Abeta(25-35) And Its C- And/Or N-Blocked Derivatives: Copper Driven Structural Features And Neurotoxicity(613 views) Giuffrida ML, Grasso G, Ruvo M, Pedone C, Saporito A, Marasco D, Pignataro B, Cascio C, Copani A, Rizzarelli E
Journal Of Neuroscience Research (ISSN: 0360-4012), 2007 Feb 15; 85(3): 623-633.
Keywords: β-Amyloid, Alzheimer, S Disease, Copper, Fibrils, Folding, Amyloid Beta Protein[25-35], Trace Metal, Amyloid Beta Protein (25 35), Amyloid Beta-Protein (25-35), Neurotoxin, Peptide Fragment, Unclassified Drug, Alzheimer Disease, Amino Terminal Sequence, Animal Cell, Article, Controlled Study, Electron Spin Resonance, Electrospray Mass Spectrometry, Neurotoxicity, Nonhuman, Oligomerization, Priority Journal, Protein Structure, Protein Synthesis, Scanning Force Microscopy, Animal Model, Atomic Force Microscopy, Brain Cortex, Chemistry, Circular Dichroism, Drug Effect, Nerve Cell, Pathology, Protein Conformation, Cerebral Cortex, Electron Spin Resonance Spectroscopy, Electrospray Ionization, Amyloid Beta Protein [25-35],
Affiliations: *** IBB - CNR ***
PhD Program in Neurobiology, Faculty of Medicine, University of Catania, Catania, Italy
I.B.B., CNR, Catania, Italy
I.B.B., CNR, Napoli, Italy
Department of Physical-Chemistry (F. Accascina), University of Palermo, Palermo, Italy
Consorzio Catania Ricerche, Catania, Italy
Department of Pharmaceutical Sciences, University of Catania, Catania, Italy
Department of Chemical Sciences, University of Catania, Catania, Italy
I. B. B., CNR, Catania, Italy
I. B. B., CNR, Napoli, Italy
References: Atwood, C.S., Moir, R.D., Huang, X., Scarpa, R.C., Bacarra, N.M., Hartshom, M.A., Tanzi, R.E., Bush, A.I., Drammatic aggregation of Alzheimer Abeta by Cu(II) is induced by condition representing physiological acidosis (1998) J Biol Chem, 273, pp. 12817-1282
Barrow, C.J., Yasuda, A., Kenny, P.T., Zagorski, M.G., Solution conformations and aggregational properties of synthetic amyloid beta-peptides of Alzheimer's disease. Analysis of circular dichroism spectra (1992) J Mol Biol, 225, pp. 1075-1093
Behl, C., Davis, J.B., Lesley, R., Schubert, D., Hydrogen peroxide mediates amyloid-β protein toxicity (1994) Cell, 77, pp. 817-827
Bondy, S.C., Guo-Ross, S.X., Truong, A.T., Promotion of transition metal-induced reactive oxygen species formation by beta-amyloid (1998) Brain Res, 799, pp. 91-96
Butterfield, D.A., Amyloid beta peptide (1-42) induced oxidative stress and neurotoxicity: Implication for neurodegeneration in Alzheimer's disease brain [review] (2002) Free Radic Res, 36, pp. 1307-1313
Cherny, R.A., Barnham, K.J., Bush, A.I., Cappai, R., Gautier Elisabeth, C.L., Masters, C.L., Carrington, D., Kok, G.B., PBT2, a novel MPAC for the treatment of Alzheimer's disease (2006) 10th International Conference on Alzheimer's Disease (ICAD), pp. P4-435
Copani, A., Condorelli, F., Caruso, A., Cancheri, C., Sala, A., Giuffrida Stella, A.M., Canonico, P.L., Sortino, M.A., Mitotic signalling by beta-amyloid causes neuronal death (1999) FASEB J, 13, pp. 2225-2234
Curtain, C.C., Ali, F., Volitakis, I., Chemy, R.A., Norton, R.S., Beyreuther, K., Barrow, C.J., Barnham, K.J., Alzheimer's disease amyloid β binds copper and zinc to generate an allosterically ordered membrane-penetrating structure containing superoxide dismutase-like subunits (2001) J Biol Chem, 276, pp. 20466-20473
Deibel, M.A., Ehmann, W.D., Markesbery, W.R., Copper, iron and zinc imbalance in severely degenerated brain regions in Alzheimer's disease: Possible relation to oxidative stress (1996) J Neurol Sci, 143, pp. 137-142
Eckman, E.A., Reed, D.K., Eckman, C.B., Degradation of the Alzheimer's beta peptide by endothelin-converting enzyme (2001) J Biol Chem, 276, pp. 24540-24548
Garcia, V.J., Martinez, L., Briceño-Valero, J.M., Schilling, C.M., Dimensional metrology of nanometric spherical particles using AFM (1997) Probe Microsc, 1, p. 107
Gotz, J., Chen, F., van Dorpe, J., Nitsch, R.M., Formation of neurofibrillary tangles in P3011 tau transgenic mice induced by Abeta 42 fibrils (2001) Science, 293, pp. 1491-1495
Hardy, J., Selkoe, D.J., The amyloid hypothesis of Alzheimer's disease: Progress and problems on the road to therapeutics (2002) Science, 297, pp. 353-356
Hou, L., Kang, I., Marchant, R.E., Zagorski, M.G., Methionine 35 oxidation reduces fibril assembly of the amyloid Aβ(1-42) peptide of Alzheimer's disease (2002) J Biol Chem, 43, pp. 40173-40176
Joachim, C.L., Selkoe, D.J., The seminal role of β-amyloid in the pathogenesis of Alzheimer disease (1992) Alzheimer Dis Assoc Disord, 6, pp. 7-34
Kang, J., Lemaire, H., Unterbeck, A., Salbaum, J.M., Master, C.L., Grzeeschik, K., Multhaup, G., Muller-Hill, B., The precursor of Alzheimer's disease amyloid A4 protein resembles a cell surface receptor (1987) Nature, 325, pp. 733-736
Kohno, T., Kobayashi, K., Maeda, T., Sato, K., Takashima, A., Three-dimensional structures of the amyloid beta peptide (25-35) in membrane-mimicking environment (1996) Biochemistry, 35, pp. 16094-16104
LeVine, H., Thioflavine T interaction with synthetic Alzheimer's disease β-amyloid peptides: Detection of amyloid aggregation in solution (1993) Prot Sci, 2, pp. 76-83
Lewis, J., Dickson, D.W., Lin, W.L., Chisholm, L., Corral, A., Jones, G., Yen, S.H., McGowan, E., Enhanced neurofibrillary degeneration in transgenic mice expressing mutant tau and APP (2001) Science, 293, pp. 1487-1491
Loo, D.T., Copani, A., Pike, C.J., Whittemore, E.R., Walencewicz, A.J., Cotman, C.W., Apoptosis is induced by β-amyloid in cultured central nervous system neurons (1993) Proc Natl Acad Sci U S A, 90, pp. 7951-7955
Moir, R.D., Atwood, C.S., Romano, D.M., Laurans, M.H., Huang, X., Bush, A.I., Smith, J.D., Tanzi, R.E., Differential effects of apolipoprotein E isoforms on metal-induced aggregation of A beta using physiological concentrations (1999) Biochemistry, 38, pp. 4595-4603
Molnár, Z.S., Kovács, P., Laczkó, I., Soós, K., Fülöp, L., Penke, B., Lengyel, I., Enhanced G-protein activation by a mixture of Aβ(25-35), Aβ(1-40/42) and zinc (2004) J Neurochem, 89, pp. 1215-1223
Niemeyer, C., Adler, M., Pignataro, B., Chi, L., Fuchs, H., Blohm, D., Self-assembly of DNA-streptavidin nanostructures and their use as reagents in immuno-PCR (1999) Nucleic Acids Res, 27, pp. 4553-4561
Oddo, S., Billings, L., Kesslak, J.P., Cribbs, D.H., La Ferla, F.M., Abeta immunotherapy leads to clearance of early, but not late, hyperphosphorylated tau aggregates via the proteasome (2004) Neuron, 43, pp. 321-332
Opazo, C., Huang, X., Cherny, R.A., Moir, R.D., Roher, A.E., White, A.R., Cappai, R., Bush, A.I., Metalloenzyme-like activity of Alzheimer's disease β-amyloid. Cu-dependent catalytic conversion of dopamine cholesterol, and biological reducing agents to neurotoxic H 2O2 (2002) J Biol Chem, 277, pp. 40302-40308
Pike, C.J., Burdick, D., Walencewicz, A.J., Glabe, C.G., Cotman, C.W., Neurodegeneration induced by β-amyloid peptides in vitro: The role of peptide assembly state (1993) J Neurosci, 13, pp. 1676-1687
Pike, C.J., Walencewicz-Wasserman, A.J., Kosmoski, J., Cribbs, D.H., Glabe, C.G., Cotman, C.W., Structure-activity analyses of beta-amyloid peptides: Contributions of the beta 25-35 region to aggregation and neurotoxicity (1995) J. Neurochem, 64, pp. 253-255
Rae, T.D., Schmidt, P.J., Pufhal, R.A., Culotta, V.C., O' Halloran, T.V., Undetectable intracellular free copper: The requirement of a copper chaperone for superoxide dismutase (1999) Science, 284, pp. 805-808
Ritchie, C.W., Bush, A.I., Mackinnon, A., Macfarlane, S., Mastwyk, M., Macgregor, L., Kiers, L., Masters, C.L., Metal-protein attenuation with iodochlorhydroxyquin (clioquinol) targeting Abeta amyloid deposition and toxicity in Alzheimer disease: A pilot phase 2 clinical trial (2003) Arch Neurol, 60, pp. 1685-1691
Saido, T.C., Yamao-Harigaya, W., Iwatsubo, T., Kawashima, S., Amino- and carboxyl-terminal heterogeneity of β-amyloid peptides deposited in human brain (1996) Neurosci Lett, 215, pp. 173-176
Selkoe, D.J., Normal and abnormal biology of the β-amyloid precursor protein (1994) Annu Rev Neurosci, 17, pp. 489-517
Selkoe, D.J., Translating cell biology into therapeutic advances in Alzheimer's disease [review] (1999) Nature, 399, pp. A23-A31
Simmons, M.A., Schneider, C.R., Amyloid β-peptides act directly on single neurons (1993) Neurosci Lett, 150, pp. 133-136
Smith, D.P., Smith, D.G., Curtain, C.G., Boas, J., Pilbrow, J.R., Ciccotosto, G.D., Lau, T.L., Barnham, K.J., Copper-mediated amyloid-β toxicity is associated with an intermolecular histidine bridge (2006) J Biol Chem, 281, pp. 15145-15154
Soto, C., Kindy Mark, S., Baumann, M., Frangione, B., Inhibition of Alzheimer's amyloidosis by peptides that prevents β-sheet conformations (1996) Biochem Biophys Res Commun, 226, pp. 672-680
Squitti, R., Barbati, G., Rossi, L., Ventriglia, M., Dal Forno, G., Cesaretti, S., Moffa, F., Rossini, P.M., Excess of nonceruloplasmin serum copper in AD correlates with MMSE, CSF [beta]-amyloid, and h-tau (2006) Neurology, 67, pp. 76-82
Terzi, E., Hölzemann, G., Seelig, J., Reversible random coil-β-sheet transition of the β-amyloid fragment (25-35) (1994) Biochemistry, 33, pp. 1345-1350
Valentine, J.S., Gralla, E.B., Delivering copper inside yeast and human cells (1997) Science, 278, pp. 817-818
Walsh, D.M., Hartley, D.M., Kusumoto, Y., Fezoui, Y., Condron, M.M., Lomakin, A., Benedek, G.B., Teplow, D.B., Amyloid beta-protein fibrillogenesis. Structure and biological activity of protofibrillar intermediates (1999) J Biol Chem, 274, pp. 25945-25952
White, A.R., Barnham, K.J., Bush, A.I., Metal homeostasis in Alzheimer's disease [review] (2006) Expert Rev Neurother, 6, pp. 711-722
Yankner, B.A., Duffy, L.K., Kirschner, D.A., Neurotrophic and neurotoxic effects of amyloid β-protein: Reversal by tachykinin neuropeptides (1990) Science, 25, pp. 279-282
Zbilut, J.P., Colosimo, A., Conti, F., Colafranceschi, M., Manetti, C., Valerio, M., Webber Jr, C.L., Giuliani, A., Protein aggregation/folding: The role of deterministic singularities of sequence hydrophobicity as determined by nonlinear signal analysis of acylphosphatase and Aβ (1-40) (2003) Biophys J, 85, pp. 3544-3557
Atwood, C. S., Moir, R. D., Huang, X., Scarpa, R. C., Bacarra, N. M., Hartshom, M. A., Tanzi, R. E., Bush, A. I., Drammatic aggregation of Alzheimer Abeta by Cu (II) is induced by condition representing physiological acidosis (1998) J Biol Chem, 273, pp. 12817-1282
Barrow, C. J., Yasuda, A., Kenny, P. T., Zagorski, M. G., Solution conformations and aggregational properties of synthetic amyloid beta-peptides of Alzheimer's disease. Analysis of circular dichroism spectra (1992) J Mol Biol, 225, pp. 1075-1093
Bondy, S. C., Guo-Ross, S. X., Truong, A. T., Promotion of transition metal-induced reactive oxygen species formation by beta-amyloid (1998) Brain Res, 799, pp. 91-96
Butterfield, D. A., Amyloid beta peptide (1-42) induced oxidative stress and neurotoxicity: Implication for neurodegeneration in Alzheimer's disease brain [review] (2002) Free Radic Res, 36, pp. 1307-1313
Cherny, R. A., Barnham, K. J., Bush, A. I., Cappai, R., Gautier Elisabeth, C. L., Masters, C. L., Carrington, D., Kok, G. B., PBT2, a novel MPAC for the treatment of Alzheimer's disease (2006) 10th International Conference on Alzheimer's Disease (ICAD), pp. P4-435
Curtain, C. C., Ali, F., Volitakis, I., Chemy, R. A., Norton, R. S., Beyreuther, K., Barrow, C. J., Barnham, K. J., Alzheimer's disease amyloid binds copper and zinc to generate an allosterically ordered membrane-penetrating structure containing superoxide dismutase-like subunits (2001) J Biol Chem, 276, pp. 20466-20473
Deibel, M. A., Ehmann, W. D., Markesbery, W. R., Copper, iron and zinc imbalance in severely degenerated brain regions in Alzheimer's disease: Possible relation to oxidative stress (1996) J Neurol Sci, 143, pp. 137-142
Eckman, E. A., Reed, D. K., Eckman, C. B., Degradation of the Alzheimer's beta peptide by endothelin-converting enzyme (2001) J Biol Chem, 276, pp. 24540-24548
Fields, G. B., Noble, R. L., Solid phase peptide synthesis utilizing 9-fluorenylmethoxy-carbonil amin acids (1990) Int J Pept Prot Res, 35, pp. 161-214
Garcia, V. J., Martinez, L., Brice o-Valero, J. M., Schilling, C. M., Dimensional metrology of nanometric spherical particles using AFM (1997) Probe Microsc, 1, p. 107
Joachim, C. L., Selkoe, D. J., The seminal role of -amyloid in the pathogenesis of Alzheimer disease (1992) Alzheimer Dis Assoc Disord, 6, pp. 7-34
Loo, D. T., Copani, A., Pike, C. J., Whittemore, E. R., Walencewicz, A. J., Cotman, C. W., Apoptosis is induced by -amyloid in cultured central nervous system neurons (1993) Proc Natl Acad Sci U S A, 90, pp. 7951-7955
Moir, R. D., Atwood, C. S., Romano, D. M., Laurans, M. H., Huang, X., Bush, A. I., Smith, J. D., Tanzi, R. E., Differential effects of apolipoprotein E isoforms on metal-induced aggregation of A beta using physiological concentrations (1999) Biochemistry, 38, pp. 4595-4603
Moln r, Z. S., Kov cs, P., Laczk, I., So s, K., F l p, L., Penke, B., Lengyel, I., Enhanced G-protein activation by a mixture of A (25-35), A (1-40/42) and zinc (2004) J Neurochem, 89, pp. 1215-1223
Pike, C. J., Burdick, D., Walencewicz, A. J., Glabe, C. G., Cotman, C. W., Neurodegeneration induced by -amyloid peptides in vitro: The role of peptide assembly state (1993) J Neurosci, 13, pp. 1676-1687
Pike, C. J., Walencewicz-Wasserman, A. J., Kosmoski, J., Cribbs, D. H., Glabe, C. G., Cotman, C. W., Structure-activity analyses of beta-amyloid peptides: Contributions of the beta 25-35 region to aggregation and neurotoxicity (1995) J. Neurochem, 64, pp. 253-255
Rae, T. D., Schmidt, P. J., Pufhal, R. A., Culotta, V. C., O' Halloran, T. V., Undetectable intracellular free copper: The requirement of a copper chaperone for superoxide dismutase (1999) Science, 284, pp. 805-808
Ritchie, C. W., Bush, A. I., Mackinnon, A., Macfarlane, S., Mastwyk, M., Macgregor, L., Kiers, L., Masters, C. L., Metal-protein attenuation with iodochlorhydroxyquin (clioquinol) targeting Abeta amyloid deposition and toxicity in Alzheimer disease: A pilot phase 2 clinical trial (2003) Arch Neurol, 60, pp. 1685-1691
Saido, T. C., Yamao-Harigaya, W., Iwatsubo, T., Kawashima, S., Amino- and carboxyl-terminal heterogeneity of -amyloid peptides deposited in human brain (1996) Neurosci Lett, 215, pp. 173-176
Selkoe, D. J., Normal and abnormal biology of the -amyloid precursor protein (1994) Annu Rev Neurosci, 17, pp. 489-517
Selkoe, D. J., Translating cell biology into therapeutic advances in Alzheimer's disease [review] (1999) Nature, 399, pp. A23-A31
Simmons, M. A., Schneider, C. R., Amyloid -peptides act directly on single neurons (1993) Neurosci Lett, 150, pp. 133-136
Smith, D. P., Smith, D. G., Curtain, C. G., Boas, J., Pilbrow, J. R., Ciccotosto, G. D., Lau, T. L., Barnham, K. J., Copper-mediated amyloid- toxicity is associated with an intermolecular histidine bridge (2006) J Biol Chem, 281, pp. 15145-15154
Terzi, E., H lzemann, G., Seelig, J., Reversible random coil- -sheet transition of the -amyloid fragment (25-35) (1994) Biochemistry, 33, pp. 1345-1350
Valentine, J. S., Gralla, E. B., Delivering copper inside yeast and human cells (1997) Science, 278, pp. 817-818
Walsh, D. M., Hartley, D. M., Kusumoto, Y., Fezoui, Y., Condron, M. M., Lomakin, A., Benedek, G. B., Teplow, D. B., Amyloid beta-protein fibrillogenesis. Structure and biological activity of protofibrillar intermediates (1999) J Biol Chem, 274, pp. 25945-25952
White, A. R., Barnham, K. J., Bush, A. I., Metal homeostasis in Alzheimer's disease [review] (2006) Expert Rev Neurother, 6, pp. 711-722
Yankner, B. A., Duffy, L. K., Kirschner, D. A., Neurotrophic and neurotoxic effects of amyloid -protein: Reversal by tachykinin neuropeptides (1990) Science, 25, pp. 279-282
Zbilut, J. P., Colosimo, A., Conti, F., Colafranceschi, M., Manetti, C., Valerio, M., Webber Jr, C. L., Giuliani, A., Protein aggregation/folding: The role of deterministic singularities of sequence hydrophobicity as determined by nonlinear signal analysis of acylphosphatase and A (1-40) (2003) Biophys J, 85, pp. 3544-3557
Abeta(25-35) And Its C- And/Or N-Blocked Derivatives: Copper Driven Structural Features And Neurotoxicity
The toxic properties of P-amyloid protein, A beta (1-42), the major component of senile plaques in Alzheimer's disease, depend on nucleation-dependent oligomerization and aggregation. In addition, A beta (1-42) toxicity is favored by the presence of trace metals, which affect the secondary structure of the peptide. A peptide comprising 11 residues within A beta (1-42) [A beta (25-35)] aggregates and retains the neurotoxic activity of A beta (1-42). We have used both A beta (25-35) and its C-amidated or N-acetylated/C-amidated derivatives to investigate the role of copper (II) in modulating the conformation and aggregation state as well as the neurotoxic properties of amyloid peptides. Electrospray ionization mass spectrometry (ESI-MS) and electron paramagnetic resonance (EPR) measurements were performed to verify the formation of copper (II) /A beta (25-35) complexes and to determine the coordination mode, respectively. A beta (2535) and its derivatives were analyzed by circular dichroism spectroscopy to assess their secondary structure, subjected to thioflavine-T (Th-T) binding assay to reveal beta-sheet structured aggregates formation, and imaged by scanning force microscopy. Toxicity was assessed on mature cultures of rat cortical neurons. We found that beta-sheet-structured species of A beta (25-35) were neurotoxic, whereas the random-coil-structured derivatives were devoid of effect. Interestingly, copper promoted the random-coiI/beta-sheet transition of A beta (25-35), with ensuing peptide toxicity, but it induced the toxicity of the N-acetylated/C-amidated derivative without affecting peptide folding. Moreover, copper did not influence either the folding or the activity of the C-amidated A beta (25-35), suggesting that blockade of the C-terminus of A beta peptides might be sufficient to prevent A beta toxicity. (c) 2006 Wiley-Liss, Inc
Abeta(25-35) And Its C- And/Or N-Blocked Derivatives: Copper Driven Structural Features And Neurotoxicity
No results.
Abeta(25-35) And Its C- And/Or N-Blocked Derivatives: Copper Driven Structural Features And Neurotoxicity