Keywords: Bs-Cspb, Emsa, High Temperature Md Simulations, Mtb-Cspa, Ss-Dna Binding, Unfolding Multiple Pathways, Bacterial Protein, Cold Shock Protein, Nucleic Acid Binding Protein, Oligonucleotide, Unclassified Drug, Article, Bacillus Subtilis, Circular Dichroism, Cold Stress, Gel Mobility Shift Assay, Molecular Dynamics, Mycobacterium Tuberculosis, Nonhuman, Nuclear Magnetic Resonance, Priority Journal, Protein Analysis, Protein Dna Binding, Protein Folding, Protein Function, Protein Structure, Room Temperature, Sequence Homology, Thermostability, Amino Acid Sequence, Molecular Sequence Data, Biomolecular, Protein Conformation, Secondary, Bacteria (microorganisms), Bacterial Proteins Chemistry Genetics, Mycobacterium Tuberculosis Metabolism,
Affiliations: *** IBB - CNR ***
Dipartimento di Chimica 'Paolo Corradini', Università di Napoli 'Federico II', via Cintia, I-80126 Napoli, Italy
Dipartimento delle Scienze Biologiche, via Mezzocannone 16, I-80134 Napoli, Italy
Istituto di Biostrutture e Bioimmagini del CNR, via Mezzocannone 16, I-80134 Napoli, Italy
References: Horn, G., Hofweber, R., Kremer, W., Kalbitzer, H.R., Structure and function of bacterial cold shock proteins (2007) Cell Mol. Life Sci., 64, pp. 1457-147
Newkirk, K., Feng, W., Jiang, W., Tejero, R., Emerson, S.D., Inouye, M., Montelione, G.T., Solution NMR structure of the major cold shock protein (CspA) from Escherichia coli: identification of a binding epitope for DNA (1994) Proc. Natl. Acad. Sci. USA, 91, pp. 5114-5118
Schindelin, H., Jiang, W., Inouye, M., Heinemann, U., Crystal structure of CspA, the major cold shock protein of Escherichia coli (1994) Proc. Natl. Acad. Sci. USA, 91, pp. 5119-5123
Schindelin, H., Marahiel, M.A., Heinemann, U., Universal nucleic acid-binding domain revealed by crystal structure of the B. subtilis major cold-shock protein (1993) Nature, 364, pp. 164-168
Schnuchel, A., Wiltscheck, R., Czisch, M., Herrler, M., Willimsky, G., Graumann, P., Marahiel, M.A., Holak, T.A., Structure in solution of the major cold-shock protein from Bacillus subtilis (1993) Nature, 364, pp. 169-171
Mueller, U., Perl, D., Schmid, F.X., Heinemann, U., Thermal stability and atomic-resolution crystal structure of the Bacillus caldolyticus cold shock protein (2000) J. Mol. Biol., 297, pp. 975-988
Jung, A., Bamann, C., Kremer, W., Kalbitzer, H.R., Brunner, E., High-temperature solution NMR structure of TmCsp (2004) Protein Sci., 13, pp. 342-350
Kremer, W., Schuler, B., Harrieder, S., Geyer, M., Gronwald, W., Welker, C., Jaenicke, R., Kalbitzer, H.R., Solution NMR structure of the cold-shock protein from the hyperthermophilic bacterium Thermotoga maritima (2001) Eur. J. Biochem., 268, pp. 2527-2539
Reid, K.L., Rodriguez, H.M., Hillier, B.J., Gregoret, L.M., Stability and folding properties of a model beta-sheet protein, Escherichia coli CspA (1998) Protein Sci., 7, pp. 470-479
Garcia-Mira, M.M., Boehringer, D., Schmid, F.X., The folding transition state of the cold shock protein is strongly polarized (2004) J. Mol. Biol., 339, pp. 555-569
Jacob, M., Holtermann, G., Perl, D., Reinstein, J., Schindler, T., Geeves, M.A., Schmid, F.X., Microsecond folding of the cold shock protein measured by a pressure-jump technique (1999) Biochemistry, 38, pp. 2882-2891
Perl, D., Holtermann, G., Schmid, F.X., Role of the chain termini for the folding transition state of the cold shock protein (2001) Biochemistry, 40, pp. 15501-15511
Perl, D., Jacob, M., Bano, M., Stupak, M., Antalik, M., Schmid, F.X., Thermodynamics of a diffusional protein folding reaction (2002) Biophys. Chem., 96, pp. 173-190
Perl, D., Welker, C., Schindler, T., Schroder, K., Marahiel, M.A., Jaenicke, R., Schmid, F.X., Conservation of rapid two-state folding in mesophilic, thermophilic and hyperthermophilic cold shock proteins (1998) Nat. Struct. Biol., 5, pp. 229-235
Schindler, T., Schmid, F.X., Thermodynamic properties of an extremely rapid protein folding reaction (1996) Biochemistry, 35, pp. 16833-16842
Bodenhausen, G., Ruben, D.J., Natural abundance nitrogen-15 NMR by enhanced heteronuclear spectroscopy (1980) Chem. Phys. Lett., 69, pp. 185-189
Marion, D., Kay, L.E., Sparks, S.W., Torchia, D.A., Bax, A., Three-dimensional heteronuclear NMR of nitrogen-15 labeled proteins (1989) J. Am. Chem. Soc., 111, pp. 1515-1517
Zuiderweg, E.R., Fesik, S.W., Heteronuclear three-dimensional NMR spectroscopy of the inflammatory protein C5a (1989) Biochemistry, 28, pp. 2387-2391
Marion, D., Driscoll, P.C., Kay, L.E., Wingfield, P.T., Bax, A., Gronenborn, A.M., Clore, G.M., Overcoming the overlap problem in the assignment of 1H NMR spectra of larger proteins by use of three-dimensional heteronuclear 1H- 15N Hartmann-Hahn-multiple quantum coherence and nuclear Overhauser-multiple quantum coherence spectroscopy: application to interleukin 1 beta (1989) Biochemistry, 28, pp. 6150-6156
Van Der Spoel, D., Lindahl, E., Hess, B., Groenhof, G., Mark, A.E., Berendsen, H.J., GROMACS: fast, flexible, and free (2005) J. Comput. Chem., 26, pp. 1701-1718
Jorgensen, W.L., Maxwell, D.S., Tirado-Rives, J., Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids (1996) J. Am. Chem. Soc., 118, pp. 11225-11236
Kaminski, G.A., Friesner, R.A., Tirado-Rives, J., Jorgensen, W.L., Evaluation and reparametrization of the OPLS-AA force field for proteins via comparison with accurate quantum chemical calculations on peptidesâ (2001) J. Phys. Chem. B, 105, pp. 6474-6487
Humphrey, W., Dalke, A., Schulten, K., VMD: visual molecular dynamics (1996) J. Mol. Graphics, 14, pp. 33-38. , 27-38
Chatterjee, S., Jiang, W., Emerson, S.D., Inouye, M., The backbone structure of the major cold-shock protein CS7.4 of Escherichia coli in solution includes extensive beta-sheet structure (1993) J. Biochem., 114, pp. 663-669
Hillier, B.J., Rodriguez, H.M., Gregoret, L.M., Coupling protein stability and protein function in Escherichia coli CspA (1998) Fold Des., 3, pp. 87-93
Makhatadze, G.I., Loladze, V.V., Gribenko, A.V., Lopez, M.M., Mechanism of thermostabilization in a designed cold shock protein with optimized surface electrostatic interactions (2004) J. Mol. Biol., 336, pp. 929-942
Schindler, T., Herrler, M., Marahiel, M.A., Schmid, F.X., Extremely rapid protein folding in the absence of intermediates (1995) Nat. Struct. Biol., 2, pp. 663-673
Petrosian, S.A., Makhatadze, G.I., Contribution of proton linkage to the thermodynamic stability of the major cold-shock protein of Escherichia coli CspA (2000) Protein Sci., 9, pp. 387-394
Makhatadze, G.I., Marahiel, M.A., Effect of pH and phosphate ions on self-association properties of the major cold-shock protein from Bacillus subtilis (1994) Protein Sci., 3, pp. 2144-2147
Hellman, L.M., Fried, M.G., Electrophoretic mobility shift assay (EMSA) for detecting protein-nucleic acid interactions (2007) Nat. Protoc., 2, pp. 1849-1861
Huang, X., Zhou, H.X., Similarity and difference in the unfolding of thermophilic and mesophilic cold shock proteins studied by molecular dynamics simulations (2006) Biophys. J., 91, pp. 2451-2463
Zhou, H.X., Dong, F., Electrostatic contributions to the stability of a thermophilic cold shock protein (2003) Biophys. J., 84, pp. 2216-2222
Shimizu, S., Chan, H.S., Temperature dependence of hydrophobic interactions: a mean force perspective, effects of water density, and nonadditivity of thermodynamic signatures (2000) J. Chem. Phys., 113, p. 18
Daggett, V., Molecular dynamics simulations of the protein unfolding/folding reaction (2002) Acc. Chem. Res., 35, pp. 422-429
Dynamical properties of cold shock protein A from Mycobacterium tuberculosis