Improving Protein Crystal Quality by the Without-Oil Microbatch Method: Crystallization and Preliminary X-ray Diffraction Analysis of Glutathione Synthetase from Pseudoalteromonas haloplanktis
Improving Protein Crystal Quality by the Without-Oil Microbatch Method: Crystallization and Preliminary X-ray Diffraction Analysis of Glutathione Synthetase from Pseudoalteromonas haloplanktis(364 views) Merlino A, Russo Krauss I, Albino A, Pica A, Vergara A, Masullo M, De Vendittis E, Sica F
Dipartimento di Chimica Paolo Corradini, Università di Napoli Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cinthia, Naples I-80126, Italy
Istituto di Biostrutture e Bioimmagini, CNR, Via Mezzocannone 16, Naples I-80134, Italy
Dipartimento di Biochimica e Biotecnologie Mediche, Università di Napoli Federico II, Via Pansini 5, Naples I-80131, Italy
Dipartimento di Studi delle Istituzioni e dei Sistemi Territoriali, Università di Napoli Parthenope, Via Medina 40, Naples I-80133, Italy
References: Dalle-Donne, I., Rossi, R., Giustarini, D., Colombo, R., Milzani, A., S-glutathionylation in protein redox regulation (2007) Free Radic. Biol. Med, 43, pp. 883-89
Circu, M.L., Aw, T.Y., Glutathione and apoptosis (2008) Free Radic. Res, 42, pp. 689-706
Pallardo, F.V., Markovic, J., Garcia, J.L., Vina, J., Role of nuclear glutathione as a key regulator of cell proliferation (2009) Mol. Asp. Med, 30, pp. 77-85
Yamaguchi, H., Kato, H., Hata, Y., Nishioka, T., Kimura, A., Oda, J., Katsube, Y., Three-dimensional structure of the glutathione synthetase from Escherichia coli B at 2.0 Å resolution (1993) J. Mol. Biol, 229, pp. 1083-1100
Mooz, E.D., Meister, A., Tripeptide (glutathione) synthetase: Purification, properties and mechanism of action (1967) Biochemistry, 6, pp. 1722-1734
Gali, R.R., Board, P.G., Sequencing and expression of a cDNA for human glutathione synthetase (1995) Biochem. J, 310, pp. 353-358
Ota, T., Suzuki, Y., Nishikawa, T., Otsuki, T., Sugiyama, T., Irie, R., Wakamatsu, A., Nagai, K., Complete sequencing and characterization of 21,243 full-length human cDNAs (2004) Nat. Genet, 36, pp. 40-45
Huang, C.S., He, W., Meister, A., Anderson, M.E., Amino acid sequence of rat kidney glutathione synthetase (1995) Proc. Natl. Acad. Sci. USA, 92, pp. 1232-1236
Gushima, H., Yasuda, S., Soeda, E., Yokota, M., Kimura, A., Complete nucleotide sequence of the E. coli glutathione synthetase gsh-II (1984) Nucleic Acids Res, 12, pp. 9299-9307
Polekhina, G., Board, P.G., Gali, R.R., Rossjohn, J., Parker, M.W., Molecular basis of glutathione synthetase deficiency and a rare gene permutation event (1999) EMBO J, 18, pp. 3204-3213
Castellano, I., di Maro, A., Ruocco, M.R., Chambery, A., Parente, A., di Martino, M.T., Parlato, G., de Vendittis, E., Psychrophilic superoxide dismutase from Pseudoalteromonas haloplanktis: Biochemical characterization and identification of a highly reactive cysteine residue (2006) Biochimie, 88, pp. 1377-1389
Castellano, I., Ruocco, M.R., Cecere, F., di Maro, A., Chambery, A., Michniewicz, A., Parlato, G., de Vendittis, E., Glutathionylation of the iron superoxide dismutase from the psychrophilic eubacterium Pseudoalteromonas haloplanktis. Biochim. Biophys (2008) Acta Protein Proteonomics, 1784, pp. 816-826
Merlino, A., Russo Krauss, I., Castellano, I., de Vendittis, E., Rossi, B., Conte, M., Vergara, A., Sica, F., Structure and flexibility in cold-adapted iron superoxide dismutases: The case of the enzyme isolated from Pseudoalteromonas haloplanktis (2010) J. Struct. Biol, 172, pp. 343-352
Matsuda, K., Mizuguchi, K., Nishioka, T., Kato, H., Go, N., Oda, J., Crystal structure of glutathione synthetase at optimal pH: Domain architecture and structural similarity with other proteins (1996) Protein Eng, 9, pp. 1083-1092
Hara, T., Kato, H., Katsube, Y., Oda, J.A., pseudo-Michaelis quaternary complex in the reverse reaction of a ligase: Structure of Escherichia coli B glutathione synthetase complexed with ADP, glutathione, and sulfate at 2.0 Å resolution (1996) Biochemistry, 35, pp. 11967-11974
Chayen, N.E., Shaw Stewart, P.D., Maeder, D.L., Blow, D.M., An automated system for micro-batch protein crystallization and screening (1990) J. Appl. Cryst, 23, pp. 297-302
Chayen, N.E., Recent advances in methodology for the crystallization of biological macromolecules (1999) J. Cryst. Growth, 199, pp. 649-655
Martins, P.M., Pessoa, J., Sarkany, Z., Rocha, F., Damas, A.M., Rationalizing protein crystallization Screenings through water equilibration theory and protein solubility data (2008) Cryst. Growth Des, 8, pp. 4233-4243
Rayment, I., Small-scale batch crystallization of proteins revisited: An underutilized way to grow large protein crystals (2002) Structure, 10, pp. 147-151
Matthews, B.W., Solvent content of protein crystals (1968) J. Mol. Biol, 33, pp. 491-497
Medigue, C., Krin, E., Pascal, G., Barbe, V., Bernsel, A., Bertin, P.N., Cheung, F., Duilio, A., Coping with cold: The genome of the versatile marine Antarctica bacterium Pseudoalteromonas haloplanktis TAC125 (2005) Genome Res, 15, pp. 1325-1335
Otwinowski, Z., Minor, W., Processing of X-ray diffraction data collected in oscillation mode (1997) Methods Enzymol, 276, pp. 307-326
Evans, P., Scaling and assessment of data quality (2006) Acta Cryst. D, 62, pp. 72-82
Weiss, M.S., Global indicators of X-ray data quality (2001) J. Appl. Crystallogr, 34, pp. 130-135
Storoni, L.C., McCoy, A.J., Read, R.J., Likelihood-enhanced fast rotation functions (2004) Acta Crystallogr. D Biol. Crystallogr, 60, pp. 432-438
Circu, M. L., Aw, T. Y., Glutathione and apoptosis (2008) Free Radic. Res, 42, pp. 689-706
Pallardo, F. V., Markovic, J., Garcia, J. L., Vina, J., Role of nuclear glutathione as a key regulator of cell proliferation (2009) Mol. Asp. Med, 30, pp. 77-85
Mooz, E. D., Meister, A., Tripeptide (glutathione) synthetase: Purification, properties and mechanism of action (1967) Biochemistry, 6, pp. 1722-1734
Gali, R. R., Board, P. G., Sequencing and expression of a cDNA for human glutathione synthetase (1995) Biochem. J, 310, pp. 353-358
Huang, C. S., He, W., Meister, A., Anderson, M. E., Amino acid sequence of rat kidney glutathione synthetase (1995) Proc. Natl. Acad. Sci. USA, 92, pp. 1232-1236
Chayen, N. E., Shaw Stewart, P. D., Maeder, D. L., Blow, D. M., An automated system for micro-batch protein crystallization and screening (1990) J. Appl. Cryst, 23, pp. 297-302
Chayen, N. E., Recent advances in methodology for the crystallization of biological macromolecules (1999) J. Cryst. Growth, 199, pp. 649-655
Martins, P. M., Pessoa, J., Sarkany, Z., Rocha, F., Damas, A. M., Rationalizing protein crystallization Screenings through water equilibration theory and protein solubility data (2008) Cryst. Growth Des, 8, pp. 4233-4243
Matthews, B. W., Solvent content of protein crystals (1968) J. Mol. Biol, 33, pp. 491-497
Weiss, M. S., Global indicators of X-ray data quality (2001) J. Appl. Crystallogr, 34, pp. 130-135
Storoni, L. C., McCoy, A. J., Read, R. J., Likelihood-enhanced fast rotation functions (2004) Acta Crystallogr. D Biol. Crystallogr, 60, pp. 432-438
Improving Protein Crystal Quality by the Without-Oil Microbatch Method: Crystallization and Preliminary X-ray Diffraction Analysis of Glutathione Synthetase from Pseudoalteromonas haloplanktis
Glutathione synthetases catalyze the ATP-dependent synthesis of glutathione from L-gamma-glutamyl-L-cysteine and glycine. Although these enzymes have been sequenced and characterized from a variety of biological sources, their exact catalytic mechanism is not fully understood and nothing is known about their adaptation at extremophilic environments. Glutathione synthetase from the Antarctic eubacterium Pseudoalteromonas haloplanktis (PhGshB) has been expressed, purified and successfully crystallized. An overall improvement of the crystal quality has been obtained by adapting the crystal growth conditions found with vapor diffusion experiments to the without-oil microbatch method. The best crystals of PhGshB diffract to 2.34 angstrom resolution and belong to space group P2(1)2(1)2(1), with unit-cell parameters a = 83.28 angstrom, b = 119.88 angstrom, c = 159.82 angstrom. Refinement of the model, obtained using phases derived from the structure of the same enzyme from Escherichia coli by molecular replacement, is in progress. The structural determination will provide the first structural characterization of a psychrophilic glutathione synthetase reported to date.
Improving Protein Crystal Quality by the Without-Oil Microbatch Method: Crystallization and Preliminary X-ray Diffraction Analysis of Glutathione Synthetase from Pseudoalteromonas haloplanktis
Improving Protein Crystal Quality by the Without-Oil Microbatch Method: Crystallization and Preliminary X-ray Diffraction Analysis of Glutathione Synthetase from Pseudoalteromonas haloplanktis