Autocrine signals increase Ovine Mesenchymal Stem Cells migration through Aquaporin-1 and CXCR4 overexpression(659 views) Pelagalli A, Nardelli A, Lucarelli E, Zannetti A, Brunetti A
Department of Advanced Biomedical Sciences, University of Naples "Federico II", Naples, Italy., Institute of Biostructure and Bioimaging, National Research Council, Naples, Italy., Osteoarticolar Regeneration Laboratory, Rizzoli Orthopedic Institute, Bologna, Italy.,
References: Adamzyk, C., Kachel, P., Hoss, M., Gremse, F., Modabber, A., Hölzle, F., Lethaus, B., Bone tissue engineering using polyetherketoneketone scaffolds combined with autologous mesenchymal stem cells in a sheep calvarial defect model (2016) Journal of Cranio-Maxillofacial Surgery, 44, pp. 985-99
Al Faqeh, H., Nor Hamdan, B.M., Chen, H.C., Aminuddin, B.S., Ruszymah, B.H., The potential of intra-articular injection of chondrogenic-induced bone marrow stem cells to retard the progression of osteoarthritis in a sheep model (2012) Experimental Gerontology, 47, pp. 658-664
Angoulvant, D., Ivanes, F., Ferrera, R., Matthews, P.G., Nataf, S., Ovize, M., Mesenchymal stem cell conditioned media attenuates in vitro and ex vivo myocardial reperfusion injury (2011) The Journal of Heart and Lung Transplantation, 30, pp. 95-102
Boos, A.M., Loew, J.S., Deschler, G., Arkudas, A., Bleiziffer, O., Gulle, H., Beier, J.P., Directly auto-transplanted mesenchymal stem cells induce bone formation in a ceramic bone substitute in an ectopic sheep model (2011) Journal of Cellular and Molecular Medicine, 15, pp. 1364-1378
Burk, J., Glauchea, S.M., Brehma, W., Crovaced, A., Francioso, E., Hillmann, A., Lacitignola, L., Characterisation and intracellular labelling of mesenchymal stromal cells derived from synovial fluid of horses and sheep (2017) Veterinary Journal, 222, pp. 1-8
Camorani, S., Hill, B.S., Fontanella, R., Greco, A., Gramanzini, M., Auletta, L., Zannetti, A., Inhibition of bone marrow-Derived mesenchymal stem cells homing towards triple-Negative Breast cancer microenvironment using an anti-PDGFRβ aptamer (2017) Theranostics, 7, pp. 3595-3607
Cashen, A.F., Nervi, B., Di Persio, J., AMD3100: CXCR4 antagonist and rapid stem cell-mobilizing agent (2007) Future Oncology, 3, pp. 19-27
Chang, W., Kim, R., Park, S.I., Jung, Y.J., Ham, O., Lee, J., Maeng, L.S., Enhanched healing of rat calvarial bone defects hypoxic conditioned medium from mesenchymal stem cells through increased endogenous stem cell migration via regulation of ICAM-1 targeted-microRNA-221 (2015) Molecules and Cells, 38, pp. 643-650
Cibelli, J., Emborg, M.E., Prockop, D.J., Roberts, M., Schatten, G., Rao, M., Mirochnitchenko, O., Strategies for improving animal models for regenerative medicine (2013) Cell Stem Cell, 12, pp. 271-274
Conner, M.T., Conner, A.C., Bland, C.E., Taylor, L.H., Brown, J.E., Parri, R.H., Bill, R.M., Rapid aquaporin translocation regulates cellular water flow: Mechanism of hypotonicity-induced subcellular localization of aquaporin 1 water channel (2012) The Journal of Biological Chemistry, 287, pp. 11516-11525
Dalal, J., Gandy, K., Domen, J., Role of mesenchymal stem cell therapy in Crohn's disease (2012) Pediatric Research, 71, pp. 445-451
Delling, U., Brehma, W., Ludewigb, E., Winterc, K., Jülkec, H., Longitudinal evaluation of effects of intraarticular mesenchymal stromal cell administration for the treatment of osteoarthritis in an ovine model (2015) Cell Transplantation, 24, pp. 2391-2407. , https://doi.org./10.3727/096368915×686193
Desantis, S., Accogli, G., Zizza, S., Mastrodonato, M., Blasi, A., Francioso, E., Resta, L., Ultrastructural study of cultured ovine bone marrow-derived mesenchymal stromal cells (2015) Annals of Anatomy, 201, pp. 43-49
Di Bella, C., Aldini, N.N., Lucarelli, E., Dozza, B., Frisoni, T., Martini, L., Donati, D., Osteogenic protein-1associated with mesenchymal stem cells promote bone allograft integration (2010) Tissue Engineering Part A, 16, pp. 2967-2976
Ding, F., Zhang, G., Liu, L., Jiang, L., Wang, R., Zheng, Y., Duan, Y., Involvement of cationic channels in proliferation and migration of human mesenchymal stem cells (2012) Tissue and Cell, 44, pp. 358-364
Dozza, B., Di Bella, C., Lucarelli, E., Giavaresi, G., Fini, M., Tazzari, P.L., Donati, D., Mesenchymal stem cell and platelet lysate in fibrin or collagen scaffold promote non cemented hip prothesis integration (2011) Journal of Orthopaedic Research, 29, pp. 961-968
Dozza, B., Lesci, I.G., Duchi, S., Della Bella, E., Martini, L., Salamanna, F., Donati, D., When size matters: Differences in demineralized bone matrix particles affect collagen structure, mesenchymal stem cell behavior, and osteogenic potential (2017) Journal of Biomedical Materials Research, 105, pp. 1019-1033
Fontanella, R., Pelagalli, A., Nardelli, A., D'Alterio, C., Ierano’, C., Cerchia, L., Zannetti, A., A novel antagonist of CXCR4 prevents bone marrow-derived mesenchymal stem cell-mediated osteosarcoma and hepatocellular carcinoma cell migration and invasion (2016) Cancer Letters, 370, pp. 100-107
Ganju, R.K., Brubaker, S.A., Meyer, J., Dutt, P., Yang, Y., Qin, S., Groopma, J.E., The α-chemokine, stromal cell-derived factor-1α, binds to the transmembrane G protein-coupled CXCR-4 receptor and activates multiple signal transduction pathways (1998) The Journal of Biological Chemistry, 273, pp. 23169-23175
Gebak, T., Schulz, M.M.P., Koumoutsakos, P., Detmar, M., Tscratch: A novel and simple software tool for automated analysis of monolayer wound healing assays (2009) Short Technical Report, 46, pp. 265-274
Gnecchi, M., Danieli, P., Cervio, E., Mesenchymal stem cell therapy for heart disease (2012) Vascular Pharmacology, 57, pp. 48-55
Guo, X., Wang, C., Duan, C., Descamps, M., Zhao, Q., Dong, L., Song, Y.Q., Repair of osteochondral defects with autologous chondrocytes seeded onto bioceramic scaffold in sheep (2004) Tissue Engineering, 10, pp. 1830-1840
Harding, J., Roberts, R.M., Mirochnitchenko, O., Large animal models for stem cell therapy (2013) Stem Cell Research and Therapy, 4, pp. 1-9
Hayashi, H., Tsuchiya, Y., Nakayama, K., Takayuki, S., Nishida, E., Down-regulation of the PI3-kinase/Akt pathway by ERK MAP kinase in growth factor signaling (2008) Genes to Cells, 13, pp. 941-947
Hill, B.S., Pelagalli, A., Passaro, N., Zannetti, A., Tumor-educated mesenchymal stem cells promote pro-metastatic phenotype (2017) Oncotarget, 8 (42), pp. 73296-73311. , https://doi.org./org/10.18632/oncotarget
Hu, J., Verkman, A.S., Increased migration and metastatic potential of tumor cells expressing aquaporin water channels (2006) The FASEB Journal, 20, pp. 1892-1894
Huang, W., Lv, B., Zeng, H., Shi, D., Liu, Y., Chen, F., Jiang, X., Paracrine factors secreted by MSCs promote astrocyte survival associated with GFAP downregulation after ischemic stroke via p38 MAPK and JNK (2015) Journal of Cellular Physiology, 230, pp. 2461-2475
Jiang, Y., Aquaporin-1 activity of plasma membrane affects HT20 colon cancer cell migration (2009) IUBMB Life, 61, pp. 1001-1009
Kalaszczynska, I., Ruminski, S., Platek, A.E., Bissenik, I., Zakrzewski, P., Noszczyk, M., Lewandowska-Szumiel, M., Substantial differences between human and ovine mesenchymal stem cells in response to osteogenic media: How to explain and how to manage (2013) Bio Research, 2, pp. 356-363
Kang, K., Ma, R., Cai, W., Huang, W., Paul, C., Liang, J., Wang, Y., Exosomes secreted from cxcr4 overexpressing mesenchymal stem cells promote cardioprotection via akt signaling pathway following myocardial infarction (2015) Stem Cells International, 2015, p. 659890. , https://doi.org./10.1155/2015/659890
Kim, H.O., Choi, S.M., Kim, H.S., Mesenchymal stem cell-derived secretome and microvescicles as a cell-free therapeutics for neurodegenerative disorders (2013) Tissue Engineering and Regenerative Medicine, 10, pp. 93-101
Li, X., Luo, Q., Sun, J., Conditioned medium from mesenchymal stem cells enhances the migration of hepatoma cells through CXCR4 up-regulation and F-actin remodeling (2015) Biotechnology Letters, 37, pp. 511-521
Liu, B., Shu, S., Kenny, T.P., Chang, C., Leung, P.S., Stem cell therapy in autoimmune rheumatic diseases: A comprehensive review (2014) Clinical Reviews in Allergy and Immunology, 47, pp. 244-257
Lucarelli, E., Fini, M., Beccheroni, A., Giavaresi, G., Di Bella, C., Aldini, N.N., Donati, D., Stromal stem cells and platelet-rich plasma improve bone allograft integration (2005) Clinical Orthopaedics and Related Research, 435, pp. 62-68
Lyahyai, J., Mediano, D.R., Ranera, B., Sanz, A., Remacha, A.R., Bolea, R., Martín-Burriel, I., Isolation and characterization of ovine mesenchymal stem cells derived from peripheral blood (2012) BMC Veterinary Research, 8, p. 169
Müller, E.M., Hub, J.S., Grubmüller, H., de Groot, B.L., Is TEA an inhibitor for human Aquaporin-1 (2008) European Journal of Physiology, 456, pp. 663-669
McCarty, R.C., Gronthos, S., Zannettino, A.C., Foster, B.K., Xian, C.J., Characterization and developmental potential of ovine bone marrow derived mesenchymal stem cells (2009) Journal of Cellular Physiology, 219, pp. 324-333
McCarty, R.C., Xian, C.J., Gronthos, S., Zannettino, A.C., William, A.C., Foster, B.K., Application of autologous bone4 marrow derived mesenchymal stem cells to an ovine model of growth plate cartilage injury (2010) The Open Orthopaedics Journal, 4, pp. 204-210
Meng, F., Rui, Y., Xu, L., Wan, C., Jiang, X., Li, G., AQP1 enhances migration of bone marrow mesenchymal stem cells through regulation of FAK and ß-catenin (2014) Stem Cells and Development, 23, pp. 66-71
Mognetti, B., La Montagna, G., Perrelli, M.G., Pagliaro, P., Penna, C., Bone marrow mesenchymal stem cells increase motility of prostate cancer cells via production of stromal cell-derived factor-1α (2013) Journal of Cellular and Molecular Medicine, 17, pp. 287-292
Monzani, E., Shtil, A.A., La Porta, C.A., The water channels, new druggable targets to combat cancer cell survival, invasiveness and metastasis (2007) Current Drug Targets, 8, pp. 1132-1137
Mrozik, K.M., Zilm, P.S., Bagley, C.J., Hack, S., Hoffmann, P., Gronthos, S., Bartold, P.M., Proteomic characterization of mesenchymal stem cell-like populations derived from ovine periodontal ligament, dental pulp, and bone marrow: Analysis of differentially expressed proteins (2010) Stem Cells and Development, 19, pp. 1485-1499
Mrugala, D., Bony, C., Neves, N., Caillot, L., Fabre, S., Moukoko, D., Noel, D., Phenotypic and functional characterization of ovine mesenchymal stem cells: Application to a cartilage defect model (2008) Annals of the Rheumatic Diseases, 67, pp. 288-295
O'Loughlin, P.F., Morr, S., Bogunovic, L., Kim, A.D., Park, B., Lane, J.M., Selection and development of preclinical models in fracture-healing research (2008) The Journal of Bone and Joint Surgery, 90, pp. 79-84
Papadopoulos, M.C., Saadoun, S., Key roles of aquaporins in tumor biology (2015) Biochimica et Biophysica Acta, 1848, pp. 2576-2583
Park, B.N., Kim, J.H., Lee, K., Park, S.H., An, Y.S., Improved dopamine transporter binding activity after bone marrow mesenchymal stem cell transplantation in a rat model of Parkinson's disease: Small animal positron emission tomography study with F-18 FP-CIT (2015) European Radiology, 25, pp. 1487-1496
Pawitan, J.A., Prospect of stem cell conditioned medium in regenerative medicine (2014) BioMed Research International, 2014, p. 965849. , https://doi.prg./10.1155/2014/965849
Pearce, A.I., Richards, R.G., Milz, S., Schneider, E., Pearce, S.G., Animal models for implant biomaterial research in bone: A review (2007) European Cells and Materials, 13, pp. 1-10
Petite, H., Viateau, V., Bensaïd, W., Meunier, A., de Pollak, C., Bourguignon, M., Guillemin, G., Tissue-engineered bone regeneration (2000) Nature Biotechnology, 18, pp. 959-963
Pobloth, A.M., Johnson, K.A., Schell, H., Kolarczik, N., Wulsten, D., Duda, G.N., Schmidt-Bleek, K., Establishment of a preclinical ovine screening model for the investigation of bone tissue engineering strategies in cancellous and cortical bone defects (2016) BMC Musculoskeletal Disorders, 17, p. 111
Rennert, R.C., Sorkin, M., Garg, R.K., Gurtner, G.C., Stem cell recruitment after injury: Lessons for regenerative medicine (2012) Regenerative Medicine, 7, pp. 833-850
Rentsch, C., Hess, R., Rentsch, B., Hofman, A., Manthey, S., Scharnweber, D., Zwipp, H., Ovine bone marrow mesenchymal stem cells. Isolation and characterization of the cells and their osteogenic differentiation potential on embroidered and surface-modified polycaprolactone-co-lactide scaffolds (2010) In Vitro Cellular and Developmental Biology, 46, pp. 624-634
Saadoun, S., Papadopoulos, M.C., Hara-Chikuma, M., Verkman, A.S., Impairment of angiogenesis and cell migration by targeted aquaporin-1 gene disruption (2005) Nature, 434, pp. 786-792
Sanjurjo-Rodríguez, C., Castro-Viñuelas, R., Hermida-Gómez, T., Fernández-Vázquez, T., Fuentes-Boquete, I.M., de Toro-Santos, F.J., Blanco-García, F.J., Ovine mesenchymal stromal cells: Morphologic, phenotypic and functional characterization for osteochondral tissue engineering PLoS ONE, 12 (1)
Santagata, S., Portella, L., Napolitano, M., Greco, A., D'Alterio, C., Barone, M.V., Scala, S., A novel CXCR4-targeted near-infrared (NIR) fluorescent probe (Peptide R-NIR750) specifically detects CXCR4 expressing tumors (2017) Scientific Reports, 7, p. 2554. , https://doi.org./10.1038/s41598-017-02818-6
Scharf, A., Holmes, S., Thoresen, M., Mumaw, J., Stumpf, A., Peroni, J., Superparamagnetic iron oxide nanoparticles as a means to track mesenchymal stem cells in a large animal model of tendon injury (2015) Contrast Media and Molecular Imaging, 10, pp. 388-397. , https://doi.org./10.1002/cmmi.1642
Scheerlinck, J.P., Snibson, K.J., Bowles, V.M., Sutton, P., Biomedical applications of sheep models: From asthma to vaccines (2008) Trends in Biotechnology, 26, pp. 259-266
Sill, B., Roy, N., Hammer, P.E., Triedman, J.K., Sigg, D.C., Kelly, M.F., Cowan, D.B., Development of an ovine model of pediatric complete heart block (2011) Journal of Surgical Research, 166, pp. e103-e108
Verkman, A.S., More than just water channels: Unexpected cellular roles of aquaporins (2005) Journal of Cell Science, 5, pp. 626-634
Zannetti, A., Iommelli, F., Fonti, R., Papaccioli, A., Sommella, J., Lettieri, A., Del Vecchio, S., Gefitinib induction of in vivo detectable signals by Bcl-2/Bcl-xL modulation of inositol trisphosphate receptor type 3 (2008) Clinical Cancer Research, 14, pp. 5209-5219
Zannettino, A.C.W., Paton, S., Itescu, S., Gronthos, S., Comparative assessment of the osteoconductive properties of different biomaterial in vivo seed with human or ovine mesenchymal stem/stromal cells (2010) Tissue Engineering Part A, 16, pp. 3579-3587
Zhang, D., Fan, G.C., Zhao, T., Pasha, Z., Xu, M., Zhu, Y., Wang, Y., Over-expression of CXCR4 on mesenchymal stem cells augments myoangiogenesis in the infarcted myocardium (2008) Journal of Molecular and Cellular Cardiology, 44, pp. 281-292
Autocrine signals increase Ovine Mesenchymal Stem Cells migration through Aquaporin-1 and CXCR4 overexpression
Sheep is a relevant large animal model that is frequently used to test innovative tissue engineering (TE) approaches especially for bone reconstruction. Mesenchymal stem cells (MSCs) are used in TE applications because they represent key component of adult tissue repair. Importantly, MSCs from different species show similar characteristics, which facilitated their application in translational studies using animal models. Nowadays, many researches are focusing on the use of ovine mesenchymal stem cells (oMSCs) in orthopedic preclinical settings for regenerative medicine purposes. Therefore, there is a need to amplify our knowledge on the mechanisms underlying the behaviour of these cells. Recently, several studies have shown that MSC function is largely dependent on factors that MSCs release in the environment as well as in conditioned medium (CM). It has been demonstrated that MSCs through autocrine and paracrine signals are able to stimulate proliferation, migration and differentiation of different type of cells including themselves. In this study, we investigated the effects of the CM produced by oMSCs on oMSCs themselves and we explored the signal pathways involved. We observed that CM caused an enhancement of oMSC migration. Furthermore, we found that CM increased levels of two membrane proteins involved in cell migration, Aquaporin 1 (AQP1) and C-X-C chemokine receptor type 4 (CXCR4), and activated Akt and Erk intracellular signal pathways. In conclusion, taken together our results suggest the high potential of autologous CM as a promising tool to modulate behaviour of MSCs thus improving their use in therapeutically approaches. This article is protected by copyright. All rights reserved.
Autocrine signals increase Ovine Mesenchymal Stem Cells migration through Aquaporin-1 and CXCR4 overexpression
No results.
Autocrine signals increase Ovine Mesenchymal Stem Cells migration through Aquaporin-1 and CXCR4 overexpression
Vitiello M, Finamore E, Falanga A, Raieta K, Cantisani M, Galdiero F, Pedone C, Galdiero M, Galdiero S * Fusion in Coq(479 views) Lecture Notes In Computer Science (ISSN: 0302-9743, 0302-974335404636319783540463634, 0302-974335402975459783540297543), 2001; 2178LNCS: 583-596. Impact Factor:0.415 ViewExport to BibTeXExport to EndNote
36 Records (33 excluding Abstracts). Total impact factor: 166.588 (151.337 excluding Abstracts). Total 5 year impact factor: 166.995 (152.203 excluding Abstracts).