Sequential Application of Ligand and Structure Based Modeling Approaches to Index Chemicals for Their hH(4)R Antagonism(394 views) Pappalardo M, Shachaf N, Basile L, Milardi D, Zeidan M, Raiyn J, Guccione S, Rayan A
Plosone (ISSN: 1932-6203, 1932-6203electronic, 1932-6203linking), 2014 Oct 16; 9(10): e109340-e109340.
Department of Chemical Sciences, University of Catania, Catania, Italy.
Drug Discovery Informatics Lab, QRC-Qasemi Research Center, Al-Qasemi Academic College, Baka El-Garbiah, Israel.
Etnalead s.r.l., Scuola Superiore di Catania, University of Catania, Catania, Italy.
National Research Council, Institute of Biostructures and Bioimaging, Catania, Italy.
Department of Pharmaceutical Sciences, University of Catania, Catania, Italy.
Etnalead s. r. l., Scuola Superiore di Catania, University of CataniaCatania, Italy
References: Gether, U., Uncovering molecular mechanisms involved in activation of G protein-coupled receptors (2000) Endocr Rev, 21, pp. 90-11
Calebiro, D., Nikolaev, V.O., Persani, L., Lohse, M.J., Signaling by internalized G-protein-coupled receptors (2010) Trends Pharmacol Sci
Foord, S.M., Bonner, T.I., Neubig, R.R., Rosser, E.M., Pin, J.P., International Union of Pharmacology. XLVI. G protein-coupled receptor list (2005) Pharmacol Rev, 57, pp. 279-288
Hough, L.B., Genomics meets histamine receptors: New subtypes, new receptors (2001) Mol Pharmacol, 59, pp. 415-419
Nguyen, T., Shapiro, D.A., George, S.R., Setola, V., Lee, D.K., Discovery of a novel member of the histamine receptor family (2001) Mol Pharmacol, 59, pp. 427-433
Oda, T., Morikawa, N., Saito, Y., Masuho, Y., Matsumoto, S., Molecular cloning and characterization of a novel type of histamine receptor preferentially expressed in leukocytes (2000) J Biol Chem, 275, pp. 36781-36786
Liu, C., Ma, X., Jiang, X., Wilson, S.J., Hofstra, C.L., Cloning and pharmacological characterization of a fourth histamine receptor (H(4)) expressed in bone marrow (2001) Mol Pharmacol, 59, pp. 420-426
Morse, K.L., Behan, J., Laz, T.M., West, R.E., Jr., Greenfeder, S.A., Cloning and characterization of a novel human histamine receptor (2001) J Pharmacol Exp Ther, 296, pp. 1058-1066
Zhu, Y., Michalovich, D., Wu, H., Tan, K.B., Dytko, G.M., Cloning, expression, and pharmacological characterization of a novel human histamine receptor (2001) Mol Pharmacol, 59, pp. 434-441
Dunford, P.J., O'Donnell, N., Riley, J.P., Williams, K.N., Karlsson, L., The histamine H4 receptor mediates allergic airway inflammation by regulating the activation of CD4+ T cells (2006) Journal of Immunology, 176, pp. 7062-7070
Fung-Leung, W.P., Thurmond, R.L., Ling, P., Karlsson, L., Histamine H4 receptor antagonists: The new antihistamines? (2004) Curr Opin Investig Drugs, 5, pp. 1174-1183
Gutzmer, R., Diestel, C., Mommert, S., Kother, B., Stark, H., Histamine H4 receptor stimulation suppresses IL-12p70 production and mediates chemotaxis in human monocyte-derived dendritic cells (2005) Journal of Immunology, 174, pp. 5224-5232
Zhang, M., Thurmond, R.L., Dunford, P.J., The histamine H(4) receptor: A novel modulator of inflammatory and immune disorders (2007) Pharmacol Ther, 113, pp. 594-606
Thurmond, R.L., Desai, P.J., Dunford, P.J., Fung-Leung, W.P., Hofstra, C.L., A potent and selective histamine H4 receptor antagonist with anti-inflammatory properties (2004) J Pharmacol Exp Ther, 309, pp. 404-413
Jablonowski, J.A., Grice, C.A., Chai, W., Dvorak, C.A., Venable, J.D., The first potent and selective non-imidazole human histamine H4 receptor antagonists (2003) J Med Chem, 46, pp. 3957-3960
Lim, H.D., Smits, R.A., Bakker, R.A., Van Dam, C.M., De Esch, I.J., Discovery of S-(2-guanidylethyl)-isothiourea (VUF 8430) as a potent nonimidazole histamine H4 receptor agonist (2006) J Med Chem, 49, pp. 6650-6651
Smits, R.A., Leurs, R., De Esch, I.J., Major advances in the development of histamine H4 receptor ligands (2009) Drug Discov Today, 14, pp. 745-753
Rayan, A., Siew, N., Cherno-Schwartz, S., Matzner, Y., Bautsch, W., A novel computational method for predicting the transmembrane structure of G-protein coupled receptors: Application to human C5aR and C3aR (2000) Receptors Channels, 7, pp. 121-137
Srinivasan, R., Rose, G.D., Ab initio prediction of protein structure using LINUS (2002) Proteins, 47, pp. 489-495
Sirci, F., Istyastono, E.P., Vischer, H.F., Kooistra, A.J., Nijmeijer, S., Virtual fragment screening: Discovery of histamine H3 receptor ligands using ligand-based and protein-based molecular fingerprints (2012) J Chem Inf Model, 52, pp. 3308-3324
Kooistra, A.J., Roumen, L., Leurs, R., De Esch, I.J., De Graaf, C., From heptahelical bundle to hits from the Haystack: Structure-based virtual screening for GPCR ligands (2013) Methods Enzymol, 522, pp. 279-336
Engelhardt, H., Schultes, S., De Graaf, C., Nijmeijer, S., Vischer, H.F., Bispyrimidines as potent histamine H(4) receptor ligands: Delineation of structure-activity relationships and detailed H(4) receptor binding mode (2013) J Med Chem, 56, pp. 4264-4276
Paoletta, S., Steventon, G.B., Wildeboer, D., Ehrman, T.M., Hylands, P.J., Screening of herbal constituents for aromatase inhibitory activity (2008) Bioorg Med Chem, 16, pp. 8466-8470
Jiang, X., Kumar, K., Hu, X., Wallqvist, A., Reifman, J., DOVIS 2.0: An efficient and easy to use parallel virtual screening tool based on AutoDock 4.0 (2008) Chem Cent J, 2, p. 18
Luksch, T., Chan, N.S., Brass, S., Sotriffer, C.A., Klebe, G., Computeraided design and synthesis of nonpeptidic plasmepsin II and IV inhibitors (2008) ChemMedChem, 3, pp. 1323-1336
Zaheer-ul, H., Uddin, R., Yuan, H., Petukhov, P.A., Choudhary, M.I., Receptor-based modeling and 3D-QSAR for a quantitative production of the butyrylcholinesterase inhibitors based on genetic algorithm (2008) J Chem Inf Model, 48, pp. 1092-1103
Hao, M., Zhang, S., Qiu, J., Toward the Prediction of FBPase Inhibitory Activity Using Chemoinformatic Methods (2012) Int J Mol Sci, 13, pp. 7015-7037
Li, H., Yap, C.W., Ung, C.Y., Xue, Y., Li, Z.R., Machine learning approaches for predicting compounds that interact with therapeutic and ADMET related proteins (2007) J Pharm Sci, 96, pp. 2838-2860
Lusci, A., Pollastri, G., Baldi, P., Deep architectures and deep learning in chemoinformatics: The prediction of aqueous solubility for drug-like molecules (2013) J Chem Inf Model, 53, pp. 1563-1575
Schuller, A., Schneider, G., Identification of hits and lead structure candidates with limited resources by adaptive optimization (2008) J Chem Inf Model, 48, pp. 1473-1491
Shen, M., Beguin, C., Golbraikh, A., Stables, J.P., Kohn, H., Application of predictive QSAR models to database mining: Identification and experimental validation of novel anticonvulsant compounds (2004) J Med Chem, 47, pp. 2356-2364
Rayan, A., Falah, M., Mawasi, H., Raiyn, N., Assessing drugs for their cardiotoxicity (2010) Letters in Drug Design & Discovery, 7, pp. 409-414
Plewczynski, D., Von Grotthuss, M., Spieser, S.A., Rychlewski, L., Wyrwicz, L.S., Target specific compound identification using a support vector machine (2007) Comb Chem High Throughput Screen, 10, pp. 189-196
Heikamp, K., Bajorath, J., Comparison of confirmed inactive and randomly selected compounds as negative training examples in support vector machine-based virtual screening (2013) J Chem Inf Model, 53, pp. 1595-1601
Efremov, R.G., Chugunov, A.O., Pyrkov, T.V., Priestle, J.P., Arseniev, A.S., Molecular lipophilicity in protein modeling and drug design (2007) Curr Med Chem, 14, pp. 393-415
Deeb, O., Goodarzi, M., Exploring QSARs for inhibitory activity of non-peptide HIV-1 protease inhibitors by GA-PLS and GA-SVM (2010) Chem Biol Drug Des, 75, pp. 506-514
Deeb, O., Jawabreh, S., Goodarzi, M., Exploring QSARs of vascular endothelial growth factor receptor-2 (VEGFR-2) tyrosine kinase inhibitors by MLR, PLS and PC-ANN (2013) Curr Pharm Des, 19, pp. 2237-2244
Mussa, H.Y., Hawizy, L., Nigsch, F., Glen, R.C., Classifying large chemical data sets: Using a regularized potential function method (2011) J Chem Inf Model, 51, pp. 4-14
Simmons, K.J., Chopra, I., Fishwick, C.W., Structure-based discovery of antibacterial drugs (2010) Nat Rev Microbiol, 8, pp. 501-510
Deng, W., Verlinde, C.L., Evaluation of different virtual screening programs for docking in a charged binding pocket (2008) J Chem Inf Model, 48, pp. 2010-2020
Jamalan, M., Zeinali, M., Barzegari Asadabadi, E., Design of peptidomimetics for inhibition of HER2 receptor dimerization by a combination of virtual screening, MD simulations, and QSAR in silico methods (2013) Chem Biol Drug Des, 81, pp. 455-462
Miura, T., Fukami, T.A., Hasegawa, K., Ono, N., Suda, A., Lead generation of heat shock protein 90 inhibitors by a combination of fragment-based approach, virtual screening, and structure-based drug design (2011) Bioorg Med Chem Lett, 21, pp. 5778-5783
Arooj, M., Sakkiah, S., Kim, S., Arulalapperumal, V., Lee, K.W., A combination of receptor-based pharmacophore modeling & QM techniques for identification of human chymase inhibitors (2013) PLoS One, 8, p. e63030
Rayan, A., Raiyn, J., Probabilistic methods for conducting a screening analysis based on properties (2009), WIPO PatentRayan, A., Goldblum, A., A stochastic method to determine, in silico, the drug like character of molecules (2005), WIPO PatentRayan, A., The utility of Intelligent Learning Engine in Drug Discovery Informatics (2010) Proceedings of the British Pharmacological Society, 7, p. 26
Rayan, A., Marcus, D., Goldblum, A., Predicting oral druglikeness by iterative stochastic elimination (2010) J Chem Inf Model, 50, pp. 437-445
Glick, M., Goldblum, A., A novel energy-based stochastic method for positioning polar protons in protein structures from X-rays (2000) Proteins, 38, pp. 273-287
Glick, M., Rayan, A., Goldblum, A., A stochastic algorithm for global optimization and for best populations: A test case of side chains in proteins (2002) Proc Natl Acad Sci U S A, 99, pp. 703-708
Rayan, A., Senderowitz, H., Goldblum, A., Exploring the conformational space of cyclic peptides by a stochastic search method (2004) J Mol Graph Model, 22, pp. 319-333
Rayan, A., Noy, E., Chema, D., Levitzki, A., Goldblum, A., Stochastic algorithm for kinase homology model construction (2004) Curr Med Chem, 11, pp. 675-692
Altenbach, R.J., Adair, R.M., Bettencourt, B.M., Black, L.A., Fix-Stenzel, S.R., Structure-activity studies on a series of a 2-aminopyrimidine-containing histamine H4 receptor ligands (2008) J Med Chem, 51, pp. 6571-6580
Kiss, R., Kiss, B., Konczol, A., Szalai, F., Jelinek, I., Discovery of novel human histamine H4 receptor ligands by large-scale structure-based virtual screening (2008) J Med Chem, 51, pp. 3145-3153
Liu, H., Altenbach, R.J., Carr, T.L., Chandran, P., Hsieh, G.C., cis-4-(Piperazin-1-yl)-5,6,7a,8,9,10,11,11a-octahydrobenzofuro[2,3-h]quinazolin-2 - amine (A-987306), a new histamine H4R antagonist that blocks pain responses against carrageenan-induced hyperalgesia (2008) J Med Chem, 51, pp. 7094-7098
Smits, R.A., Lim, H.D., Stegink, B., Bakker, R.A., De Esch, I.J., Characterization of the histamine H4 receptor binding site. Part 1. Synthesis and pharmacological evaluation of dibenzodiazepine derivatives (2006) J Med Chem, 49, pp. 4512-4516
Watanabe, M., Kazuta, Y., Hayashi, H., Yamada, S., Matsuda, A., Stereochemical diversity-oriented conformational restriction strategy. Development of potent histamine H3 and/or H4 receptor antagonists with an imidazolylcyclopropane structure (2006) J Med Chem, 49, pp. 5587-5596
Shimamura, T., Shiroishi, M., Weyand, S., Tsujimoto, H., Winter, G., Structure of the human histamine H1 receptor complex with doxepin Nature, 475, pp. 65-70
Rayan, A., New vistas in GPCR 3D structure prediction J Mol Model, 16, pp. 183-191
Phillips, J.C., Braun, R., Wang, W., Gumbart, J., Tajkhorshid, E., Scalable molecular dynamics with NAMD (2005) Journal of Computational Chemistry, 26, pp. 1781-1802
Jorgensen, W.L., Chandrasekhar, J., Madura, J.D., Comparison of simple potential functions for simulating liquid water (1983) Journal of Chemical Physics, 79, pp. 926-935
Medek, P., Benes, P., Sochor, J., Computation of tunnels in protein molecules using Delaunay triangulation (2007) Journal of Wscg, 15, pp. 107-114. , 2007
Morris, G.M., Huey, R., Lindstrom, W., Sanner, M.F., Belew, R.K., AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility (2009) J Comput Chem, 30, pp. 2785-2791
Schuffenhauer, A., Brown, N., Selzer, P., Ertl, P., Jacoby, E., Relationships between Molecular Complexity, Biological Activity, and Structural Diversity (2006) J Chem Inf Model, 46, pp. 525-535
Gaulton, A., Bellis, L.J., Bento, A.P., Chambers, J., Davies, M., ChEMBL: A large-scale bioactivity database for drug discovery (2012) Nucleic Acids Res, 40, pp. D1100-D1107
Jain, A.K., Data clustering: 50 Years beyond K-means (2010) Pattern Recognition Letters, 31, pp. 651-666
Feng, Z., Hou, T., Li, Y., Docking and MD study of histamine H4R based on the crystal structure of H1R (2013) J Mol Graph Model, 39, pp. 1-12
Tanrikulu, Y., Proschak, E., Werner, T., Geppert, T., Todoroff, N., Homology model adjustment and ligand screening with a pseudoreceptor of the human histamine H4 receptor (2009) ChemMedChem, 4, pp. 820-827
Zaid, H., Ismael-Shanak, S., Michaeli, A., Rayan, A., Computerized modeling techniques predict the 3D structure of H(4)R: Facts and fiction (2012) Front Biosci, 17, pp. 232-247
Kiss, R., Noszal, B., Racz, A., Falus, A., Eros, D., Binding mode analysis and enrichment studies on homology models of the human histamine H4 receptor (2008) European Journal of Medicinal Chemistry, 43, pp. 1059-1070
Seifert, R., Schneider, E.H., Dove, S., Brunskole, I., Neumann, D., Paradoxical Stimulatory Effects of the "Standard" Histamine H-4-Receptor Antagonist JNJ7777120: The H-4 Receptor Joins the Club of 7 Transmembrane Domain Receptors Exhibiting Functional Selectivity (2011) Molecular Pharmacology, 79, pp. 631-638
Lim, H.D., De Graaf, C., Jiang, W., Sadek, P., McGovern, P.M., Molecular determinants of ligand binding to H4R species variants (2010) Mol Pharmacol, 77, pp. 734-743
Foord, S. M., Bonner, T. I., Neubig, R. R., Rosser, E. M., Pin, J. P., International Union of Pharmacology. XLVI. G protein-coupled receptor list (2005) Pharmacol Rev, 57, pp. 279-288
Hough, L. B., Genomics meets histamine receptors: New subtypes, new receptors (2001) Mol Pharmacol, 59, pp. 415-419
Morse, K. L., Behan, J., Laz, T. M., West, R. E., Jr., Greenfeder, S. A., Cloning and characterization of a novel human histamine receptor (2001) J Pharmacol Exp Ther, 296, pp. 1058-1066
Dunford, P. J., O'Donnell, N., Riley, J. P., Williams, K. N., Karlsson, L., The histamine H4 receptor mediates allergic airway inflammation by regulating the activation of CD4+ T cells (2006) Journal of Immunology, 176, pp. 7062-7070
Fung-Leung, W. P., Thurmond, R. L., Ling, P., Karlsson, L., Histamine H4 receptor antagonists: The new antihistamines? (2004) Curr Opin Investig Drugs, 5, pp. 1174-1183
Thurmond, R. L., Desai, P. J., Dunford, P. J., Fung-Leung, W. P., Hofstra, C. L., A potent and selective histamine H4 receptor antagonist with anti-inflammatory properties (2004) J Pharmacol Exp Ther, 309, pp. 404-413
Jablonowski, J. A., Grice, C. A., Chai, W., Dvorak, C. A., Venable, J. D., The first potent and selective non-imidazole human histamine H4 receptor antagonists (2003) J Med Chem, 46, pp. 3957-3960
Lim, H. D., Smits, R. A., Bakker, R. A., Van Dam, C. M., De Esch, I. J., Discovery of S- (2-guanidylethyl) -isothiourea (VUF 8430) as a potent nonimidazole histamine H4 receptor agonist (2006) J Med Chem, 49, pp. 6650-6651
Smits, R. A., Leurs, R., De Esch, I. J., Major advances in the development of histamine H4 receptor ligands (2009) Drug Discov Today, 14, pp. 745-753
Kooistra, A. J., Roumen, L., Leurs, R., De Esch, I. J., De Graaf, C., From heptahelical bundle to hits from the Haystack: Structure-based virtual screening for GPCR ligands (2013) Methods Enzymol, 522, pp. 279-336
Li, H., Yap, C. W., Ung, C. Y., Xue, Y., Li, Z. R., Machine learning approaches for predicting compounds that interact with therapeutic and ADMET related proteins (2007) J Pharm Sci, 96, pp. 2838-2860
Efremov, R. G., Chugunov, A. O., Pyrkov, T. V., Priestle, J. P., Arseniev, A. S., Molecular lipophilicity in protein modeling and drug design (2007) Curr Med Chem, 14, pp. 393-415
Mussa, H. Y., Hawizy, L., Nigsch, F., Glen, R. C., Classifying large chemical data sets: Using a regularized potential function method (2011) J Chem Inf Model, 51, pp. 4-14
Simmons, K. J., Chopra, I., Fishwick, C. W., Structure-based discovery of antibacterial drugs (2010) Nat Rev Microbiol, 8, pp. 501-510
Altenbach, R. J., Adair, R. M., Bettencourt, B. M., Black, L. A., Fix-Stenzel, S. R., Structure-activity studies on a series of a 2-aminopyrimidine-containing histamine H4 receptor ligands (2008) J Med Chem, 51, pp. 6571-6580
Smits, R. A., Lim, H. D., Stegink, B., Bakker, R. A., De Esch, I. J., Characterization of the histamine H4 receptor binding site. Part 1. Synthesis and pharmacological evaluation of dibenzodiazepine derivatives (2006) J Med Chem, 49, pp. 4512-4516
Phillips, J. C., Braun, R., Wang, W., Gumbart, J., Tajkhorshid, E., Scalable molecular dynamics with NAMD (2005) Journal of Computational Chemistry, 26, pp. 1781-1802
Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Comparison of simple potential functions for simulating liquid water (1983) Journal of Chemical Physics, 79, pp. 926-935
Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility (2009) J Comput Chem, 30, pp. 2785-2791
Jain, A. K., Data clustering: 50 Years beyond K-means (2010) Pattern Recognition Letters, 31, pp. 651-666
Lim, H. D., De Graaf, C., Jiang, W., Sadek, P., McGovern, P. M., Molecular determinants of ligand binding to H4R species variants (2010) Mol Pharmacol, 77, pp. 734-743
Sequential Application of Ligand and Structure Based Modeling Approaches to Index Chemicals for Their hH(4)R Antagonism
The human histamine H-4 receptor (hH (4) R), a member of the G-protein coupled receptors (GPCR) family, is an increasingly attractive drug target. It plays a key role in many cell pathways and many hH (4) R ligands are studied for the treatment of several inflammatory, allergic and autoimmune disorders, as well as for analgesic activity. Due to the challenging difficulties in the experimental elucidation of hH (4) R structure, virtual screening campaigns are normally run on homology based models. However, a wealth of information about the chemical properties of GPCR ligands has also accumulated over the last few years and an appropriate combination of these ligand-based knowledge with structure-based molecular modeling studies emerges as a promising strategy for computer-assisted drug design. Here, two chemoinformatics techniques, the Intelligent Learning Engine (ILE) and Iterative Stochastic Elimination (ISE) approach, were used to index chemicals for their hH (4) R bioactivity. An application of the prediction model on external test set composed of more than 160 hH (4) R antagonists picked from the chEMBL database gave enrichment factor of 16. 4. A virtual high throughput screening on ZINC database was carried out, picking similar to 4000 chemicals highly indexed as H4R antagonists' candidates. Next, a series of 3D models of hH (4) R were generated by molecular modeling and molecular dynamics simulations performed in fully atomistic lipid membranes. The efficacy of the hH (4) R 3D models in discrimination between actives and non-actives were checked and the 3D model with the best performance was chosen for further docking studies performed on the focused library. The output of these docking studies was a consensus library of 11 highly active scored drug candidates. Our findings suggest that a sequential combination of ligand-based chemoinformatics approaches with structure-based ones has the potential to improve the success rate in discovering new biologically active GPCR drugs and increase the enrichment factors in a synergistic manner
Sequential Application of Ligand and Structure Based Modeling Approaches to Index Chemicals for Their hH(4)R Antagonism
No results.
Sequential Application of Ligand and Structure Based Modeling Approaches to Index Chemicals for Their hH(4)R Antagonism