Keywords: Amphipathic α-Helical Peptides, Antimicrobial Peptide, Conformational Flexibility, Multidrug-Resistant Strain, Polypeptide Antibiotic Agent, Antimicrobial Activity, Article, Bacterial Cell, Bacterial Infection, Drug Design, Drug Mechanism, Membrane Damage, Nonhuman, Protein Folding, Protein Secondary Structure,
Affiliations: *** IBB - CNR ***
Dipartimento di Farmacia and DFM and Cirpeb- Universita di Napoli "Federico II", Via Mezzocannone 16, 80134, Naples, Italy. stefania.galdiero@unina.it.,
Istituto di Biostrutture e Bioimmagini - CNR, Via Mezzocannone 16, Naples, Italy
Dipartimento di Medicina Sperimentale, II Università di Napoli, Via De Crecchio 7, Naples, Italy
References: Aiello, A.E., Larson, E., Antibacterial cleaning and hygiene products as an emerging risk factor for antibiotic resistance in the community (2003) Lancet Infect Dis., 3 (8), pp. 501-50
Arnold, S.R., Revenge of the killer microbe (2007) CMAJ, 177 (8), pp. 895-896
Gammon, K., Drug discovery: Leaving no stone unturned (2014) Nature, 509 (7498), pp. S10-12
Enserink, M., Resistant Staph Finds New Niches (2003) Science, 299 (5613), pp. 1639-1641
Balows, A., MRSA: Current perspectives (2004) Diagnos. Microbiol. Infect. Dis., 49 (1), p. 75
Chang, S., Sievert, D.M., Hageman, J.C., Boulton, M.L., Tenover, F.C., Downes, F.P., Shah, S., Fridkin, S.K., Infection with vancomycinresistant staphylococcus aureus containing the vana resistance gene (2003) N. Engl. J. Med., 348 (14), pp. 1342-1347
Nakatsuji, T., Gallo, R.L., Antimicrobial peptides: Old molecules with new ideas (2012) J. Invest. Dermatol., 132 (3), pp. 887-895
Gordon, Y.J., Romanowski, E.G., McDermott, A.M., A review of antimicrobial peptides and their therapeutic potential as antiinfective drugs (2005) Curr. Eye Res., 30 (7), pp. 505-515
Lazarev, V.N., Govorun, V.M., Antimicrobial peptides and their use in medicine (2010) Appl. Biochem. Microbiol., 46 (9), pp. 803-814
Hancock, R.E.W., Sahl, H.-G., Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies (2006) Nat. Biotech., 24 (12), pp. 1551-1557
Marr, A.K., Gooderham, W.J., Hancock, R.E., Antibacterial peptides for therapeutic use: Obstacles and realistic outlook (2006) Curr. Opin. Pharmacol., 6 (5), pp. 468-472
Yeaman, M.R., Yount, N.Y., Mechanisms of antimicrobial peptide action and resistance (2003) Pharmacol. Rev., 55 (1), pp. 27-55
Zasloff, M., Antimicrobial peptides of multicellular organisms (2002) Nature, 415 (6870), pp. 389-395
Powers, J.P., Hancock, R.E., The relationship between peptide structure and antibacterial activity (2003) Peptides, 24 (11), pp. 1681-1691
Cruz, J., Ortiz, C., Guzman, F., Fernandez-Lafuente, R., Torres, R., Antimicrobial peptides: Promising compounds against pathogenic microorganisms (2014) Curr. Med. Chem, 21 (20), pp. 2299-2321
Dathe, M., Wieprecht, T., Structural features of helical antimicrobial peptides: Their potential to modulate activity on model membranes and biological cells (1999) Biochim. Biophys. Acta, 1462 (1-2), pp. 71-87
Paredes-Gamero, E.J., Martins, M.N., Cappabianco, F.A., Ide, J.S., Miranda, A., Characterization of dual effects induced by antimicrobial peptides: Regulated cell death or membrane disruption (2012) Biochim. Biophys. Acta, 1820 (7), pp. 1062-1072
Lohner, K., New strategies for novel antibiotics: Peptides targeting bacterial cell membranes (2009) Gen. Physiol. Biophys., 28 (2), pp. 105-116
Ding, L., Yang, L., Weiss, T.M., Waring, A.J., Lehrer, R.I., Huang, H.W., Interaction of antimicrobial peptides with lipopolysaccharides (2003) Biochemistry, 42 (42), pp. 12251-12259
Domingues, M.M., Inacio, R.G., Raimundo, J.M., Martins, M., Castanho, M.A., Santos, N.C., Biophysical characterization of polymyxin B interaction with LPS aggregates and membrane model systems (2012) Biopolymers, 98 (4), pp. 338-344
Gogoladze, G., Grigolava, M., Vishnepolsky, B., Chubinidze, M., Duroux, P., Lefranc, M.P., Pirtskhalava, M., DBAASP: Database of antimicrobial activity and structure of peptides (2014) FEMS Microbiol. Lett., 357 (1), pp. 63-68
Novkovic, M., Simunic, J., Bojovic, V., Tossi, A., Juretic, D., DADP: The database of anuran defense peptides (2012) Bioinformatics, 28 (10), pp. 1406-1407
Wang, G., Li, X., Wang, Z., APD2: The updated antimicrobial peptide database and its application in peptide design (2009) Nucleic Acids Res., 37, pp. D933-D937. , Database issue
Matsuzaki, K., Murase, O., Fujii, N., Miyajima, K., An antimicrobial peptide, magainin 2, induced rapid flip-flop of phospholipids coupled with pore formation and peptide translocation (1996) Biochemistry, 35 (35), pp. 11361-11368
Saviello, M.R., Malfi, S., Campiglia, P., Cavalli, A., Grieco, P., Novellino, E., Carotenuto, A., New insight into the mechanism of action of the temporin antimicrobial peptides (2010) Biochemistry, 49 (7), pp. 1477-1485
Eisenberg, D., Terwilliger, T.C., Tsui, F., Structural studies of bee melittin (1980) Biophys. J., 32 (1), pp. 252-254
Irudayam, S.J., Berkowitz, M.L., Influence of the arrangement and secondary structure of melittin peptides on the formation and stability of toroidal pores (2011) Biochim. Biophys. Acta, 1808 (9), pp. 2258-2266
Dennison, S.R., Wallace, J., Harris, F., Phoenix, D.A., Amphiphilic alpha-helical antimicrobial peptides and their structure/function relationships (2005) Protein Pept. Lett., 12 (1), pp. 31-39
Takahashi, D., Shukla, S.K., Prakash, O., Zhang, G., Structural determinants of host defense peptides for antimicrobial activity and target cell selectivity (2010) Biochimie, 92 (9), pp. 1236-1241
Tang, M., Hong, M., Structure and mechanism of beta-hairpin antimicrobial peptides in lipid bilayers from solid-state NMR spectroscopy (2009) Mol. Biosyst., 5 (4), pp. 317-322
Xu, T., Levitz, S.M., Diamond, R.D., Oppenheim, F.G., Anticandidal activity of major human salivary histatins (1991) Infect Immun., 59 (8), pp. 2549-2554
Chan, D.I., Prenner, E.J., Vogel, H.J., Tryptophan-and argininerich antimicrobial peptides: Structures and mechanisms of action (2006) Biochim. Biophys. Acta, 1758 (9), pp. 1184-1202
Rokitskaya, T.I., Kolodkin, N.I., Kotova, E.A., Antonenko, Y.N., Indolicidin action on membrane permeability: Carrier mechanism versus pore formation (2011) Biochim. Biophys. Acta, 1808 (1), pp. 91-97
Brogden, K.A., Ackermann, M.R., McCray, Jr.P.B., Huttner, K.M., Differences in the concentrations of small, anionic, antimicrobial peptides in bronchoalveolar lavage fluid and in respiratory epithelia of patients with and without cystic fibrosis (1999) Infect Immun., 67 (8), pp. 4256-4259
Lai, R., Liu, H., Hui Lee, W., Zhang, Y., An anionic antimicrobial peptide from toad Bombina maxima (2002) Biochem. Biophys. Res. Commun., 295 (4), pp. 796-799
Schittek, B., Hipfel, R., Sauer, B., Bauer, J., Kalbacher, H., Stevanovic, S., Schirle, M., Garbe, C., Dermcidin: A novel human antibiotic peptide secreted by sweat glands (2001) Nat. Immunol., 2 (12), pp. 1133-1137
Gennaro, R., Zanetti, M., Structural features and biological activities of the cathelicidin-derived antimicrobial peptides (2000) Biopolymers, 55 (1), pp. 31-49
Bechinger, B., Structure and functions of channel-forming peptides: Magainins, cecropins, melittin and alamethicin (1997) J. Membr. Biol., 156 (3), pp. 197-211
Park, C., Lee, D.G., Melittin induces apoptotic features in Candida albicans (2010) Biochem. Biophys. Res. Commun., 394 (1), pp. 170-172
Zasloff, M., Magainins, a class of antimicrobial peptides from Xenopus skin: Isolation, characterization of two active forms, and partial cDNA sequence of a precursor (1987) Proc. Natl. Acad. Sci. USA, 84 (15), pp. 5449-5453
Ostberg, N., Kaznessis, Y., Protegrin structure-activity relationships: Using homology models of synthetic sequences to determine structural characteristics important for activity (2005) Peptides, 26 (2), pp. 197-206
Selsted, M.E., Novotny, M.J., Morris, W.L., Tang, Y.Q., Smith, W., Cullor, J.S., Indolicidin, a novel bactericidal tridecapeptide amide from neutrophils (1992) J. Biol. Chem., 267 (7), pp. 4292-4295
Ladokhin, A.S., Selsted, M.E., White, S.H., CD spectra of indolicidin antimicrobial peptides suggest turns, not polyproline helix (1999) Biochemistry, 38 (38), pp. 12313-12319
Rozek, A., Friedrich, C.L., Hancock, R.E., Structure of the bovine antimicrobial peptide indolicidin bound to dodecylphosphocholine and sodium dodecyl sulfate micelles (2000) Biochemistry, 39 (51), pp. 15765-15774
Boman, H.G., Faye, I., Gudmundsson, G.H., Lee, J.Y., Lidholm, D.A., Cell-free immunity in Cecropia. A model system for antibacterial proteins (1991) Eur. J. Biochem, 201 (1), pp. 23-31
Vermeer, L.S., Lan, Y., Abbate, V., Ruh, E., Bui, T.T., Wilkinson, L.J., Kanno, T., Mason, A.J., Conformational flexibility determines selectivity and antibacterial, antiplasmodial, and anticancer potency of cationic-helical peptides (2012) J. Biol. Chem., 287 (41), pp. 34120-34133
Park, C.B., Kim, H.S., Kim, S.C., Mechanism of action of the antimicrobial peptide buforin II: Buforin II kills microorganisms by penetrating the cell membrane and inhibiting cellular functions (1998) Biochem. Biophys. Res. Commun., 244 (1), pp. 253-257
Yang, S.T., Lee, J.Y., Kim, H.J., Eu, Y.J., Shin, S.Y., Hahm, K.S., Kim, J.I., Contribution of a central proline in model amphipathic alpha-helical peptides to self-association, interaction with phospholipids, and antimicrobial mode of action (2006) FEBS J., 273 (17), pp. 4040-4054
Papo, N., Shai, Y., Can we predict biological activity of antimicrobial peptides from their interactions with model phospholipid membranes (2003) Peptides, 24 (11), pp. 1693-1703
Wieprecht, T., Dathe, M., Epand, R.M., Beyermann, M., Krause, E., Maloy, W.L., Macdonald, D.L., Bienert, M., Influence of the angle subtended by the positively charged helix face on the membrane activity of amphipathic, antibacterial peptides (1997) Biochemistry, 36 (42), pp. 12869-12880
Galdiero, S., Falanga, A., Cantisani, M., Vitiello, M., Morelli, G., Galdiero, M., Peptide-lipid interactions: Experiments and applications (2013) Int. J. Mol. Sci., 14 (9), pp. 18758-18789
Galdiero, S., Russo, L., Falanga, A., Cantisani, M., Vitiello, M., Fattorusso, R., Malgieri, G., Isernia, C., Structure and orientation of the gH625-644 membrane interacting region of herpes simplex virus type 1 in a membrane mimetic system (2012) Biochemistry, 51 (14), pp. 3121-3128
Falanga, A., Tarallo, R., Vitiello, G., Vitiello, M., Perillo, E., Cantisani, M., D'Errico, G., Galdiero, S., Biophysical characterization and membrane interaction of the two fusion loops of glycoprotein B from herpes simplex type i virus (2012) PLoS One, 7 (2), p. e32186
Galdiero, S., Editorial: Developments in membrane fusion (2009) Protein Pept. Lett., 16 (7), p. 711
Joanne, P., Nicolas, P., El Amri, C., Antimicrobial peptides and viral fusion peptides: How different they are (2009) Protein Pept. Lett., 16 (7), pp. 743-750
Matsuzaki, K., Magainins as paradigm for the mode of action of pore forming polypeptides (1998) Biochim. Biophys. Acta, 1376 (3), pp. 391-400
Haney, E.F., Hunter, H.N., Matsuzaki, K., Vogel, H.J., Solution NMR studies of amphibian antimicrobial peptides: Linking structure to function Biochim (2009) Biophys. Acta, 1788 (8), pp. 1639-1655
Syvitski, R.T., Burton, I., Mattatall, N.R., Douglas, S.E., Jakeman, D.L., Structural characterization of the antimicrobial peptide pleurocidin from winter flounder (2005) Biochemistry, 44 (19), pp. 7282-7293
Mangoni, M.L., Temporins, anti-infective peptides with expanding properties (2006) Cell Mol. Life Sci., 63 (9), pp. 1060-1069
Mangoni, M.L., Carotenuto, A., Auriemma, L., Saviello, M.R., Campiglia, P., Gomez-Monterrey, I., Malfi, S., Grieco, P., Structure-activity relationship, conformational and biological studies of temporin L analogues (2011) J. Med. Chem., 54 (5), pp. 1298-1307
Becucci, L., Papini, M., Mullen, D., Scaloni, A., Veglia, G., Guidelli, R., Probing membrane permeabilization by the antimicrobial peptide distinctin in mercury-supported biomimetic membranes (2011) Biochim. Biophys. Acta, 1808 (11), pp. 2745-2752
Verardi, R., Traaseth, N.J., Shi, L., Porcelli, F., Monfregola, L., De Luca, S., Amodeo, P., Scaloni, A., Probing membrane topology of the antimicrobial peptide distinctin by solidstate NMR spectroscopy in zwitterionic and charged lipid bilayers (2011) Biochim. Biophys. Acta, 1808 (1), pp. 34-40
De Vos, W.M., Mulders, J.W., Siezen, R.J., Hugenholtz, J., Kuipers, O.P., Properties of nisin Z and distribution of its gene, nisZ, in Lactococcus lactis (1993) Appl. Environ. Microbiol., 59 (1), pp. 213-218
Twomey, D., Ross, R.P., Ryan, M., Meaney, B., Hill, C., Lantibiotics produced by lactic acid bacteria: Structure, function and applications (2002) Antonie Van Leeuwenhoek, 82 (1-4), pp. 165-185
Steiner, H., Hultmark, D., Engstrom, A., Bennich, H., Boman, H.G., Sequence and specificity of two antibacterial proteins involved in insect immunity (1981) Nature, 292, pp. 246-248. , J. Immunol., 2009, 182(11), 6635-6637
Bechinger, B., Zasloff, M., Opella, S.J., Structure and orientation of the antibiotic peptide magainin in membranes by solid-state nuclear magnetic resonance spectroscopy (1993) Protein Sci., 2 (12), pp. 2077-2084
Romeo, D., Skerlavaj, B., Bolognesi, M., Gennaro, R., Structure and bactericidal activity of an antibiotic dodecapeptide purified from bovine neutrophils (1988) J. Biol. Chem., 263 (20), pp. 9573-9575
Selsted, M.E., Harwig, S.S., Ganz, T., Schilling, J.W., Lehrer, R.I., Primary structures of three human neutrophil defensins (1985) J. Clin. Invest., 76 (4), pp. 1436-1439
Jarczak, J., Kosciuczuk, E.M., Lisowski, P., Strzalkowska, N., Jozwik, A., Horbanczuk, J., Krzyzewski, J., Bagnicka, E., Defensins: Natural component of human innate immunity (2013) Hum. Immunol., 74 (9), pp. 1069-1079
Luque-Ortega, J.R., Van'T Hof, W., Veerman, E.C., Saugar, J.M., Rivas, L., Human antimicrobial peptide histatin 5 is a cellpenetrating peptide targeting mitochondrial ATP synthesis in Leishmania (2008) FASEB J., 22 (6), pp. 1817-1828
Huo, L., Zhang, K., Ling, J., Peng, Z., Huang, X., Liu, H., Gu, L., Antimicrobial and DNA-binding activities of the peptide fragments of human lactoferrin and histatin 5 against Streptococcus mutans (2011) Arch. Oral Biol., 56 (9), pp. 869-876
Brogden, K.A., Antimicrobial peptides: Pore formers or metabolic inhibitors in bacteria (2005) Nat. Rev. Microbiol., 3 (3), pp. 238-250
Galdiero, S., Vitiello, M., Falanga, A., Cantisani, M., Incoronato, N., Galdiero, M., Intracellular delivery: Exploiting viral membranotropic peptides (2012) Curr. Drug Metab., 13 (1), pp. 93-104
Splith, K., Neundorf, I., Antimicrobial peptides with cellpenetrating peptide properties and vice versa (2011) Eur. Biophys. J., 40 (4), pp. 387-397
Valiante, S., Falanga, A., Cigliano, L., Iachetta, G., Busiello, R.A., La Marca, V., Galdiero, M., Galdiero, S., The peptide gH625 enters into neuron and astrocyte cell lines and crosses the Blood Brain Barrier in rats (2015) Int. J. Nanomed., 10, pp. 1885-1898
Subbalakshmi, C., Sitaram, N., Mechanism of antimicrobial action of indolicidin (1998) FEMS Microbiol. Lett., 160 (1), pp. 91-96
Boman, H.G., Agerberth, B., Boman, A., Mechanisms of action on Escherichia coli of cecropin P1 and PR-39, two antibacterial peptides from pig intestine (1993) Infect Immun., 61 (7), pp. 2978-2984
Gryllos, I., Tran-Winkler, H.J., Cheng, M.F., Chung, H., Bolcome, R., III, Lu, W., Lehrer, R.I., Wessels, M.R., Induction of group A Streptococcus virulence by a human antimicrobial peptide (2008) Proc. Natl. Acad. Sci. U. S. A., 105 (43), pp. 16755-16760
Aggarwal, K., Silverman, N., Positive and negative regulation of the Drosophila immune response (2008) BMB Rep., 41 (4), pp. 267-277
Shai, Y., Mechanism of the binding, insertion and destabilization of phospholipid bilayer membranes by alpha-helical antimicrobial and cell non-selective membrane-lytic peptides (1999) Biochim. Biophys. Acta, 1462 (1-2), pp. 55-70
Pouny, Y., Rapaport, D., Mor, A., Nicolas, P., Shai, Y., Interaction of antimicrobial dermaseptin and its fluorescently labeled analogues with phospholipid membranes (1992) Biochemistry, 31 (49), pp. 12416-12423
Kouzayha, A., Nasir, M.N., Buchet, R., Wattraint, O., Sarazin, C., Besson, F., Conformational and interfacial analyses of K3A18K3 and alamethicin in model membranes (2009) J. Phys. Chem. B., 113 (19), pp. 7012-7019
Ladokhin, A.S., White, S.H., Detergent-like' permeabilization of anionic lipid vesicles by melittin (2001) Biochim. Biophys. Acta, 1514 (2), pp. 253-260
Dagan, A., Efron, L., Gaidukov, L., Mor, A., Ginsburg, H., In vitro antiplasmodium effects of dermaseptin S4 derivatives (2002) Antimicrob. Agents Chemother., 46 (4), pp. 1059-1066
Lee, I.H., Cho, Y., Lehrer, R.I., Effects of pH and salinity on the antimicrobial properties of clavanins (1997) Infect Immun., 65 (7), pp. 2898-2903
Rotem, S., Mor, A., Antimicrobial peptide mimics for improved therapeutic properties (2009) Biochim. Biophys. Acta, 1788 (8), pp. 1582-1592
Bradshaw, J., Cationic antimicrobial peptides: Issues for potential clinical use (2003) BioDrugs, 17 (4), pp. 233-240
Hancock, R.E.W., Brown, K.L., Mookherjee, N., Host defence peptides from invertebrates-emerging antimicrobial strategies (2006) Immunobiology, 211 (4), pp. 315-322
Danial, M., Van Dulmen, T.H., Aleksandrowicz, J., Potgens, A.J., Klok, H.A., Site-specific PEGylation of HR2 peptides: Effects of PEG conjugation position and chain length on HIV-1 membrane fusion inhibition and proteolytic degradation (2012) Bioconjug. Chem., 23 (8), pp. 1648-1660
Papo, N., Oren, Z., Pag, U., Sahl, H.G., Shai, Y., The consequence of sequence alteration of an amphipathic alpha-helical antimicrobial peptide and its diastereomers (2002) J. Biol. Chem., 277 (37), pp. 33913-33921
Hicks, R.P., Bhonsle, J.B., Venugopal, D., Koser, B.W., Magill, A.J., De novo design of selective antibiotic peptides by incorporation of unnatural amino acids (2007) J. Med. Chem., 50 (13), pp. 3026-3036
Park, Y., Hahm, K.S., Novel short AMP: Design and activity study (2012) Protein Pept. Lett., 19 (6), pp. 652-656
Kang, S.J., Won, H.S., Choi, W.S., Lee, B.J., De novo generation of antimicrobial LK peptides with a single tryptophan at the critical amphipathic interface (2009) J. Pept. Sci., 15 (9), pp. 583-588
Brandelli, A., Nanostructures as promising tools for delivery of antimicrobial peptides (2012) Mini Rev. Med. Chem., 12 (8), pp. 731-741
Tam, J.P., Lu, Y.A., Yang, J.L., Antimicrobial dendrimeric peptides (2002) Eur. J. Biochem., 269 (3), pp. 923-932
Juretic, D., Vukicevic, D., Ilic, N., Antcheva, N., Tossi, A., Computational design of highly selective antimicrobial peptides (2009) J. Chem. Inf. Model, 49 (12), pp. 2873-2882
Tossi, A., Sandri, L., Giangaspero, A., Amphipathic, alpha-helical antimicrobial peptides (2000) Biopolymers, 55 (1), pp. 4-30
Rydlo, T., Rotem, S., Mor, A., Antibacterial properties of dermaseptin S4 derivatives under extreme incubation conditions (2006) Antimicrob. Agents Chemother., 50 (2), pp. 490-497
Kustanovich, I., Shalev, D.E., Mikhlin, M., Gaidukov, L., Mor, A., Structural requirements for potent versus selective cytotoxicity for antimicrobial dermaseptin S4 derivatives (2002) J. Biol. Chem., 277 (19), pp. 16941-16951
Houston, Jr.M.E., Kondejewski, L.H., Karunaratne, D.N., Gough, M., Fidai, S., Hodges, R.S., Hancock, R.E., Influence of preformed alpha-helix and alpha-helix induction on the activity of cationic antimicrobial peptides (1998) J. Pept. Res., 52 (2), pp. 81-88
Giangaspero, A., Sandri, L., Tossi, A., Amphipathic alpha helical antimicrobial peptides (2001) Eur. J. Biochem., 268 (21), pp. 5589-5600
Dempsey, C.E., Hawrani, A., Howe, R.A., Walsh, T.R., Amphipathic antimicrobial peptides-from biophysics to therapeutics (2010) Protein Pept. Lett, 17 (11), pp. 1334-1344
Matsuzaki, K., Control of cell selectivity of antimicrobial peptides (2009) Biochim. Biophys. Acta, 1788 (8), pp. 1687-1692
Bhargava, K., Feix, J.B., Membrane binding, structure, and localization of cecropin-mellitin hybrid peptides: A site-directed spin-labeling study (2004) Biophys. J., 86 (11), pp. 329-336
Turner, J., Cho, Y., Dinh, N.N., Waring, A.J., Lehrer, R.I., Activities of LL-37, a cathelin-associated antimicrobial peptide of human neutrophils (1998) Antimicrob. Agents Chemother., 42 (9), pp. 2206-2214
Scudiero, O., Galdiero, S., Cantisani, M., Di Noto, R., Vitiello, M., Galdiero, M., Naclerio, G., Salvatore, F., Novel synthetic, salt-resistant analogs of human beta-defensins 1 and 3 endowed with enhanced antimicrobial activity (2010) Antimicrob. Agents Chemother., 54 (6), pp. 2312-2322
Matsuzaki, K., Nakamura, A., Murase, O., Sugishita, K.-I., Fujii, N., Miyajima, K., Modulation of magainin 2 lipid bilayer interactions by peptide charge (1997) Biochemistry, 36 (8), pp. 2104-2111
Osapay, K., Tran, D., Ladokhin, A.S., White, S.H., Henschen, A.H., Selsted, M.E., Formation and characterization of a single Trp-Trp cross-link in indolicidin that confers protease stability without altering antimicrobial activity (2000) J. Biol. Chem., 275 (16), pp. 12017-12022
Grieco, P., Luca, V., Auriemma, L., Carotenuto, A., Saviello, M.R., Campiglia, P., Barra, D., Mangoni, M.L., Alanine scanning analysis and structure-function relationships of the frog-skin antimicrobial peptide temporin-1Ta (2011) J. Pept. Sci., 17 (5), pp. 358-365
Subramanian, S., Ross, N.W., Mackinnon, S.L., Myxinidin, a novel antimicrobial peptide from the epidermal mucus of hagfish, Myxine glutinosa L (2009) Mar. Biotechnol. (NY), 11 (6), pp. 748-757
Cantisani, M., Finamore, E., Mignogna, E., Falanga, A., Nicoletti, G.F., Pedone, C., Morelli, G., Galdiero, S., Structural insights into and activity analysis of the antimicrobial peptide myxinidin (2014) Antimicrob. Agents Chemother., 58 (9), pp. 5280-5290
Cantisani, M., Leone, M., Mignogna, E., Kampanaraki, K., Falanga, A., Morelli, G., Galdiero, M., Galdiero, S., Structureactivity relations of myxinidin, an antibacterial peptide derived from the epidermal mucus of hagfish (2013) Antimicrob. Agents Chemother., 57 (11), pp. 5665-5673
Onaizi, S.A., Leong, S.S., Tethering antimicrobial peptides: Current status and potential challenges (2011) Biotechnol. Adv., 29 (1), pp. 67-74
Dutta, D., Cole, N., Kumar, N., Willcox, M.D., Broad spectrum antimicrobial activity of melimine covalently bound to contact lenses (2013) Invest. Ophthalmol. Vis. Sci., 54 (1), pp. 175-182
Li, X., Li, P., Saravanan, R., Basu, A., Mishra, B., Lim, S.H., Su, X., Leong, S.S., Antimicrobial functionalization of silicone surfaces with engineered short peptides having broad spectrum antimicrobial and salt-resistant properties (2014) Acta Biomater., 10 (1), pp. 258-266
Holmberg, K.V., Abdolhosseini, M., Li, Y., Chen, X., Gorr, S.U., Aparicio, C., Bio-inspired stable antimicrobial peptide coatings for dental applications (2013) Acta Biomater., 9 (9), pp. 8224-8231
Kazemzadeh-Narbat, M., Lai, B.F., Ding, C., Kizhakkedathu, J.N., Hancock, R.E., Wang, R., Multilayered coating on titanium for controlled release of antimicrobial peptides for the prevention of implant-associated infections (2013) Biomaterials, 34 (24), pp. 5969-5977
Tarallo, R., Carberry, T.P., Falanga, A., Vitiello, M., Galdiero, S., Galdiero, M., Weck, M., Dendrimers functionalized with membrane-interacting peptides for viral inhibition (2013) Int. J. Nanomed., 8, pp. 521-534
Pini, A., Giuliani, A., Falciani, C., Runci, Y., Ricci, C., Lelli, B., Malossi, M., Bracci, L., Antimicrobial activity of novel dendrimeric peptides obtained by phage displayselection and rational modification (2005) Antimicrob. Agents Chemother., 49 (7), pp. 2665-2672
Bruschi, M., Pirri, G., Giuliani, A., Nicoletto, S.F., Baster, I., Scorciapino, M.A., Casu, M., Rinaldi, A.C., Synthesis, characterization, antimicrobial activity and LPS-interaction properties of SB041, a novel dendrimeric peptide with antimicrobial properties (2010) Peptides, 31 (8), pp. 1459-1467
Dos Santos, C.A., Seckler, M.M., Ingle, A.P., Gupta, I., Galdiero, S., Galdiero, M., Gade, A., Rai, M., Silver nanoparticles: Therapeutical uses, toxicity, and safety issues (2014) J. Pharm. Sci., 103 (7), pp. 1931-1944
Gaikwad, S., Ingle, A., Gade, A., Rai, M., Falanga, A., Incoronato, N., Russo, L., Galdiero, M., Antiviral activity of mycosynthesized silver nanoparticles against herpes simplex virus and human parainfluenza virus type 3 (2013) Int. J. Nanomed., 8, pp. 4303-4314
Rai, M., Deshmukh, S.D., Ingle, A.P., Gupta, I.R., Galdiero, M., Galdiero, S., Metal nanoparticles: The protective nanoshield against virus infection (2014) Crit. Rev. Microbiol.
Rai, M., Kon, K., Ingle, A., Duran, N., Galdiero, S., Galdiero, M., Broad-spectrum bioactivities of silver nanoparticles: The emerging trends and future prospects (2014) Appl. Microbiol. Biotechnol., 98 (5), pp. 1951-1961
Hankins, J.V., Madsen, J.A., Giles, D.K., Brodbelt, J.S., Trent, M.S., Amino acid addition to Vibrio cholerae LPS establishes a link between surface remodeling in gram-positive and gramnegative bacteria (2012) Proc. Natl. Acad. Sci. USA, 109 (22), pp. 8722-8727
Strandberg, K.L., Richards, S.M., Tamayo, R., Reeves, L.T., Gunn, J.S., An altered immune response, but not individual cationic antimicrobial peptides, is associated with the oral attenuation of Ara4N-deficient Salmonella enterica serovar Typhimurium in mice (2012) PLoS One, 7 (11), p. e49588
Tran, A.X., Whittimore, J.D., Wyrick, P.B., McGrath, S.C., Cotter, R.J., Trent, M.S., The lipid A 1-phosphatase of Helicobacter pylori is required for resistance to the antimicrobial peptide polymyxin (2006) J. Bacteriol., 188 (12), pp. 4531-4541
Andra, J., Goldmann, T., Ernst, C.M., Peschel, A., Gutsmann, T., Multiple peptide resistance factor (MprF)-mediated Resistance of Staphylococcus aureus against antimicrobial peptides coincides with a modulated peptide interaction with artificial membranes comprising lysyl-phosphatidylglycerol (2011) J. Biol. Chem., 286 (21), pp. 18692-18700
Schmidtchen, A., Frick, I.M., Andersson, E., Tapper, H., Bjorck, L., Proteinases of common pathogenic bacteria degrade and inactivate the antibacterial peptide LL-37. Mol (2002) Microbiol., 46 (1), pp. 157-168
Belas, R., Manos, J., Suvanasuthi, R., Proteus mirabilis ZapA metalloprotease degrades a broad spectrum of substrates, including antimicrobial peptides (2004) Infect. Immun., 72 (9), pp. 5159-5167
Ge, Y., Macdonald, D.L., Holroyd, K.J., Thornsberry, C., Wexler, H., Zasloff, M., In vitro antibacterial properties of pexiganan, an analog of magainin (1999) Antimicrob. Agents Chemother., 43 (4), pp. 782-788
Moore, A., The big and small of drug discovery. Biotech versus pharma: Advantages and drawbacks in drug development (2003) EMBO Rep., 4 (2), pp. 114-117
Bu, H.F., Wang, X., Zhu, Y.Q., Williams, R.Y., Hsueh, W., Zheng, X., Rozenfeld, R.A., Tan, X.D., Lysozymemodified probiotic components protect rats against polymicrobial sepsis: Role of macrophages and cathelicidin-related innate immunity (2006) J. Immunol., 177 (12), pp. 8767-8776
Yang, Y.H., Wu, W.K., Tai, E.K., Wong, H.P., Lam, E.K., So, W.H., Shin, V.Y., Cho, C.H., The cationic host defense peptide rCRAMP promotes gastric ulcer healing in rats (2006) J. Pharmacol. Exp. Ther., 318 (2), pp. 547-554
Sader, H.S., Fedler, K.A., Rennie, R.P., Stevens, S., Jones, R.N., Omiganan pentahydrochloride (MBI 226), a topical 12-amino-acid cationic peptide: Spectrum of antimicrobial activity and measurements of bactericidal activity (2004) Antimicrob. Agents Chemother., 48 (8), pp. 3112-3118
Panyutich, A., Shi, J., Boutz, P.L., Zhao, C., Ganz, T., Porcine polymorphonuclear leukocytes generate extracellular microbicidal activity by elastase-mediated activation of secreted proprotegrins (1997) Infect. Immun., 65 (3), pp. 978-985
Brewer, D., Hunter, H., Lajoie, G., NMR studies of the antimicrobial salivary peptides histatin 3 and histatin 5 in aqueous and nonaqueous solutions (1998) Biochem. Cell Biol., 76 (2-3), pp. 247-256
Giroir, B.P., Quint, P.A., Barton, P., Kirsch, E.A., Kitchen, L., Goldstein, B., Nelson, B.J., Scannon, P.J., Preliminary evaluation of recombinant amino-terminal fragment of human bactericidal/permeability-increasing protein in children with severe meningococcal sepsis (1997) Lancet, 350 (9089), pp. 1439-1443
Antimicrobial peptides as an opportunity against bacterial diseases