Scuola Superiore di Catania, C/o Dipartimento di Scienze Chimiche, Università di Catania, Viale Andrea Doria 6, 95125 Catania, Italy
Istituto Biostrutture e Bioimmagini, CNR, Viale A. Doria 6, 95125 Catania, Italy
References: Faraday, M., (1857) Philos Trans R Soc London, 147, pp. 145-18
Mie, G., (1908) Ann Phys, 25, pp. 377-445
Ghosh, S.K., Pal, T., (2007) Chem Rev, 107, pp. 4797-4862
Rosi, N.L., Mirkin, C.A., (2005) Chem Rev, 105, pp. 1547-1562
Mrinmoy, D., Ghosh, P.S., Rotello, V.M., (2008) Adv Mater, 20, pp. 4225-4241
Baptista, P., Pereira, E., Eaton, P., Doria, G., Miranda, A., Gomes, I., Quaresma, P., Franco, R., (2008) Anal Bioanal Chem, 391, pp. 943-950
Niemeyer, C.M., (2001) Angew Chem Int Ed, 40, pp. 4128-4185
Zhang, D.Y., Seelig, G., (2011) Nat Chem, 3, pp. 103-113
Krishnan, Y., Simmel, F.C., (2011) Angew Chem Int Ed, 50, pp. 3124-3156
Metzker, M.L., (2010) Nature Rev Genet, 11, pp. 31-46
Shi, L., Perkins, R.G., Fang, H., Tong, W., (2008) Curr Opin Biotechnol, 19, pp. 10-18
Merkoçi, A., (2010) Biosens Bioelectron, 26, pp. 1164-1177
Pérez-López, B., Merkoçi, A., (2011) Anal Bioanal Chem, 399, pp. 1577-1590
Zhao, W., Brook, M.A., Li, Y.F., (2008) ChemBioChem, 9, pp. 2363-2371
Sassolas, A., Leca-Bouvier, B.D., Blum, L.J., (2008) Chem Rev, 108, pp. 109-139
Cosnier, S., Mailley, P., (2008) Analyst, 133, pp. 984-991
Ghosh, S. K., Pal, T., (2007) Chem Rev, 107, pp. 4797-4862
Rosi, N. L., Mirkin, C. A., (2005) Chem Rev, 105, pp. 1547-1562
Niemeyer, C. M., (2001) Angew Chem Int Ed, 40, pp. 4128-4185
Zhang, D. Y., Seelig, G., (2011) Nat Chem, 3, pp. 103-113
Metzker, M. L., (2010) Nature Rev Genet, 11, pp. 31-46
Merko i, A., (2010) Biosens Bioelectron, 26, pp. 1164-1177
P rez-L pez, B., Merko i, A., (2011) Anal Bioanal Chem, 399, pp. 1577-1590
Song, S. P., Qin, Y., He, Y., Huang, Q., Fan, C. H., Chen, H. Y., (2010) Chem Soc Rev, 39, pp. 4234-4243
Teles, F. R. R., Fonseca, L. R., (2008) Talanta, 77, pp. 606-623
Daniel, M. C., Astruc, D., (2004) Chem Rev, 104, pp. 293-346
Grzelczak, M., P rez-Juste, J., Mulvaney, P., Liz-Marz n, L. M., (2008) Chem Soc Rev, 37, pp. 1783-1791
Mirkin, C. A., Letsinger, R. L., Mucic, R. C., Storhoff, J. J., (1996) Nature, 382, pp. 607-609
Reynolds, R. A., Mirkin, C. A., Letsinger, R. L., (2000) J Am Chem Soc, 122, pp. 3795-3796
Storhoff, J. J., Elghanian, R., Mucic, R. C., Mirkin, C. A., Letsinger, R. L., (1998) J Am Chem Soc, 120, pp. 1959-1964
Hurst, S. J., Lytton-Jean, A. K. R., Mirkin, C. A., (2006) Anal Chem, 78, pp. 8313-8318
Demers, L. M., Mirkin, C. A., Mucic, R. C., Reynolds, R. A., Letsinger, R. L., Enghanian, R., Viswanadham, G., (2000) Anal Chem, 72, pp. 5535-5541
Sperling, R. A., Gil, P. R., Zhang, F., Zanella, M., Parak, W. J., (2008) Chem Soc Rev, 37, pp. 1896-1908
Alivisatos, A. P., Johnsson, K. P., Peng, X., Wilson, T. E., Loweth, C. J., Bruchez, M. P., Schultz, P. G., (1996) Nature, 382, pp. 609-611
Nielsen, P. E., (1999) Acc Chem Res, 32, pp. 624-630
Ganesh, K. N., Nielsen, P. E., (2000) Curr Org Chem, 4, pp. 941-943
Maxwell, D. J., Taylor, J. R., Nie, S., (2002) J Am Chem Soc, 124, pp. 9606-9612
Breaker, R. R., (1997) Nat Biotechnol, 15, pp. 427-431
Thaxton, C. S., Mirkin, C. A., (2005) Nat Biotechnol, 23, pp. 681-682
Stierhof, Y. D., Humbel, B. M., Schwarz, H. J., (1991) J Electron Microsc Technol, 17, pp. 336-343
Taton, T. A., Lu, G., Mirkin, C. A., (2001) J Am Chem Soc, 123, pp. 5164-5165
Storhoff, J. J., Marla, S. S., Bao, P., Hagenow, S., Mehta, H., Lucas, A., Garimella, V., Muller, U. R., (2004) Biosens Bioelectron, 19, pp. 875-883
Huber, M., Wei, T. F., Muller, U. R., Lefebvre, P. A., Marla, S. S., Bao, Y. P., (2004) Nucleic Acids Res, 32, pp. e137
Bao, Y. P., Huber, M., Wei, T. F., Marla, S. S., Storhoff, J. J., Muller, U. R., (2005) Nucleic Acids Res, 33, pp. e15
Storhoff, J. J., Lucas, A. D., Garimella, V., Bao, Y. P., Muller, U. R., (2004) Nat Biotechnol, 22, pp. 883-887
Taton, T. A., Mirkin, C. A., Letsinger, R. L., (2000) Science, 289, pp. 1757-1760
Sliem, M. A., Ebeid, E. M., Harith, M., (2007) J Biomed Nanotech, 3, pp. 360-366
Kim, S. K., Cho, H., Jeong, J., Kwon, J. N., Jung, Y., Chung, B. H., (2010) Chem Commun, 46, pp. 3315-3317
Nam, J. M., Stoeva, S. I., Mirkin, C. A., (2004) J Am Chem Soc, 126, pp. 5932-5933
Ding, C. F., Zhong, H., Zhang, S. S., (2008) Biosen Bioelectron, 23, pp. 1314-1318
Richter, M. M., (2004) Chem Rev, 104, pp. 3003-3036
Shan, Y., Xu, J. J., Chen, H. Y., (2009) Chem Commun, pp. 905-907
Shiddiky, M. J. A., Aminur, R., Aminur, R. M. D., Shim, Y., (2007) Anal Chem, 79, pp. 6886-6890
Zh, M., Wei, X. L., (2006) Anal Bioanal Chem, 386, pp. 2219-2223
Fang, S., Lee, H. J., Wark, A. W., Corn, R. M., (2006) J Am Chem Soc, 128, pp. 14044-14046
Wark, A. W., Lee, H. J., Qavi, A. J., Corn, R. M., (2007) Anal Chem, 79, pp. 6697-6701
Functionalized gold nanoparticles for ultrasensitive DNA detection
A major challenge in the area of DNA detection is the development of rapid methods that do not require polymerase chain reaction (PCR) amplification of the genetic sample. The PCR amplification step increases the cost of the assay, the complexity of the detection, and the quantity of DNA required for the assay. In this context, methods that are able to perform DNA analyses with ultrasensitivity have recently been investigated with the aim of developing new PCR-free detection protocols. Functionalized gold nanoparticles have played a central role in the development of such methods. Here, possibilities offered by functionalized gold nanoparticle in the ultrasensitive detection of DNA are discussed. The different functionalization protocols available for gold nanoparticles and the principal DNA detection methods that are able to detect DNA at the femtomolar to attomolar level are presented.
Functionalized gold nanoparticles for ultrasensitive DNA detection
No results.
Functionalized gold nanoparticles for ultrasensitive DNA detection