Mutational and structural study of RipA, a key enzyme in Mycobacterium tuberculosis cell division: Evidence for the l-to-d inversion of configuration of the catalytic cysteine
Mutational and structural study of RipA, a key enzyme in Mycobacterium tuberculosis cell division: Evidence for the l-to-d inversion of configuration of the catalytic cysteine(487 views) Squeglia F, Ruggiero A, Romano M, Vitagliano L, Berisio R
Lindorff-Larsen, K., Piana, S., Palmo, K., Maragakis, P., Klepeis, J.L., Dror, R.O., Shaw, D.E., (2010) Proteins, 78, pp. 1950-1958
Martínez-Caballero, S., Lee, M., Artola-Recolons, C., Carrasco-López, C., Hesek, D., Spink, E., Lastochkin, E., Hermoso, J.A., (2013) J. Am. Chem. Soc., 135, pp. 10318-10321
Meroueh, S.O., Bencze, K.Z., Hesek, D., Lee, M., Fisher, J.F., Stemmler, T.L., Mobashery, S., (2006) Proc. Natl Acad. Sci. USA, 103, pp. 4404-4409
Nikitushkin, V.D., Demina, G.R., Shleeva, M.O., Kaprelyants, A.S., (2013) Antonie Van Leeuwenhoek, 103, pp. 37-46
Otwinowski, Z., Minor, W., (1997) Methods Enzymol., 276, pp. 307-326
Rossi, P., Aramini, J.M., Xiao, R., Chen, C.X., Nwosu, C., Owens, L.A., Maglaqui, M., Montelione, G.T., (2009) Proteins, 74, pp. 515-519
Ruggiero, A., De Simone, P., Smaldone, G., Squeglia, F., Berisio, R., (2012) Curr. Protein Pept. Sci., 13, pp. 756-766
Ruggiero, A., Marasco, D., Squeglia, F., Soldini, S., Pedone, E., Pedone, C., Berisio, R., (2010) Structure, 18, pp. 1184-1190
Ruggiero, A., Marchant, J., Squeglia, F., Makarov, V., De Simone, A., Berisio, R., (2013) J. Biomol. Struct. Dyn., 31, pp. 195-205
Ruggiero, A., Squeglia, F., Esposito, C., Marasco, D., Pedone, E., Pedone, C., Berisio, R., (2010) Protein Pept. Lett., 17, pp. 70-73
Sheldrick, G.M., (2008) Acta Cryst., A64, pp. 112-122
Squeglia, F., Marchetti, R., Ruggiero, A., Lanzetta, R., Marasco, D., Dworkin, J., Petoukhov, M., Silipo, A., (2011) J. Am. Chem. Soc., 133, pp. 20676-20679
Squeglia, F., Romano, M., Ruggiero, A., Vitagliano, L., De Simone, A., Berisio, R., (2013) Biophys. J., 104, pp. 2530-2539
Storer, A.C., Ménard, R., (1994) Methods Enzymol., 244, pp. 486-500
Tomiyama, T., Asano, S., Furiya, Y., Shirasawa, T., Endo, N., Mori, H., (1994) J. Biol. Chem., 269, pp. 10205-10208
Winn, M.D., (2011) Acta Cryst., D67, pp. 235-242
Xu, Q., (2010) Acta Cryst., F66, pp. 1354-1364
Zhang, W., Sulea, T., Tao, L., Cui, Q., Purisima, E.O., Vongsamphanh, R., Lachance, P., Ménard, R., (2011) Biochemistry, 50, pp. 4775-4775
B th, D., Schneider, G., Schnell, R., (2011) J. Mol. Biol., 413, pp. 247-260
Chao, M. C., Kieser, K. J., Minami, S., Mavrici, D., Aldridge, B. B., Fortune, S. M., Alber, T., Rubin, E. J., (2013) PLoS Pathog., 9, p. e1003197
Cloos, P. A., Christgau, S., (2002) Matrix Biol., 21, pp. 39-52
Heck, S. D., (1994) Science, 266, pp. 1065-1068
Hett, E. C., Chao, M. C., Deng, L. L., Rubin, E. J., (2008) PLoS Pathog., 4, p. e1000001
Hett, E. C., Rubin, E. J., (2008) Microbiol. Mol. Biol. Rev., 72, pp. 126-156
Kamphuis, I. G., Kalk, K. H., Swarte, M. B., Drenth, J., (1984) J. Mol. Biol., 179, pp. 233-256
Laskowski, R. A., Rullmannn, J. A., MacArthur, M. W., Kaptein, R., Thornton, J. M., (1996) J. Biomol. NMR, 8, pp. 477-486
Layec, S., G rard, J., Legu, V., Chapot-Chartier, M. -P., Courtin, P., Borges, F., Decaris, B., Leblond-Bourget, N., (2009) Mol Microbiol., 71, pp. 1205-1217
Mart nez-Caballero, S., Lee, M., Artola-Recolons, C., Carrasco-L pez, C., Hesek, D., Spink, E., Lastochkin, E., Hermoso, J. A., (2013) J. Am. Chem. Soc., 135, pp. 10318-10321
Meroueh, S. O., Bencze, K. Z., Hesek, D., Lee, M., Fisher, J. F., Stemmler, T. L., Mobashery, S., (2006) Proc. Natl Acad. Sci. USA, 103, pp. 4404-4409
Murshudov, G. N., Skub k, P., Lebedev, A. A., Pannu, N. S., Steiner, R. A., Nicholls, R. A., Winn, M. D., Vagin, A. A., (2011) Acta Cryst., D67, pp. 355-367
Nikitushkin, V. D., Demina, G. R., Shleeva, M. O., Kaprelyants, A. S., (2013) Antonie Van Leeuwenhoek, 103, pp. 37-46
Sheldrick, G. M., (2008) Acta Cryst., A64, pp. 112-122
Storer, A. C., M nard, R., (1994) Methods Enzymol., 244, pp. 486-500
Winn, M. D., (2011) Acta Cryst., D67, pp. 235-242
Mutational and structural study of RipA, a key enzyme in Mycobacterium tuberculosis cell division: Evidence for the l-to-d inversion of configuration of the catalytic cysteine
RipA is a key cysteine protease of Mycobacterium tuberculosis as it is responsible for bacterial daughter-cell separation. Although it is an important target for antimicrobial development, its mechanism of action and its interaction pattern with its substrate are hitherto unknown. By combining crystallo graphic and mutational studies with functional assays and molecular modelling, it is shown that the catalytic activity of the enzyme relies on a Cys-His-Glu triad and the impact of the mutation of each residue of the triad on the structure and function of RipA is analysed. Unexpectedly, the crystallo graphic analyses reveal that mutation of the glutamic acid to alanine results in inversion of the configuration of the catalytic cysteine. The consequent burial of the catalytic cysteine side chain explains the enzyme inactivation upon mutation. These data point to a novel role of the acidic residue often present in the triad of cysteine proteases as a supervisor of cysteine configuration through preservation of the local structural integrity.
Mutational and structural study of RipA, a key enzyme in Mycobacterium tuberculosis cell division: Evidence for the l-to-d inversion of configuration of the catalytic cysteine
Mutational and structural study of RipA, a key enzyme in Mycobacterium tuberculosis cell division: Evidence for the l-to-d inversion of configuration of the catalytic cysteine