Structural basis of the ribosomal machinery for peptide bond formation, translocation, and nascent chain progression(465 views) Bashan A, Agmon I, Zarivach R, Schluenzen F, Harms J, Berisio R, Bartels H, Franceschi F, Auerbach T, Hansen HAS, Kossoy E, Kessler M, Yonath A
Keywords: Peptidyltransferase, Puromycin, Ribosome Rna, Transfer Rna, Article, Chemical Bond, Chemical Interaction, Conformational Transition, Crystal Structure, Deinococcus Radiodurans, Nonhuman, Protein Conformation, Ribosome Subunit, Rna Structure, Rna Transport, Bacterial Proteins, Catalytic Domain, Crystallography, X-Ray, Models, Molecular, Molecular Structure, Nucleic Acid Conformation, Protein Biosynthesis, Protein Synthesis Inhibitors, Ribosomal Proteins, Amino Acyl, Sparsomycin,
Affiliations: *** IBB - CNR ***
Department of Structural Biology, Weizmann Institute, 76100 Rehovot, Israel
Max-Planck-Res. U. for Ribosomal S., Notkestrasse 85, 22603 Hamburg, Germany
FB Biologie, Chemie, Pharmazie, Frei University Berlin, Takustrasse 3, 14195 Berlin, Germany
Inst. of Biostructures and Bioimages, CNR, 80138 Napoli, Italy
References: Bailey, S., The CCP4 suite: Programs for protein crystallography (1994) Acta Crystallogr. D, 50, pp. 760-76
Ban, N., Nissen, P., Hansen, J., Moore, P.B., Steitz, T.A., The complete atomic structure of the large ribosomal subunit at 2.4 Å resolution (2000) Science, 289, pp. 905-920
Barta, A., Dorner, S., Polacek, N., Mechanism of ribosomal peptide bond formation (2001) Science, 291, p. 203
Bayfield, M.A., Dahlberg, A.E., Schulmeister, U., Dorner, S., Barta, A., A conformational change in the ribosomal peptidyltransferase center upon active/inactive transition (2001) Proc. Natl. Acad. Sci. USA, 98, pp. 10096-10101
Bourd, S.B., Kukhanova, M.K., Gottikh, B.P., Krayevsky, A.A., Cooperative effects in the peptidyltransferase center of Escherichia coli ribosomes (1983) Eur. J. Biochem., 135, pp. 465-470
Brunger, A.T., Adams, P.D., Clore, G.M., DeLano, W.L., Gros, P., Grosse-Kunstleve, R.W., Jiang, J.S., Pannu, N.S., Crystallography & NMR system: A new software suite for macromolecular structure determination (1998) Acta Crystallogr. D Biol. Crystrallogr., 54, pp. 905-921
Cooperman, B.S., Identification of binding sites on the E. coli ribosome by affinity labeling, Adv (1977) Exp. Med. Biol., 86 A, pp. 595-609
Cundliffe, E., (1981) Antibiotic Inhibitors of Ribosome Function, , E.F. Gale, E. Cundliffe, P.E. Reynolds, M.H. Richmond, and M. H. Waring, eds. (London, NY, Sydney, Toronto: Wiley)
Cundliffe, E., Recognition sites for antibiotics within rRNA (1990) The Ribosome: Structure, , W.E. Function and Evolution, A.E. Hill, R.A. Dahlberg, P.B. Garrett, D. Moore, Schlessinger, & J.R. Warner. Washington, DC: ASM. 479-90.pp
Eckerman, D.J., Symons, R.H., Sequence at the site of attachment of an affinity-label derivative of puromycin on 23S ribosomal RNA of E. coli ribosomes (1978) Eur. J. Biochem., 82, pp. 225-234
Frank, J., Agrawal, R.K., A ratchet-like inter-subunit reorganization of the ribosome during translocation (2000) Nature, 406, pp. 318-322
Gale, E.F., Cundliffe, E., Reynolds, P.E., Richmond, M.H., Waring, M.J., (1981) The Molecular Basis of Antibiotic Action, , London: Wiley
Goldberg, I.H., Mitsugi, K., Sparsomycin, an inhibitor of aminoacyl transfer to polypeptide (1966) Biochem. Biophys. Res. Commun., 23, pp. 453-459
Green, R., Samaha, R.R., Noller, H.F., Mutations at nucleotides G2251 and U2585 of 23S rRNA perturb the peptidyltransferase center of the ribosome (1997) J. Mol. Biol., 266, pp. 40-50
Green, R., Switzer, C., Noller, H.F., Ribosome-catalyzed peptide-bond formation with an A-site substrate covalently linked to 23S ribosomal RNA (1998) Science, 280, pp. 286-289
Gutell, R.R., Gray, M.W., Schnare, M.N., A compilation of large subunit (23S and 23S-like) ribosomal RNA structures: 1993 (1993) Nucleic Acids Res., 21, pp. 3055-3074
Hall, C.C., Johnson, D., Cooperman, B.S., [3H]-p-azidopuromycin photoaffinity labeling of E. coli ribosomes: Evidence for site-specific interaction at U-2504 and G-2502 in domain V of 23S ribosomal RNA (1988) Biochemistry, 27, pp. 3983-3990
Hansen, J.L., Schmeing, T.M., Moore, P.B., Steitz, T.A., Structural insights into peptide bond formation (2002) Proc. Natl. Acad. Sci. USA, 99, pp. 1670-1675
Harms, J., Schluenzen, F., Zarivach, R., Bashan, A., Gat, S., Agmon, I., Bartels, H., Yonath, A., High-resolution structure of the large ribosomal subunit from a mesophilic eubacterium (2001) Cell, 107, pp. 679-688
Hornig, H., Woolley, P., Luhrmann, R., Decoding at the ribosomal A site: Antibiotics, misreading and energy of aminoacyl-tRNA binding (1987) Biochimie, 69, pp. 803-813
Hummel, H., Bock, A., 23S ribosomal RNA mutations in halobacteria conferring resistance to the anti-80S ribosome targeted antibiotic anisomycin (1987) Nucleic Acids Res., 15, pp. 2431-2443
Kim, D.F., Green, R., Base-pairing between 23S rRNA and tRNA in the ribosomal A site (1999) Mol. Cell, 4, pp. 859-864
Kirillov, S., Porse, B.T., Vester, B., Woolley, P., Garrett, R.A., Movement of the 3′-end of tRNA through the peptidyl transferase centre and its inhibition by antibiotics (1997) FEBS Lett., 406, pp. 223-233
Kirillov, S.V., Porse, B.T., Garrett, R.A., Peptidyltransferase antibiotics perturb the relative positioning of the 3′-terminal adenosine of P/P'-site-bound tRNA and 23S rRNA in the ribosome (1999) RNA, 5, pp. 1003-1013
Lazaro, E., Van den Broek, L.A., San Felix, A., Ottenheijm, H.C., Ballesta, J.P., Biochemical and kinetic characteristics of the interaction of the antitumor antibiotic sparsomycin with prokaryotic and eukaryotic ribosomes (1991) Biochemistry, 30, pp. 9642-9648
Lazaro, E., Rodriguez-Fonseca, C., Porse, B., Urena, D., Garrett, R.A., Ballesta, J.P., A sparsomycin-resistant mutant of Halobacterium salinarium lacks a modification at nucleotide U2603 in the peptidyl transferase centre of 23S RNA (1996) J. Mol. Biol., 261, pp. 231-238
Lill, R., Wintermeyer, W., Destabilization of codon-anticodon interaction in the ribosomal exit site (1987) J. Mol. Biol., 196, pp. 137-148
Mankin, A.S., Garrett, R.A., Chloramphenicol resistance mutations in the single 23S rRNA gene of the archaeon H. halobium (1991) J. Bacteriol., 173, pp. 3559-3563
Miskin, R., Zamir, A., Elson, D., The inactivation and reactivation of ribosomal-peptidyltransferase of E. coli (1968) Biochem. Biophys. Res. Commun., 33, pp. 551-557
Moazed, D., Noller, H.F., Intermediate states in the movement of transfer RNA in the ribosome (1989) Nature, 342, pp. 142-148
Monro, R.E., Cerna, J., Marcker, K.A., Ribosome-catalyzed peptidyl transfer: Substrate specificity at the P-site (1968) Proc. Natl. Acad. Sci. USA, 61, pp. 1042-1049
Monro, R.E., Celma, M.L., Vazquez, D., Action of sparsomycin on ribosome-catalysed peptidyl transfer (1969) Nature, 222, pp. 356-358
Nierhaus, K.H., Schulze, H., Cooperman, B.S., Molecular mechanisms of the ribosomal peptidyl transferase center (1980) Biochem. Int., 1, pp. 185-192
Noller, H.F., Hoffarth, V., Zimniak, L., Unusual resistance of peptidyltransferase to protein extraction procedures (1992) Science, 256, pp. 1416-1419
Noller, H.F., Yusupov, M.M., Yusupova, G.Z., Baucom, A., Cate, J.H.D., Translocation of tRNA during protein synthesis (2002) FEBS Lett., 514, pp. 11-16
Odom, O.W., Picking, W.D., Hardesty, B., Movement of tRNA but not the nascent peptide during peptide bond formation on ribosomes (1990) Biochemistry, 29, pp. 10734-10744
Ofengand, J., Bakin, A., Mapping to nucleotide resolution of pseudouridine residues in large subunit ribosomal RNAs from representative eukaryotes, prokaryotes, archaebacteria, mitochondria, and chloroplasts (1997) J. Mol Biol., 266, pp. 246-268
Otwinowski, Z., Minor, W., Processing of X-ray diffraction data collected in oscillation mode (1997) Macromolecular Crystallogr. Pt A, 276, pp. 307-326
Pape, T., Wintermeyer, W., Rodnina, M., Induced fit in initial selection and proofreading of aminoacyl-tRNA on the ribosome (1999) EMBO J., 18, pp. 3800-3807
Pestka, S., Inhibitors of protein synthesis (1977) Molecular Mechanisms of Protein Biosynthesis, , H. Weissbach, & S. Pestka. New York: Academic Press. 467-553.pp
Polacek, N., Gaynor, M., Yassin, A., Mankin, A.S., Ribosomal peptidyltransferase can withstand mutations at the putative catalytic nucleotide (2001) Nature, 411, pp. 498-501
Porse, B.T., Kirillov, S.V., Awayez, M.J., Ottenheijm, H.C., Garrett, R.A., Direct crosslinking of the antitumor antibiotic sparsomycin, and its derivatives, to A2602 in the peptidyltransferase center of 23S-like rRNA within ribosome-tRNA complexes (1999) Proc. Natl. Acad. Sci. USA, 96, pp. 9003-9008
Rheinberger, H.J., Sternbach, H., Nierhaus, K.H., Three tRNA binding sites on Escherichia coli ribosomes (1981) Proc. Natl. Acad. Sci. USA, 78, pp. 5310-5314
Samaha, R.R., Green, R., Noller, H.F., A base pair between tRNA and 23S rRNA in the peptidyltransferase centre of the ribosome (1995) Nature, 377, pp. 309-314
Schmeing, T.M., Seila, A.C., Hansen, J.L., Freeborn, B., Soukup, J.K., Scaringe, S.A., Strobel, S.A., Steitz, T.A., A pre-translocational intermediate in protein synthesis observed in crystals of enzymatically active 50S subunits (2002) Nat. Struct. Biol., 9, pp. 225-230
Shevack, A., Gewitz, H.S., Hennemann, B., Yonath, A., Wittmann, H.G., Characterization and crystallization of ribosomal particles from Halobacterium marismortui (1985) FEBS Lett., 184, pp. 68-71
Smith, J.D., Traut, R.R., Blackburn, G.M., Monro, R.E., Action of puromycin in polyadenylic acid-directed polylysine synthesis (1965) J. Mol. Biol., 13, pp. 617-628
Stark, H., Orlova, E.V., Rinke-Appel, J., Junke, N., Mueller, F., Rodnina, M., Wintermeyer, W., Van Heel, M., Arrangement of tRNAs in pre- and posttranslocational ribosomes revealed by electron cryomicroscopy (1997) Cell, 88, pp. 19-28
Tan, G.T., DeBlasio, A., Mankin, A.S., Mutations in the peptidyltransferase center of 23S rRNA reveal the site of action of sparsomycin, a universal inhibitor of translation (1996) J. Mol. Biol., 261, pp. 222-230
Theocharis, D.A., Coutsogeorgopoulos, C., Mechanism of action of sparsomycin in protein synthesis (1992) Biochemistry, 31, pp. 5861-5868
Thompson, J., Kim, D.F., O'Connor, M., Lieberman, K.R., Bayfield, M.A., Gregory, S.T., Green, R., Dahlberg, A.E., Analysis of mutations at residues A2451 and G2447 of 23S rRNA in the peptidyltransferase active site of the 50S ribosomal subunit (2001) Proc. Natl. Acad. Sci. USA, 98, pp. 9002-9007
Traut, R.R., Monro, R.E., The puromycin reaction and its relationship to protein synthesis (1964) J. Mol. Biol., 10, pp. 63-72
Vazquez, D., Inhibitors of protein biosynthesis (1979) Mol. Biol. Biochem. Biophys., 30, pp. 1-312
Vester, B., Garrett, R.A., The importance of highly conserved nucleotides in the binding region of chloramphenicol at the peptidyltransfer center of E. coli 23S ribosomal RNA (1988) EMBO J., 7, pp. 3577-3588
Wilson, K.S., Noller, H.F., Mapping the position of translational elongation factor EF-G in the ribosome by directed hydroxyl radical probing (1998) Cell, 92, pp. 131-139
Yonath, A., The search and its outcome (2002) Annu. Rev. Biophys. Biomol. Struct., 31, pp. 257-273
Bayfield, M. A., Dahlberg, A. E., Schulmeister, U., Dorner, S., Barta, A., A conformational change in the ribosomal peptidyltransferase center upon active/inactive transition (2001) Proc. Natl. Acad. Sci. USA, 98, pp. 10096-10101
Bourd, S. B., Kukhanova, M. K., Gottikh, B. P., Krayevsky, A. A., Cooperative effects in the peptidyltransferase center of Escherichia coli ribosomes (1983) Eur. J. Biochem., 135, pp. 465-470
Brunger, A. T., Adams, P. D., Clore, G. M., DeLano, W. L., Gros, P., Grosse-Kunstleve, R. W., Jiang, J. S., Pannu, N. S., Crystallography & NMR system: A new software suite for macromolecular structure determination (1998) Acta Crystallogr. D Biol. Crystrallogr., 54, pp. 905-921
Cooperman, B. S., Identification of binding sites on the E. coli ribosome by affinity labeling, Adv (1977) Exp. Med. Biol., 86 A, pp. 595-609
Eckerman, D. J., Symons, R. H., Sequence at the site of attachment of an affinity-label derivative of puromycin on 23S ribosomal RNA of E. coli ribosomes (1978) Eur. J. Biochem., 82, pp. 225-234
Gale, E. F., Cundliffe, E., Reynolds, P. E., Richmond, M. H., Waring, M. J., (1981) The Molecular Basis of Antibiotic Action, , London: Wiley
Garrett, R. A., Rodriguez-Fonseca, C., The peptidyltransferase center (1995) Ribosomal RNA: Structure, , Processing Evolution, R. A. Function, A. E. Zimmermann and, & Dahlberg. Boca Raton: CRC Press. 327-355. pp
Goldberg, I. H., Mitsugi, K., Sparsomycin, an inhibitor of aminoacyl transfer to polypeptide (1966) Biochem. Biophys. Res. Commun., 23, pp. 453-459
Gutell, R. R., Gray, M. W., Schnare, M. N., A compilation of large subunit (23S and 23S-like) ribosomal RNA structures: 1993 (1993) Nucleic Acids Res., 21, pp. 3055-3074
Hall, C. C., Johnson, D., Cooperman, B. S., [3H] -p-azidopuromycin photoaffinity labeling of E. coli ribosomes: Evidence for site-specific interaction at U-2504 and G-2502 in domain V of 23S ribosomal RNA (1988) Biochemistry, 27, pp. 3983-3990
Hansen, J. L., Schmeing, T. M., Moore, P. B., Steitz, T. A., Structural insights into peptide bond formation (2002) Proc. Natl. Acad. Sci. USA, 99, pp. 1670-1675
Kim, D. F., Green, R., Base-pairing between 23S rRNA and tRNA in the ribosomal A site (1999) Mol. Cell, 4, pp. 859-864
Kirillov, S. V., Porse, B. T., Garrett, R. A., Peptidyltransferase antibiotics perturb the relative positioning of the 3 -terminal adenosine of P/P'-site-bound tRNA and 23S rRNA in the ribosome (1999) RNA, 5, pp. 1003-1013
Mankin, A. S., Garrett, R. A., Chloramphenicol resistance mutations in the single 23S rRNA gene of the archaeon H. halobium (1991) J. Bacteriol., 173, pp. 3559-3563
Monro, R. E., Cerna, J., Marcker, K. A., Ribosome-catalyzed peptidyl transfer: Substrate specificity at the P-site (1968) Proc. Natl. Acad. Sci. USA, 61, pp. 1042-1049
Monro, R. E., Celma, M. L., Vazquez, D., Action of sparsomycin on ribosome-catalysed peptidyl transfer (1969) Nature, 222, pp. 356-358
Nierhaus, K. H., Schulze, H., Cooperman, B. S., Molecular mechanisms of the ribosomal peptidyl transferase center (1980) Biochem. Int., 1, pp. 185-192
Noller, H. F., Hoffarth, V., Zimniak, L., Unusual resistance of peptidyltransferase to protein extraction procedures (1992) Science, 256, pp. 1416-1419
Noller, H. F., Yusupov, M. M., Yusupova, G. Z., Baucom, A., Cate, J. H. D., Translocation of tRNA during protein synthesis (2002) FEBS Lett., 514, pp. 11-16
Odom, O. W., Picking, W. D., Hardesty, B., Movement of tRNA but not the nascent peptide during peptide bond formation on ribosomes (1990) Biochemistry, 29, pp. 10734-10744
Porse, B. T., Kirillov, S. V., Awayez, M. J., Ottenheijm, H. C., Garrett, R. A., Direct crosslinking of the antitumor antibiotic sparsomycin, and its derivatives, to A2602 in the peptidyltransferase center of 23S-like rRNA within ribosome-tRNA complexes (1999) Proc. Natl. Acad. Sci. USA, 96, pp. 9003-9008
Rheinberger, H. J., Sternbach, H., Nierhaus, K. H., Three tRNA binding sites on Escherichia coli ribosomes (1981) Proc. Natl. Acad. Sci. USA, 78, pp. 5310-5314
Samaha, R. R., Green, R., Noller, H. F., A base pair between tRNA and 23S rRNA in the peptidyltransferase centre of the ribosome (1995) Nature, 377, pp. 309-314
Schmeing, T. M., Seila, A. C., Hansen, J. L., Freeborn, B., Soukup, J. K., Scaringe, S. A., Strobel, S. A., Steitz, T. A., A pre-translocational intermediate in protein synthesis observed in crystals of enzymatically active 50S subunits (2002) Nat. Struct. Biol., 9, pp. 225-230
Smith, J. D., Traut, R. R., Blackburn, G. M., Monro, R. E., Action of puromycin in polyadenylic acid-directed polylysine synthesis (1965) J. Mol. Biol., 13, pp. 617-628
Tan, G. T., DeBlasio, A., Mankin, A. S., Mutations in the peptidyltransferase center of 23S rRNA reveal the site of action of sparsomycin, a universal inhibitor of translation (1996) J. Mol. Biol., 261, pp. 222-230
Theocharis, D. A., Coutsogeorgopoulos, C., Mechanism of action of sparsomycin in protein synthesis (1992) Biochemistry, 31, pp. 5861-5868
Traut, R. R., Monro, R. E., The puromycin reaction and its relationship to protein synthesis (1964) J. Mol. Biol., 10, pp. 63-72
Wilson, K. S., Noller, H. F., Mapping the position of translational elongation factor EF-G in the ribosome by directed hydroxyl radical probing (1998) Cell, 92, pp. 131-139
Structural basis of the ribosomal machinery for peptide bond formation, translocation, and nascent chain progression
Crystal structures of tRNA mimics complexed with the large ribosomal subunit of Deinococcus radiodurans indicate that remote interactions determine the precise orientation of tRNA in the peptidyl-transferase center (PTC). The PTC tolerates various orientations of puromycin derivatives and its flexibility allows the conformational rearrangements required for peptide-bond formation. Sparsomycin binds to A2602 and alters the PTC conformation. H69, the intersubunit-bridge connecting the PTC and decoding site, may also participate in tRNA placement and translocation. A spiral rotation of the 3′ end of the A-site tRNA around a 2-fold axis of symmetry identified within the PTC suggests a unified ribosomal machinery for peptide-bond formation, A-to-P-site translocation, and entrance of nascent proteins into the exit tunnel. Similar 2-fold related regions, detected in all known structures of large ribosomal subunits, indicate the universality of this mechanism.
Structural basis of the ribosomal machinery for peptide bond formation, translocation, and nascent chain progression