Persistent cystic fibrosis isolate Pseudomonas aeruginosa strain RP73 exhibits an under-acylated LPS structure responsible of its low inflammatory activity(367 views) Di Lorenzo F, Silipo A, Bianconi I, Lore' NI, Scamporrino A, Sturiale L, Garozzo D, Lanzetta R, Parrilli M, Bragonzi A, Molinaro A
Keywords: Chronic Infections In Cystic Fibrosis, Lipid A, Lipopolysaccharide, Pseudomonas Aeruginosa, Structural Analysis, Deoxyribonuclease, Lipooligosaccharide, Proteinase, Lipid-Linked Oligosaccharides, Peroxidase, Article, Bacterium Isolation, Biological Activity, Carbon Nuclear Magnetic Resonance, Controlled Study, Drug Structure, Entamoeba Coli, Freeze Drying, Heteronuclear Multiple Bond Correlation, Heteronuclear Single Quantum Coherence, Human, Hydrolysis, Immune Response, Inflammatory Activity, Innate Immunity, Lung Lavage, Mass Fragmentography, Matrix Assisted Laser Desorption Ionization Time Of Flight Mass Spectrometry, Nonhuman, Nuclear Magnetic Resonance Spectroscopy, Nuclear Overhauser Effect, Polyacrylamide Gel Electrophoresis, Proton Nuclear Magnetic Resonance, Silver Staining, Acylation, Animal, C57bl Mouse, Chemistry, Immunology, Inflammation, Isolation And Purification, Metabolism, Microbiology, Neutrophil Chemotaxis, Pathology, Physiology, Carbon-13 Magnetic Resonance Spectroscopy, Inbred C57bl, Neutrophil Infiltration, Proton Magnetic Resonance Spectroscopy, Matrix-Assisted Laser Desorption-Ionization,
Affiliations: *** IBB - CNR ***
Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Universitario Monte S. Angelo, Via Cintia 4, Napoli, Italy
Infection and Cystic Fibrosis Unit, San Raffaele Scientific Institute, Milano, Italy
Istituto di Chimica e Tecnologia dei Polimeri - ICTP - CNR, Via P. Gaifami 18, Catania, Italy
References: Alexander, C., Rietschel, E.T., Bacterial lipopolysaccharides and innate immunity (2001) J. Endotoxin Res., 7, pp. 167-20
Birnbaum, G.I., Conformations of ammonium 3-deoxy-d-manno-2-octulosonate (KDO) and methyl α- and β-ketopyranosides of KDO: X-ray structure and 1H NMR analyses (1987) J. Carbohydr. Chem., 6, pp. 17-39
Bock, K., Isolation and structural analysis of oligosaccharide phosphates containing the complete carbohydrate chain of the lipopolysaccharide from Vibrio cholerae strain H11 (non-O1) (1994) Eur. J. Biochem., 225, pp. 1029-1039
Bragonzi, A., Sequence diversity of the mucABD locus in Pseudomonas aeruginosa isolates from patients with cystic fibrosis (2006) Microbiology, 152, pp. 3261-3269
Bragonzi, A., Pseudomonas aeruginosa microevolution during cystic fibrosis lung infection establishes clones with adapted virulence (2009) AJRCCM, 180, pp. 138-145
Bystrova, O.V., Structural studies on the core and the O-polysaccharide repeating unit of Pseudomonas aeruginosa immunotype 1 lipopolysaccharide (2002) Eur. J. Biochem., 269, pp. 2194-2203
Bystrova, O.V., Full structure of the lipopolysaccharide of Pseudomonas aeruginosa immunotype 5 (2004) Biochemistry (Mosc.), 69 (2), pp. 170-175
Caroff, M., Detergent-accelerated hydrolysis of bacterial endotoxins and determination of the anomeric configuration of the glycosyl phosphate present in the isolated lipid A fragment of the Bordetella pertussis endotoxin (1988) Carbohydr. Res., 175, pp. 273-282
Cigana, C., Pseudomonas aeruginosa exploits lipid A and muropeptides modification as a strategy to lower innate immunity during cystic fibrosis lung infection (2009) PLoS ONE, 4 (12), p. e8439
Ciucanu, I., Kerek, F., A simple and rapid method for the permethylation of carbohydrates (1984) Carbohydr. Res., 131, pp. 209-217
Dean, C.R., WbjA adds glucose to complete the O-antigen trisaccharide repeating unit of the lipopolysaccharide of Pseudomonas aeruginosa serogroup O11 (2002) J. Bacteriol., 184 (1), pp. 323-326
De Castro, C., Microbe-associated molecular patterns in innate immunity: extraction and chemical analysis of Gram-negative bacterial lipopolysaccharides (2010) Methods Enzymol., 480, pp. 89-115
De Soyza, A., Lipopolysaccharide structure and biological activity from the cystic fibrosis pathogens Burkholderia cepacia complex (2012) Carbohydr. Chem., 38, pp. 13-39
Döring, G., Immunologic aspects of cystic fibrosis (1988) Chest, 94, pp. 109S-115S
Ernst, R.K., Specific lipopolysaccharide found in cystic fibrosis airway Pseudomonas aeruginosa (1999) Science, 286, p. 1561
Ernst, R.K., Pseudomonas aeruginosa lipid A diversity and its recognition by Toll-like receptor 4 (2003) J. Endotoxin Res., 9, pp. 395-400
Galanos, C., A new method for the extraction of R lipopolysaccharides (1969) Eur. J. Biochem., 9, pp. 245-249
Gibson, R.L., Pathophysiology and management of pulmonary infections in cystic fibrosis (2003) Am. J. Respir. Crit. Care Med., 168, pp. 918-951
Hajjar, A.M., Human Toll-like receptor 4 recognizes host-specific LPS modifications (2002) Nat. Immunol., 3, pp. 354-359
Holst, O., Preparation and structural analysis of oligosaccharide monophosphates obtained from the lipopolysaccharide of recombinant strains of Salmonella minnesota and Escherichia coli expressing the genus-specific epitope of Chlamydia lipopolysaccharide (1994) Eur. J. Biochem., 222, pp. 183-194
Holst, O., The structures of oligosaccharide bisphosphates isolated from the lipopolysaccharide of a recombinant Escherichia coli strain expressing the gene gseA [3-deoxy-d-manno-octulopyranosonic acid (Kdo) transferase of Chlamydia psittaci 6BC (1995) Eur. J. Biochem., 229, pp. 194-200
Holst, O., (1999) Endotoxin in Health and Disease, pp. 115-154. , Marcel Dekker, New York, H. Brade, D.C. Morrsion, S. Opal, S. Vogel (Eds.)
Holst, O., Deacylation of lipopolysaccharides and isolation of oligosaccharide phosphates (2000) Methods Mol. Biol., 145, pp. 345-353
Holst, O., Chemical structure of the core region of lipopolysaccharides. An update (2002) Trends Glycosci. Glycotechnol., 14, pp. 87-103
Kittelberger, R., Hilbink, F.J., Sensitive silver-staining detection of bacterial lipopolysaccharides in polyacrylamide gels (1993) Biochem. Biophys. Methods, 26, pp. 81-86
Knirel, Y.A., Structural analysis of the lipopolysaccharide core of a rough, cystic fibrosis isolate of Pseudomonas aeruginosa (2001) Eur. J. Biochem., 268 (17), pp. 4708-4719
Kocíncová, D., Lam, J.S., Structural diversity of the core oligosaccharide domain of Pseudomonas aeruginosa lipopolysaccharide (2011) Biochemistry (Mosc.), 76 (7), pp. 755-760
Kooistra, O., Structure of a highly phosphorylated lipopolysaccharide core in the Delta algC mutants derived from Pseudomonas aeruginosa wild-type strains PAO1 (serogroup O5) and PAC1R (serogroup O3) (2003) Carbohydr. Res., 338 (23), pp. 2667-2677
Kresse, A.U., Impact of large chromosomal inversions on the adaptation and evolution of Pseudomonas aeruginosa chronically colonizing cystic fibrosis lungs (2003) Mol. Microbiol., 47, pp. 145-158
Leontein, K., Lönngren, J., Determination of the absolute configuration of sugars by gas-liquid chromatography of their acetylated 2-octyl glycosides (1978) Methods Carbohydr. Chem., 62, pp. 359-362
Masoud, H., Structural elucidation of the lipopolysaccharide core region of the O-chain-deficient mutant strain A28 from Pseudomonas aeruginosa serotype 06 (International Antigenic Typing Scheme) (1995) J. Bacteriol., 177 (23), pp. 6718-6726
Moalli, F., The therapeutic potential of the humoral pattern recognition molecule PTX3 in chronic lung infection caused by Pseudomonas aeruginosa (2011) J. Immunol., 186, pp. 5425-5434
Paroni, M., Response of CFTR-deficient mice to long-term Pseudomonas aeruginosa chronic infection and PTX3 therapy (2013) J. Infect. Dis., 208, pp. 130-138
Piantini, U., Multiple quantum filters for elucidating NMR coupling networks (1982) J. Am. Chem. Soc., 104, pp. 6800-6801
Pier, G.B., Promises and pitfalls of Pseudomonas aeruginosa lipopolysaccharide as a vaccine antigen (2003) Carbohydr. Res., 338, pp. 2549-2556
Rance, M., Improved spectral resolution in cosy 1H NMR spectra of proteins via double quantum filtering (1983) Biochem. Biophys. Res. Commun., 117, pp. 479-485
Rowe, P.S., Meadow, P.M., Structure of the core oligosaccharide from the lipopolysaccharide of Pseudomonas aeruginosa PAC1R and its defective mutants (1983) Eur. J. Biochem., 132 (2), pp. 329-337
Sadovskaya, I., Structural elucidation of the lipopolysaccharide core regions of the wild-type strain PAO1 and O-chain-deficient mutant strains AK1401 and AK1012 from Pseudomonas aeruginosa serotype O5 (1998) Eur. J. Biochem., 255 (3), pp. 673-684
Sánchez Carballo, P.M., Elucidation of the structure of an alanine-lacking core tetrasaccharide trisphosphate from the lipopolysaccharide of Pseudomonas aeruginosa mutant H4 (1999) Eur. J. Biochem., 261 (2), pp. 500-508
Silipo, A., Ammonium hydroxide hydrolysis: a valuable support in the MALDI-TOF mass spectrometry analysis of Lipid A fatty acid distribution (2002) J. Lipid Res., 43, pp. 2188-2195
Silipo, A., The structure of the phosphorylated carbohydrate backbone of the lipopolysaccharide of the phytopathogen bacterium Pseudomonas tolaasii (2004) Carbohydr. Res., 339, pp. 2241-2248
Silipo, A., Structure elucidation of the highly heterogeneous lipid A from the lipopolysaccharide of the Gram-negative extremophile bacterium Halomonas magadiensis strain 21 M1 (2004) Eur. J. Org. Chem., 10, pp. 2263-2271
Silipo, A., Full structural characterisation of the lipooligosaccharide of a Burkholderia pyrrocinia clinical isolate (2006) Eur. J. Org. Chem., 21, pp. 4874-4883
Smith, E.E., Genetic adaptation by Pseudomonas aeruginosa to the airways of cystic fibrosis patients (2006) Proc. Natl. Acad. Sci. U.S.A., 103, pp. 8487-8492
States, D.J., A two-dimensional nuclear Overhauser experiment with pure absorption phase in four quadrants (1982) J. Magn. Reson., 48, pp. 286-292
Stover, C.K., Complete genome sequence of Pseudomonas aeruginosa PA01, an opportunistic pathogen (2000) Nature, 406, pp. 959-964
Sturiale, L., Reflectron MALDI TOF and MALDI TOF/TOF mass spectrometry reveal novel structural details of native lipooligosaccharides (2011) J. Mass Spectrom., 46, pp. 1135-1142
Persistent cystic fibrosis isolate Pseudomonas aeruginosa strain RP73 exhibits an under-acylated LPS structure responsible of its low inflammatory activity