A peptide derived from herpes simplex virus type 1 glycoprotein H: membrane translocation and applications to the delivery of quantum dots(1162 views) Falanga A, Vitiello MT, Cantisani M, Tarallo R, Guarnieri D, Mignogna E, Netti P, Pedone C, Galdiero M, Galdiero S
Keywords: Delivery, Peptide, Quantum Dots, Virus, Cargo Molecules, Cell-Penetrating Peptide, Endocytotic Pathway, Herpes Simplex, Herpes Simplex Virus Type 1, Intracellular Delivery, Intracellular Drug Delivery, Living Cell, Membrane Bilayers, Membrane Diffusion, Membrane Translocation, Physio-Chemical Properties, Small Molecules, Vaccine Development, Cell Membranes, Cytology, Gene Therapy, Glycoproteins, Semiconductor Quantum Dots, Cell Penetrating Peptide, Unclassified Drug, Virus Protein, Article, Controlled Study, Drug Delivery System, Membrane Fusion, Nonhuman, Protein Transport, Amino Acid Sequence, Cell Membrane Permeability, Cell Survival, Drug Carriers, Hela Cells, Herpesvirus 1, Molecular Sequence Data, Viral Envelope Proteins, Human Herpesvirus 1,
Affiliations: *** IBB - CNR ***
Department of Biological Sciences, Division of Biostructures - University of Naples Federico II, Napoli, Italy.
Centro Interuniversitario di Ricerca sui Peptidi Bioattivi, Univ. of Naples Federico II, Napoli, Italy
Istituto di Biostrutture e Bioimmagini, CNR, Napoli, Italy
Department of Experimental Medicine, II University of Naples, Napoli, Italy
IIT at CRIB, Center for Advanced Biomaterials in Health Care, Napoli, Italy
References: Chakrabarti, R., Wylie, D.E., Schuster, S.M., Transfer of monoclonal antibodies into mammalian cells by electroporation (1989) J Biol Chem, 264, pp. 15494-1550
Arnheiter, H., Haller, O., Antiviral state against influenza virus neutralized by microinjection of antibodies to interferon-induced Mx proteins (1988) EMBO J, 7, pp. 1315-1320
Schwarze, S.R., Dowdy, S.F., In vivo protein transduction: intracellular delivery of biologically active proteins, compounds and DNA (2000) Trends Pharmacol Sci, 21, pp. 45-48
Vives, E., Brodin, P., Lebleu, B., A truncated HIV-1 TAT protein basic domain rapidly translocates through the plasma membrane and accumulates in the cell nucleus (1997) J Biol Chem, 272, pp. 16010-16017
Dietz, G.P., Bahr, M., Delivery of bioactive molecules into the cell: the Trojan horse approach (2004) Mol Cell Neurosci, 27, pp. 85-131
Mae, M., Langel, U., Cell-penetrating peptides as vectors for peptide, protein and oligonucleotide delivery (2006) Curr Opin Pharmacol, 6, pp. 509-514
Stewart, K.M., Horton, K.L., Kelley, S.O., Cell-penetrating peptides as delivery vehicles for biology and medicine (2008) Org Biomol Chem, 6, pp. 2242-2255
Derossi, D., Calvet, S., Trembleau, A., Brunissen, A., Chassaing, G., Prochiantz, A., Cell internalization of the third helix of the antennapedia homeodomain is receptor-independent (1996) J Biol Chem, 271, pp. 18188-18193
Elliott, G., O'Hare, P., Intercellular trafficking and protein delivery by a herpes virus structural protein (1997) Cell, 88, pp. 223-233
Pooga, M., Hallbrink, M., Zorko, M., Langel, U., Cell penetration by transportan (1998) FASEB J, 12, pp. 67-77
Oehlke, J., Scheller, A., Wiesner, B., Krause, E., Beyermann, M., Klauschenz, E., Cellular uptake of an alpha-helical amphipathic model peptide with the potential to deliver polar compounds into the cell interior non-endocytically (1998) Biochim Biophys Acta, 1414, pp. 127-139
Rojas, M., Donahue, J.P., Tan, Z., Lin, Y.Z., Genetic engineering of proteins with cell membrane permeability (1998) Nat Biotechnol, 16, pp. 370-375
Futaki, S., Suzuki, T., Ohashi, W., Yagami, T., Tanaka, S., Ueda, K., Arginine-rich peptides. An abundant source of membrane-permeable peptides having potential as carriers for intracellular protein delivery (2001) J Biol Chem, 276, pp. 5836-5840
Heitz, F., Morris, M.C., Divita, G., Twenty years of cell-penetrating peptides: from molecular mechanisms to therapeutics (2009) Brit J Pharm, 157, pp. 195-206
Richard, J.P., Melikov, K., Vives, E., Ramos, C., Verbeure, B., Gait, M.J., Cell-penetrating peptides: a re-evaluation of the mechanism of cellular uptake (2003) J Biol Chem, 278, pp. 585-590
Suzuki, T., Futaki, S., Niwa, M., Tanaka, S., Ueda, K., Sugiura, Y., Possible existence of common internalization mechanisms among arginine-rich peptides (2002) J Biol Chem, 277, pp. 2437-2443
Duchardt, F., Fotin-Mleczek, M., Schwarz, H., Fischer, R., Brock, R., A comprehensive model for the cellular uptake of cationic cell-penetrating peptides (2007) Traffic, 8, pp. 848-866
Brooks, H., Lebleu, B., Vives, E., TAT peptide-mediated cellular delivery: back to basics (2005) Adv Drug Deliv Rev, 57, pp. 559-577
Galdiero, S., Falanga, A., Vitiello, M., Browne, H., Pedone, C., Galdiero, M., Fusogenic domains in herpes simplex virus type 1 glycoprotein H (2005) J Biol Chem, 280, pp. 28632-28643
Galdiero, S., Galdiero, M., Pedone, C., Falanga, A., Vitiello, M., Method For Delivery Of Molecules Into Intracellular Targets - Provisional. n°US61/285,619. 12/11/2009Drin, G., Mazel, M., Clair, P., Mathieu, D., Kaczorek, M., Temsamani, J., Physico-chemical requirements for cellular uptake of pAntp peptide: role of lipid-binding affinity (2001) Eur J Biochem, 268, pp. 1304-1314
Pinaud, F., Clarke, S., Sittner, A., Dahan, M., Probing cellular events, one quantum dot at a time (2010) Nat Methods, 7, pp. 275-285
Medintz, I.L., Pons, T., Delehanty, J.B., Susumu, K., Brunel, F.M., Dawson, P.E., Intracellular delivery of quantum dot-protein cargos mediated by cell penetrating peptides (2008) Bioconjug Chem, 19, pp. 1785-1795
Lee, H., Kim, I.-K., Park, T.G., Intracellular trafficking and unpacking of siRNA/quantum dot-PEI complexes modified with and without cell penetrating peptide: confocal and flow cytometric FRET analysis (2010) Bioconjug Chem, 21, pp. 289-295
Delehanty, J.B., Bradburne, C.E., Boeneman, K., Susumu, K., Farrell, D., Mei, B.C., Delivering quantum dot-peptide bioconjugates to the cellular cytosol: escaping from the endolysosomal system (2010) Integr Biol, 2, pp. 265-277
Yeh, H.-Y., Yates, M.V., Mulchandani, A., Chen, W., Molecular beacon-quantum dot-Au nanoparticle hybrid nanoprobes for visualizing virus replication in living cells (2010) Chem Commun, 46, pp. 3914-3916
Jung, J., Solanki, A., Memoli, K.A., Kamei, K., Kim, H., Drahl, M.A., Selective inhibition of human brain tumor cells through multifunctional quantum-dot-based siRNA delivery (2010) Angew Chem Int Ed, 49, pp. 103-107
Rapaport, D., Shai, Y., Interaction of fluorescently labeled pardaxin and its analogues with lipid bilayers (1991) J Biol Chem, 266, pp. 23769-23775
Mosmann, T., Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays (1983) J Immunol Methods, 65, pp. 55-63
Imahashi, D., Quantitation of LDH isoenzymes by the fluorimetric and colorimetric methods (1968) Can J Med Technol, 30, pp. 235-248
Hope, M.J., Bally, M.B., Webb, G., Cullis, P.R., Production of large unilamellar vesicles by a rapid extrusion procedure. Characterization of size distribution, trapped volume and ability to maintain a membrane potential (1985) Biochim Biophys Acta, 812, pp. 55-65
Fiske, C.H., SubbaRow, Y., The colorimetric determination of phosphorus (1925) J Biol Chem, 66, pp. 374-389
Cummings, J.E., Vanderlock, T.K., Aggregation and hemi-fusion of anionic vesicles induced by the antimicrobial peptide cryptdin-4 (2007) Biochim Biophys Acta, 1768, pp. 1796-1804
Ellens, H., Bentz, J., Szoka, F.C., PH-induced destabilization of phosphatidylethanolamine-containing liposomes: role of bilayer contact (1984) Biochemistry, 23, pp. 1532-1538
Parente, R.A., Nir, S., Szoka, F.C., Mechanism of leakage of phospholipid vesicle contents induced by the peptide GALA (1990) Biochemistry, 29, pp. 8713-8719
Matsuzaki, K., Murase, O., Fujii, N., Miyajima, K., Translocation of a channel-forming antimicrobial peptide, magainin 2, across lipid bilayers by forming a pore (1995) Biochemistry, 34, pp. 6521-6526
Deshayes, S., Gerbal-Chaloin, S., Morris, M.C., Aldrian-Herrada, G., Charnet, P., Divita, G., On the mechanism of non-endosomial peptide-mediated cellular delivery of nucleic acids (2004) Biochim Biophys Acta, 1667, pp. 141-147
Deshayes, S., Heitz, A., Morris, M.C., Charnet, P., Divita, G., Heitz, F., Insight into the mechanism of internalization of the cell-penetrating carrier peptide Pep-1 through conformational analysis (2004) Biochemistry, 43, pp. 1449-1457
Thorén, P.E., Persson, D., Lincoln, P., Nordén, B., Membrane destabilizing properties of cell-penetrating peptides (2005) Biophys Chem, 114, pp. 169-179
McIntyre, J., Sleight, R., Fluorescence assay for phospholipids membrane asymmetry (1991) Biochemistry, 30, pp. 11819-11827
Angeletti, C., Nichols, J.W., Dithionite quenching rate measurement of the inside-outside membrane bilayer distribution of 7-nitrobenz-2-oxa-1,3-diazol-4-yl-labeled phospholipids (1998) Biochemistry, 37, pp. 15114-15119
Drin, G., Cottin, S., Blanc, E., Rees, A.R., Temsamani, J., Studies on the internalization mechanism of cationic cell-penetrating peptides (2003) J Bio Chem, 278, pp. 31192-31201
Schwarze, S. R., Dowdy, S. F., In vivo protein transduction: intracellular delivery of biologically active proteins, compounds and DNA (2000) Trends Pharmacol Sci, 21, pp. 45-48
Dietz, G. P., Bahr, M., Delivery of bioactive molecules into the cell: the Trojan horse approach (2004) Mol Cell Neurosci, 27, pp. 85-131
Stewart, K. M., Horton, K. L., Kelley, S. O., Cell-penetrating peptides as delivery vehicles for biology and medicine (2008) Org Biomol Chem, 6, pp. 2242-2255
Richard, J. P., Melikov, K., Vives, E., Ramos, C., Verbeure, B., Gait, M. J., Cell-penetrating peptides: a re-evaluation of the mechanism of cellular uptake (2003) J Biol Chem, 278, pp. 585-590
Medintz, I. L., Pons, T., Delehanty, J. B., Susumu, K., Brunel, F. M., Dawson, P. E., Intracellular delivery of quantum dot-protein cargos mediated by cell penetrating peptides (2008) Bioconjug Chem, 19, pp. 1785-1795
Lee, H., Kim, I. -K., Park, T. G., Intracellular trafficking and unpacking of siRNA/quantum dot-PEI complexes modified with and without cell penetrating peptide: confocal and flow cytometric FRET analysis (2010) Bioconjug Chem, 21, pp. 289-295
Delehanty, J. B., Bradburne, C. E., Boeneman, K., Susumu, K., Farrell, D., Mei, B. C., Delivering quantum dot-peptide bioconjugates to the cellular cytosol: escaping from the endolysosomal system (2010) Integr Biol, 2, pp. 265-277
Yeh, H. -Y., Yates, M. V., Mulchandani, A., Chen, W., Molecular beacon-quantum dot-Au nanoparticle hybrid nanoprobes for visualizing virus replication in living cells (2010) Chem Commun, 46, pp. 3914-3916
Hope, M. J., Bally, M. B., Webb, G., Cullis, P. R., Production of large unilamellar vesicles by a rapid extrusion procedure. Characterization of size distribution, trapped volume and ability to maintain a membrane potential (1985) Biochim Biophys Acta, 812, pp. 55-65
Fiske, C. H., SubbaRow, Y., The colorimetric determination of phosphorus (1925) J Biol Chem, 66, pp. 374-389
Cummings, J. E., Vanderlock, T. K., Aggregation and hemi-fusion of anionic vesicles induced by the antimicrobial peptide cryptdin-4 (2007) Biochim Biophys Acta, 1768, pp. 1796-1804
Parente, R. A., Nir, S., Szoka, F. C., Mechanism of leakage of phospholipid vesicle contents induced by the peptide GALA (1990) Biochemistry, 29, pp. 8713-8719
Thor n, P. E., Persson, D., Lincoln, P., Nord n, B., Membrane destabilizing properties of cell-penetrating peptides (2005) Biophys Chem, 114, pp. 169-179
A peptide derived from herpes simplex virus type 1 glycoprotein H: membrane translocation and applications to the delivery of quantum dots
UNLABELLED: Cell membranes are impermeable to most molecules that are not actively imported by living cells, including all macromolecules and even small molecules whose physiochemical properties prevent passive membrane diffusion. However, recently, we have seen the development of increasingly sophisticated methodology for intracellular drug delivery. Cell-penetrating peptides (CPPs), short peptides believed to enter cells by penetrating cell membranes, have attracted great interest in the hope of enhancing gene therapy, vaccine development and drug delivery. Nevertheless, to achieve an efficient intracellular delivery, further strategies to bypass the endocytotic pathway must be investigated. We report on a novel peptide molecule derived from glycoprotein gH of herpes simplex type I virus that is able to traverse the membrane bilayer and to transport a cargo into the cytoplasm with novel properties in comparison with existing CPPs. We use as cargo molecule quantum dots that do not significantly traverse the membrane bilayer on their own.; FROM THE CLINICAL EDITOR: Cell-penetrating peptides have recently attracted great interest in optimizing gene therapy, vaccine development and drug delivery. In this study, a peptide derived from glycoprotein gH of herpes simplex I is investigated from this standpoint. Copyright 2011 Elsevier Inc. All rights reserved.
A peptide derived from herpes simplex virus type 1 glycoprotein H: membrane translocation and applications to the delivery of quantum dots
No results.
A peptide derived from herpes simplex virus type 1 glycoprotein H: membrane translocation and applications to the delivery of quantum dots