Keywords: Fab Fragments, Melanoma, Monoclonal Antibody, Nodal, Antigen, Cripto 1, Protein Nodal, Receptor, Smad2 Protein, Smad3 Protein, Unclassified Drug, Antibody Specificity, Antibody Titer, Article, Blood Analysis, Controlled Study, Deglycosylation, Enzyme Linked Immunosorbent Assay, Epitope Mapping, Female, Fluorescence Activated Cell Sorting, Human, Human Cell, Hybridoma, Matrix Assisted Laser Desorption Ionization Time Of Flight Mass Spectrometry, Mouse, Nonhuman, Protein Analysis, Protein Binding, Protein Degradation, Protein Phosphorylation, Solid Phase Synthesis, Surface Plasmon Resonance, Western Blotting, Fab Fragments Monoclonal Antibody Melanoma Nodal Spr, Amino Acid Sequence
, Antibodies, Monoclonal Chemistry Pharmacology
, Epitope Mapping Methods
, Epitopes Chemistry Metabolism
, Gpi-Linked Proteins Chemistry Metabolism
, Growth Differentiation Factors Chemistry
, Immunoglobulin Fab Fragments Chemistry Metabolism
, Intercellular Signaling Peptides And Proteins Chemistry Metabolism
, Models, Molecular
, Molecular Sequence Data
, Neoplasm Proteins Chemistry Metabolism
, Nodal Protein Antagonists, Inhibitors Chemistry Metabolism
, Peptides Chemical Synthesis Chemistry Isolation, Purification Metabolism
, Protein Structure, Secondary,
Affiliations: *** IBB - CNR ***
Institute of Biostructure and Bioimaging, National Research Council (IBB-CNR) and Centro Interuniversitario di Ricerca sui Peptidi Bioattivi (CIRPeB), Universita degli Studi di Napoli "Federico II", Naples 80134, Italy. annalia.foca@gmail.com., Department of Pharmacy, Universita degli Studi di Napoli "Federico II", Naples 80131, Italy. annalia.foca@gmail.com., Bioker Multimedica, Naples 80131, Italy. Luca.Sanguigno@multimedica.it., Institute of Biostructure and Bioimaging, National Research Council (IBB-CNR) and Centro Interuniversitario di Ricerca sui Peptidi Bioattivi (CIRPeB), Universita degli Studi di Napoli "Federico II", Naples 80134, Italy. giuseppina.foca@gmail.com., Department of Pharmacy, Universita degli Studi di Napoli "Federico II", Naples 80131, Italy. giuseppina.foca@gmail.com., Program in Cancer Biology and Epigenomics, Stanley Manne Children's Research Institute at Ann and Robert H. Lurie Children's Hospital of Chicago, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA. LStrizzi@luriechildrens.org., Institute of Biostructure and Bioimaging, National Research Council (IBB-CNR) and Centro Interuniversitario di Ricerca sui Peptidi Bioattivi (CIRPeB), Universita degli Studi di Napoli "Federico II", Naples 80134, Italy. robertaiannitti@gmail.com., Institute of Biostructure and Bioimaging, National Research Council (IBB-CNR) and Centro Interuniversitario di Ricerca sui Peptidi Bioattivi (CIRPeB), Universita degli Studi di Napoli "Federico II", Naples 80134, Italy. rosanna.palumbo@cnr.it., Program in Cancer Biology and Epigenomics, Stanley Manne Children's Research Institute at Ann and Robert H. Lurie Children's Hospital of Chicago, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA. m-hendrix@northwestern.edu., Department of Molecular Medicine and Medical Biotechnologies, Universita degli Studi di Napoli "Federico II", Naples 80131, Italy. leonardi@unina.it., Ins
References: Schier, A.F., Nodal signaling in vertebrate development (2003) Annu. Rev. Cell Dev. Biol, 19, pp. 589-62
Shen, M.M., Nodal signaling: Developmental roles and regulation (2007) Development, 134, pp. 1023-1034
Strizzi, L., Hardy, K.M., Kirschmann, D.A., Ahrlund-Richter, L., Hendrix, M.J., Nodal expression and detection in cancer: Experience and challenges (2012) Cancer Res, 72, pp. 1915-1920
Strizzi, L., Postovit, L.M., Margaryan, N.V., Lipavsky, A., Gadiot, J., Blank, C., Seftor, R.E., Hendrix, M.J., Nodal as a biomarker for melanoma progression and a new therapeutic target for clinical intervention (2009) Expert. Rev. Dermatol., 4, pp. 67-78
Lawrence, M.G., Margaryan, N.V., Loessner, D., Collins, A., Kerr, K.M., Turner, M., Seftor, E.A., Postovit, L.M., Reactivation of embryonic nodal signaling is associated with tumor progression and promotes the growth of prostate cancer cells (2011) Prostate, 71, pp. 1198-1209
Quail, D.F., Siegers, G.M., Jewer, M., Postovit, L.M., Nodal signalling in embryogenesis and tumorigenesis (2013) Int. J. Biochem. Cell Biol., 45, pp. 885-898
Topczewska, J.M., Postovit, L.M., Margaryan, N.V., Sam, A., Hess, A.R., Wheaton, W.W., Nickoloff, B.J., Hendrix, M.J., Embryonic and tumorigenic pathways converge via Nodal signaling: Role in melanoma aggressiveness (2006) Nat. Med, 12, pp. 925-932
Seftor, E.A., Seftor, R.E., Weldon, D.S., Kirsammer, G.T., Margaryan, N.V., Gilgur, A., Hendrix, M.J., Melanoma tumor cell heterogeneity: A molecular approach to study subpopulations expressing the embryonic morphogen nodal (2014) Semin. Oncol, 41, pp. 259-266
Hardy, K.M., Strizzi, L., Margaryan, N.V., Gupta, K., Murphy, G.F., Scolyer, R.A., Hendrix, M.J., Targeting nodal in conjunction with dacarbazine induces synergistic anticancer effects in metastatic melanoma (2015) Mol. Cancer Res, 13, pp. 670-680
Costa, F.F., Seftor, E.A., Bischof, J.M., Kirschmann, D.A., Strizzi, L., Arndt, K., Bonaldo Mde, F., Hendrix, M.J., Epigenetically reprogramming metastatic tumor cells with an embryonic microenvironment (2009) Epigenomics, 1, pp. 387-398
Bianco, C., Adkins, H.B., Wechselberger, C., Seno, M., Normanno, N., De Luca, A., Sun, Y., Ebert, A., At al. Cripto-1 activates nodal- and ALK4–dependent and -independent signaling pathways in mammary epithelial Cells (2002) Mol. Cell. Biol, 22, pp. 2586-2597
Reissmann, E., Jörnvall, H., Blokzijl, A., Andersson, O., Chang, C., Minchiotti, G., Persico, M.G., Brivanlou, A.H., The orphan receptor ALK7 and the Activin receptor ALK4 mediate signaling by Nodal proteins during vertebrate development (2001) Genes Dev, 15, pp. 2010-2022
Calvanese, L., Sandomenico, A., Caporale, A., Focà, A., Focà, G., D’Auria, G., Falcigno, L., Ruvo, M., Conformational features and binding affinities to Cripto, ALK7 and ALK4 of Nodal synthetic fragments (2015) J. Pept. Sci, 21, pp. 283-293
Aykul, S., Ni, W., Mutatu, W., Martinez-Hackert, E., Human Cerberus prevents nodal-receptor binding, inhibits nodal signaling, and suppresses nodal-mediated phenotypes (2015) Plos ONE, p. 10
De Luca, A., Lamura, L., Strizz, L., Roma, C., D’Antonio, A., Margaryan, N., Pirozzi, G., Mari, E., Expression and functional role of CRIPTO-1 in cutaneous melanoma (2011) Br. J. Cancer, 105, pp. 1030-1038
Quail, D.F., Zhang, G., Findlay, S.D., Hess, D.A., Postovit, L.M., Nodal promotes invasive phenotypes via a mitogen-activated protein kinase-dependent pathway (2014) Oncogene, 33, pp. 461-473
Kirsammer, G., Strizzi, L., Margaryan, N.V., Gilgur, A., Hyser, M., Atkinson, J., Kirschmann, D.A., Hendrix, M.J., Nodal signaling promotes a tumorigenic phenotype in human breast cancer (2014) Semin. Cancer Biol, 29, pp. 40-50
Karimkhani, C., Gonzalez, R., Dellavalle, R.P., A review of novel therapies for melanoma (2014) Am. J. Clin. Dermatol, 15, pp. 323-337
Hao, M., Song, F., Du, X., Wang, G., Yang, Y., Chen, K., Yang, J., Advances in targeted therapy for unresectable melanoma (2015) New Drugs and Combinations. Cancer Lett., 359, pp. 1-8
Eggermont, A.M., Kirkwood, J.M., Re-evaluating the role of dacarbazine in metastatic melanoma: What have we learned in 30 years (2004) Eur. J. Cancer, 12, pp. 1825-1836
Sullivan, R.J., Flaherty, K.T., Resistance to BRAF-targeted therapy in melanoma (2013) Eur. J. Cancer, 49, pp. 1297-1304
Calvanese, L., Marasco, D., Doti, N., Saporito, A., D’Auria, G., Paolillo, L., Ruvo, M., Falcigno, L., Structural investigations on the Nodal-Cripto binding: A theoretical and experimental approach (2010) Biopolymers, 93, pp. 1011-1021
Strizzi, L., Sandomenico, A., Margayan, N.V., Focà, A., Sanguigno, L., Bodenstine, T.M., Chandler, G.S., Seftor, R., Effect of a novel Nodal-targeting monoclonal antibody in cancer (2015) Oncotarget, , press
Saporito, A., (2005) Chemical Synthesis of Proteins for Biotechnology Applications, , Ph.D. Thesis, Univerisity of Naples “Federico II”, Naples, Italy
De Caestecker, M., The transforming growth factor-beta superfamily of receptors (2004) Cytokine Growth Factor Rev, 15, pp. 1-11
Wilson, D.S., Wu, J., Peluso, P., Nock, S., Improved method for pepsinolysis of mouse IgG(1) molecules to F(ab')(2) fragments (2002) J. Immunol. Methods, 260, pp. 29-36
Yamaguchi, Y., Kim, H., Kato, K., Masuda, K., Shimada, I., Arata, Y., Proteolytic fragmentation with high specificity of mouse immunoglobulin G. Mapping of proteolytic cleavage sites in the hinge region (1995) J. Immunol. Methods, 181, pp. 259-267
Sondermann, P., Huber, R., Oosthuizen, V., Jacob, U., The 3.2-A crystal structure of the human IgG1 Fc fragment-Fc gamma RIII complex (2000) Nature, 406, pp. 267-273
Fields, G.B., Noble, R.L., Solid phase peptide synthesis utilizing 9 fluorenylmethoxycarbonyl amino acids (1990) Int. J. Pept. Protein Res, 35, pp. 161-214
Carter, J.M., Techniques for conjugation of synthetic peptides to carrier molecules (1994) Methods Mol. Biol, 36, pp. 155-191
Bradford, M.M., Rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding (1976) Anal. Biochem, 72, pp. 248-254
Kohler, G., Milstein, C., Derivation of specific antibody-producing tissue culture and tumor lines by cell fusion (1976) Eur. J. Immunol., 6, pp. 511-519
Johnsson, B., Lofas, S., Lindquist, G., Immobilization of proteins to a carboxymethyldextran-modified gold surface for biospecific interaction analysis in surface plasmon resonance sensors (1991) Anal. Biochem, 198, pp. 268-277
Malchenko, S., Galat, V., Seftor, E.A., Vanin, E.F., Costa, F.F., Seftor, R.E., Soares, M.B., Hendrix, M.J., Cancer hallmarks in induced pluripotent cells: New insights (2010) J. Cell. Physiol, 225, pp. 390-393
New Anti-Nodal Monoclonal Antibodies Targeting the Nodal Pre-Helix Loop Involved in Cripto-1 Binding