Copper Protein Binding, Cytosol, Cytotoxicity, Drug Sensitivity, Gene Silencing, Homeostasis, Human, Human Cell, In Vitro Study, Intracellular Transport, Protein Depletion, Protein Expression, Protein Function, Rna Interference, Trans Golgi Network,
Affiliations: *** IBB - CNR ***
Department of Biomedical and Biotechnological Sciences, Unit of Medical Biochemistry, University of Catania, Via S. Sofia 64, Catania, Italy
Institute of Biostructures and Bioimaging, National Council of Research, UOS Catania, Italy
References: Festa, R.A., Thiele, D.J., Copper: An essential metal in biology (2011) Curr. Biol., 21 (21), pp. R877-R883. ,
Lutsenko, S., Human copper homeostasis: A network of interconnected pathways (2010) Curr. Opin. Chem. Biol., 14 (2), pp. 211-217
Harrison, M.D., Jones, C.E., Solioz, M., Dameron, C.T., Intracellular copper routing: The role of copper chaperones (2000) Trends Biochem. Sci., 25, pp. 29-32
Ding, W.Q., Liu, B., Vaught, J.L., Anticancer activity of the antibiotic clioquinol (2005) Cancer Res., 65, pp. 3389-3395
Ding, W.Q., Lind, S.E., Metal ionophores - An emerging class of anticancer drugs (2009) IUBMB Life, 61 (11), pp. 1013-1018
Margalioth, E.J., Schenker, J.G., Chevion, M., Copper and zinc levels in normal and malignant tissues (1983) Cancer, 52 (5), pp. 868-872. , (1)
Dìez, M., Cerdàn, F.J., Arroyo, M., Balibrea, J.L., Use of the copper/zinc ratio in the diagnosis of lung cancer (1989) Cancer, 63 (4), pp. 726-730. , (15)
Mao, X., Li, X., Sprangers, R., Wang, X., Venugopal, A., Wood, T., Zhang, Y., Schimmer, A.D., Clioquinol inhibits the proteasome and displays preclinical activity in leukemia and myeloma (2009) Leukemia, 23, pp. 585-590
Mao, X., Schimmer, A.D., The toxicology of clioquinol (2008) Toxicol. Lett., 182, pp. 1-6
Chen, D., Cui, Q.C., Yang, H., Barrea, R.A., Sarkar, F.H., Sheng, S., Yan, B., Dou, Q.P., Clioquinol, a therapeutic agent for Alzheimer's disease, has proteasome-inhibitory, androgen receptor suppressing, apoptosis-inducing, and antitumor activities in human prostate cancer cells and xenografts (2007) Cancer Res., 67, pp. 1636-1644
Daniel, K.G., Chen, D., Orlu, S., Cui, Q.C., Miller, F.R., Dou, Q.P., Clioquinol and pyrrolidinedithiocarbamate complex with copper to form proteasome inhibitors and apoptosis inducers in human breast cancer cells (2005) Breast Cancer Res., 7 (6), pp. R897-R908
Cao, B., Li, J., Zhu, J., Shen, M., Han, K., Zhang, Z., Yu, Y., Mao, X., The antiparasitic clioquinol induces apoptosis in leukemia and myeloma cells by inhibiting histone deacetylase activity (2013) J. Biol. Chem., 288 (47), pp. 34181-34189. , 22
Zhai, S., Yang, L., Cui, Q.C., Sun, Y., Dou, Q.P., Yan, B., Tumor cellular proteasome inhibition and growth suppression by 8-hydroxyquinoline and clioquinol requires their capabilities to bind copper and transport copper into cells (2010) J. Biol. Inorg. Chem., 15 (2), pp. 259-269
Sperandio, S., De Belle, I., Bredesen, D.E., An alternative, nonapoptotic form of programmed cell death (2000) Proc. Natl. Acad. Sci. U. S. A., 97, p. 14376
Tardito, S., Barilli, A., Bassanetti, I., Tegoni, M., Bussolati, O., Franchi-Gazzola, R., Mucchino, C., Marchiò, L., Copper-dependent cytotoxicity of 8-hydroxyquinoline derivatives correlates with their hydrophobicity and does not require caspase activation (2012) J. Med. Chem., 55, pp. 10448-10459
Carraway, R.E., Dobner, P.R., Zinc pyrithione induces ERK- and PKC-dependent necrosis distinct from TPEN-induced apoptosis in prostate cancer cells (2012) Biochim. Biophys. Acta, 1823 (2), pp. 544-557
Pang, W., Leng, X., Lu, H., Yang, H., Song, N., Tan, L., Jiang, Y., Guo, C., Depletion of intracellular zinc induces apoptosis of cultured hippocampal neurons through suppression of ERK signaling pathway and activation of caspase-3 (2013) Neurosci. Lett., 552, pp. 140-145. , 27
Hyun, H.J., Sohn, J.H., Ha, D.W., Ahn, Y.H., Koh, J.Y., Yoon, Y.H., Depletion of intracellular zinc and copper with TPEN results in apoptosis of cultured human retinal pigment epithelial cells (2001) Invest. Ophthalmol. Vis. Sci., 42 (2)
Klomp, L.W., Lin, S.J., Yuan, D.S., Klausner, R.D., Culotta, V.C., Gitlin, J.D., Identification and functional expression of HAH1, a novel human gene involved in copper homeostasis (1997) J. Biol. Chem., 272 (14), pp. 9221-9226. , 4
Hamza, I., Prohaska, J., Gitlin, J.D., Essential role for Atox1 in the copper-mediated intracellular trafficking of the Menkes ATPase (2003) Proc. Natl. Acad. Sci. U. S. A., 100 (3), pp. 1215-1220. , 4
Miyayama, T., Suzuki, K.T., Ogra, Y., Copper accumulation and compartmentalization in mouse fibroblast lacking metallothionein and copper chaperone. Atox1 (2009) Toxicol. Appl. Pharmacol., 237 (2), pp. 205-213
McRae, R., Lai, B., Fahrni, C.J., Copper redistribution in Atox1-deficient mouse fibroblast cells (2010) J. Biol. Inorg. Chem., 15 (1), pp. 99-105
Barresi, V., Palumbo, G.A., Musso, N., Consoli, C., Capizzi, C., Meli, C.R., Romano, A., Condorelli, D.F., Clonal selection of 11q CN-LOH and CBL gene mutation in a serially studied patient during MDS progression to AML (2010) Leuk. Res., 34 (11), pp. 1539-1542
Barresi, V., Romano, A., Musso, N., Capizzi, C., Consoli, C., Martelli, M.P., Palumbo, G.A., Condorelli, D.F., Broad copy neutral-loss of heterozygosity regions and rare recurring copy number abnormalities in normal karyotype-acute myeloid leukemia genomes (2010) Genes Chromosom. Cancer, 49 (11), pp. 1014-1023
Irizarry, R.A., Hobbs, B., Collin, F., Beazer-Barclay, Y.D., Antonellis, K.J., Scherf, U., Speed, T.P., Exploration, normalization, and summaries of high density oligonucleotide array probe level data (2003) Biostatistics, 4 (2), pp. 249-264
Mosmann, T., Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays (1983) J. Immunol. Methods, 65, pp. 55-63. , 55
Scherf, U., Ross, D.T., Waltham, M., Smith, L.H., Lee, J.K., Tanabe, L., Kohn, K.W., Weinstein, J.N., A gene expression database for the molecular pharmacology of cancer (2000) Nat. Genet., 24 (3), pp. 236-244
Livak, K.J., Schmittgen, T.D., Analysis of relative gene expression data using real-time quantitative PCR and the 2(- delta delta C(T)) method (2001) Methods, 25 (4), pp. 402-408
Barresi, V., Ragusa, A., Fichera, M., Musso, N., Castiglia, L., Rappazzo, G., Travali, S., Condorelli, D.F., Decreased expression of GRAF1/OPHN-1-L in the X-linked alpha thalassemia mental retardation syndrome (2010) BMC Med. Genet., 3, p. 28. , 6
Sheffer, M., Bacolod, M.D., Zuk, O., Giardina, S.F., Pincas, H., Barany, F., Paty, P.B., Domany, E., Association of survival and disease progression with chromosomal instability: A genomic exploration of colorectal cancer (2009) Proc. Natl. Acad. Sci. U. S. A., 106 (17), pp. 7131-7136. , 28
Lee, J., Peña, M.M., Nose, Y., Thiele, D.J., Biochemical characterization of the human copper transporter Ctr1 (2002) J. Biol. Chem., 277 (6), pp. 4380-4387
Itoh, S., Kim, H.W., Nakagawa, O., Ozumi, K., Lessner, S.M., Aoki, H., Akram, K., Fukai, T., Novel role of antioxidant-1 (Atox1) as a copper-dependent transcription factor involved in cell proliferation (2008) J. Biol. Chem., 283 (14), pp. 9157-9167. , 4
Muller, P.A., Klomp, L.W., ATOX1: A novel copper-responsive transcription factor in mammals? (2009) Int. J. Biochem. Cell Biol., 41, pp. 1233-1236
Fatfat, M., Merhi, R.A., Rahal, O., Stoyanovsky, D.A., Zaki, A., Haidar, H., Kagan, V.E., Machaca, K., Copper chelation selectively kills colon cancer cells through redox cycling and generation of reactive oxygen species (2014) BMC Cancer, 14, p. 527. , 21
Safaei, R., Maktabi, M.H., Blair, B.G., Larson, C.A., Howell, S.B., Effects of the loss of Atox1 on the cellular pharmacology of cisplatin (2009) J. Inorg. Biochem., 103, pp. 333-341
Van Den Berghe, P.V., Folmer, D.E., Malingre, H.E., Van Beurden, E., Klomp, A.E., Van De Sluis, B., Merkx, M., Klomp, L.W., Human copper transporter 2 is localized in late endosomes and lysosomes and facilitates cellular copper uptake (2007) Biochem. J., 407, pp. 49-59
Milardi, D., Rizzarelli, E., Neurodegeneration: Metallostasis and proteostasis (2011) R. Chem. Soc.
Fulda, S., Vucic, D., Targeting IAP proteins for therapeutic intervention in cancer (2012) Nat. Rev. Drug Discov., (11), pp. 109-124
Cater, M.A., Haupt, Y., Clioquinol induces cytoplasmic clearance of the X-linked inhibitor of apoptosis protein (XIAP): Therapeutic indication for prostate cancer (2011) Biochem. J., 436, pp. 481-491
Yoshizawa, K., Nozaki, S., Kitahara, H., Ohara, T., Kato, K., Kawashiri, S., Yamamoto, E., Copper efflux transporter (ATP7B) contributes to the acquisition of cisplatin-resistance in human oral squamous cell lines (2007) Oncol. Rep., 18, pp. 987-991
Ishida, S., Lee, J., Thiele, D.J., Herskowitz, I., Uptake of the anticancer drug cisplatin mediated by the copper transporter Ctr1 in yeast and mammals (2002) Proc. Natl. Acad. Sci. U. S. A., 99, pp. 14298-14302
Kelner, G.S., Lee, M., Clark, M.E., Maciejewski, D., McGrath, D., Rabizadeh, S., Lyons, T., Maki, R.A., The copper transport protein Atox1 promotes neuronal survival (2000) J. Biol. Chem., 275, pp. 580-584
Hatori, Y., Clasen, S., Hasan, N.M., Barry, A.N., Lutsenko, S., Functional partnership of the copper export machinery and glutathione balance in human cells (2012) J. Biol. Chem., 287, pp. 26678-26687
Jeney, V., Itoh, S., Wendt, M., Gradek, Q., Ushio-Fukai, M., Harrison, D.G., Fukai, T., Role of antioxidant-1 in extracellular superoxide dismutase function and expression (2005) Circ. Res., 96, pp. 723-729
Hatori, Y., Lutsenko, S., An expanding range of functions for the copper chaperone/antioxidant protein Atox1 (2013) Antioxid. Redox Signal., 19, pp. 945-957
Burkhead, J.L., Ralle, M., Wilmarth, P., David, L., Lutsenko, S., Elevated copper remodels hepatic RNA processing machinery in the mouse model of Wilson disease (2011) J. Mol. Biol., 406, pp. 44-58
Suzuki, K.T., Someya, A., Komada, Y., Ogra, Y., Roles of metallothionein in copper homeostasis: Responses to copper-deficient diets in mice (2002) J. Inorg. Biochem., 88, pp. 173-182
Nartey, N.O., Frei, J.V., Cherian, M.G., Hepatic copper and metallothionein distribution in Wilson disease (hepatolenticular degeneration) (1987) Lab. Investig., 57, pp. 397-401
Makhov, P., Golovine, K., Uzzo, R.G., Rothman, J., Crispen, P.L., Shaw, T., Scoll, B.J., Kolenko, V.M., Zinc chelation induces rapid depletion of the X-linked inhibitor of apoptosis (XIAP) and sensitizes prostate cancer cells to TRAIL-mediated apoptosis (2008) Cell Death Differ., 15 (11), pp. 1745-1751
Nakatani, T., Tawaramoto, M., Opare, K.D., Kojima, A., Matsui-Yuasa, I., Apoptosis induced by chelation of intracellular zinc is associated with depletion of cellular reduced glutathione level in rat hepatocytes (2000) Chem. Biol. Interact., 125, pp. 151-163
ATOX1 gene silencing increases susceptibility to anticancer therapy based on copper ionophores or chelating drugs