High hydrostatic pressure-induced conformational changes in protein disulfide oxidoreductase from the hyperthermophilic archaeon Pyrococcus furiosus. A Fourier-transform infrared spectroscopic study
High hydrostatic pressure-induced conformational changes in protein disulfide oxidoreductase from the hyperthermophilic archaeon Pyrococcus furiosus. A Fourier-transform infrared spectroscopic study(422 views) Scir A, Pedone E, Ausili A, Saviano M, Baldassarre M, Bertoli E, Bartolucci S, Tanfani F
Keywords: Oxidoreductase, Protein Disulfide Oxidoreductase, P Furiosus, Amino Acid Sequence, Article, Chemical Structure, Chemistry, Hydrostatic Pressure, Infrared Spectroscopy, Molecular Genetics, Protein Conformation, Models, Molecular Sequence Data, Nadh, Nadph Oxidoreductases, Fourier Transform Infrared, Archaea, Bacteria (microorganisms), Eukaryota, Pyrococcus Furiosus,
Affiliations: *** IBB - CNR ***
Dipartimento di Biochimica, Biologia, e Genetica, Università Politecnica Delle Marche, Ancona, Italy
Istituto di Biostrutture e Bioimmagini, IBB-CNR, Via Mezzocannone 16, 80134 Napoli, Italy
Departamento de Bioquimica y Biologia Molecular (A), Facultad de Veterinaria, Universidad de Murcia, Murcia, Spain
Istituto di Cristallografia, IC-CNR, Bari, Italy
References: Not available.
High hydrostatic pressure-induced conformational changes in protein disulfide oxidoreductase from the hyperthermophilic archaeon Pyrococcus furiosus. A Fourier-transform infrared spectroscopic study
Protein disulfide oxidoreductases (PDOs) are ubiquitous redox enzymes that catalyse dithiol-disulfide exchange reactions. PDOs have been well studied in bacteria and eukarya, and they have been described in a number of thermophilic and hyperthermophilic species, where they play a critical role in the structural stabilization of intracellular proteins. In this study, the effect of high hydrostatic pressure on the structural properties of PDO from the hyperthermophilic archaeon Pyrococcus furiosus (PfPDO) was analysed in order to gain insights on the possible mechanisms used to endure extreme environmental conditions. The protein is highly thermostable and the data indicate that PfPDO is highly piezostable as well, and that different areas of the protein have a different local compressibility and resistance to high hydrostatic pressure. In particular, the results show that alpha-helices are more sensitive to pressure up to 5 kbar, whilst within 5-9 kbar the loss of beta-sheets is more pronounced than the loss of alpha-helices. Examination of the PfPDO structure and calculations of the solvent accessible surface areas for each amino acid indicate that 42% of the PfPDO residues are buried and that the protein contains four small internal hydrophobic cavities. These findings are discussed in terms of important factors contributing to the high piezostability and thermostability of the enzyme.
High hydrostatic pressure-induced conformational changes in protein disulfide oxidoreductase from the hyperthermophilic archaeon Pyrococcus furiosus. A Fourier-transform infrared spectroscopic study
High hydrostatic pressure-induced conformational changes in protein disulfide oxidoreductase from the hyperthermophilic archaeon Pyrococcus furiosus. A Fourier-transform infrared spectroscopic study
Kállay C, Dávid A, Timári S, Nagy EM, Sanna D, Garribba E, Micera G, De Bona P, Pappalardo G, Rizzarelli E, Sóvágó I * Copper(II) complexes of rat amylin fragments(466 views) Dalton T (ISSN: 1477-9234, 1477-9226, 1477-9234electronic), 2011 Oct 14; 40(38): 9711-9721. Impact Factor:3.838 ViewExport to BibTeXExport to EndNote
Aloj L, Aurilio M, Rinaldi V, D'Ambrosio L, Tesauro D, Peitl PK, Maina T, Mansi R, Von Guggenberg E, Joosten L, Sosabowski JK, Breeman WA, De Blois E, Koelewijn S, Melis M, Waser B, Beetschen K, Reubi JC, De Jong M * The EEE project(532 views) Proc Int Cosm Ray Conf Icrc Universidad Nacional Autonoma De Mexico, 2007; 5(HEPART2): 977-980. Impact Factor:0 ViewExport to BibTeXExport to EndNote