Keywords: Bioinformatics Tools, Crystallization, Fusion Protein, Protein Engineering, Protein Expression, Protein Modification, Site-Directed Mutagenesis, Combinatorial Library, Crystallography, Macromolecule, Protein Analysis, Protein Conformation, Protein Crystallization, Protein Folding, Protein Function, Protein Purification, Protein Targeting, Review, X Ray Diffraction, Computational Biology, Models, Recombinant Fusion Proteins,
Affiliations: *** IBB - CNR ***
Institute of Biostructure and Bioimaging, CNR, Via Mezzocannone 16, I-80134, Napoli, Italy
Department of Biological Sciences, University of Naples Federico II, I-80134-Via Cinthia 4, I-80126 - Napoli, Italy
References: Bashan, A., Agmon, I., Zarivach, R., Schluenzen, F., Harms, J., Berisio, R., Bartels, H., Yonath, A., Structural basis of the ribosomal machinery for peptide bond formation, translocation, and nascent chain progression (2003) Mol. Cell, 11, pp. 91-10
Schluenzen, F., Tocilj, A., Zarivach, R., Harms, J., Gluehmann, M., Janell, D., Bashan, A., Yonath, A., Structure of functionally activated small ribosomal subunit at 3.3 angstroms resolution (2000) Cell, 102, pp. 615-623
Ban, N., Nissen, P., Hansen, J., Moore, P.B., Steitz, T.A., The complete atomic structure of the large ribosomal subunit at 2.4 a resolution (2000) Science, 289, pp. 905-920
Schmeing, T.M., Ramakrishnan, V., What recent ribosome structures have revealed about the mechanism of translation (2009) Nature, 461, pp. 1234-1242
Berisio, R., Schluenzen, F., Harms, J., Bashan, A., Auerbach, T., Baram, D., Yonath, A., Structural insight into the role of the ribosomal tunnel in cellular regulation (2003) Nat. Struct. Biol., 10, pp. 366-370
Schlunzen, F., Zarivach, R., Harms, J., Bashan, A., Tocilj, A., Albrecht, R., Yonath, A., Franceschi, F., Structural basis for the interaction of antibiotics with the peptidyl transferase centre in eubacteria (2001) Nature, 413, pp. 814-821
Davidovich, C., Bashan, A., Yonath, A., Structural basis for crossresistance to ribosomal ptc antibiotics (2008) Proc. Natl. Acad. Sci. USA, 105, pp. 20665-20670
Auerbach, T., Mermershtain, I., Davidovich, C., Bashan, A., Belousoff, M., Wekselman, I., Zimmerman, E., Yonath, A., The structure of ribosome-lankacidin complex reveals ribosomal sites for synergistic antibiotics (2011) Proc. Natl. Acad. Sci. USA, 107, pp. 1983-1988
Ilari, A., Savino, C., Protein structure determination by X-ray crystallography (2008) Methods Mol. Biol., 452, pp. 63-87
Panjikar, S., Parthasarathy, V., Lamzin, V.S., Weiss, M.S., Tucker, P.A., Auto-rickshaw: An automated crystal structure determination platform as an efficient tool for the validation of an X-ray diffraction experiment (2005) Acta Crystallogr. D Biol. Crystallogr., 61, pp. 449-457
Winn, M.D., Ballard, C.C., Cowtan, K.D., Dodson, E.J., Emsley, P., Evans, P.R., Keegan, R.M., Wilson, K.S., Overview of the ccp4 suite and current developments (2011) Acta Crystallogr. D Biol. Crystallogr., 67, pp. 235-242
Grabowski, M., Joachimiak, A., Otwinowski, Z., Minor, W., Structural genomics: Keeping up with expanding knowledge of the protein universe (2007) Curr. Opin. Struct. Biol., 17, pp. 347-353
Jia, Y., Liu, X.Y., From surface self-assembly to crystallization: Prediction of protein crystallization conditions (2006) J. Phys. Chem. B, 110, pp. 6949-6955
Liu, J., Yin, D.C., Guo, Y.Z., Wang, X.K., Xie, S.X., Lu, Q.Q., Liu, Y.M., Selecting temperature for protein crystallization screens using the temperature dependence of the second virial coefficient (2011) PLoS ONE, 6, pp. e17950
Jancarik, J.K.S.H., Sparse matrix sampling: A screening method for crystallization of proteins (1991) J. Appl. Cryst., 24, pp. 409-411
Saridakis, E., Dierks, K., Moreno, A., Dieckmann, M.W., Chayen, N.E., Separating nucleation and growth in protein crystallization using dynamic light scattering (2002) Acta Crystallogr. D Biol. Crystallogr., 58, pp. 1597-1600
Chayen, N.E., Saridakis, E., Protein crystallization: From purified protein to diffraction-quality crystal (2008) Nat. Methods, 5, pp. 147-153
Dale, G.E., Oefner, C., D'Arcy, A., The protein as a variable in protein crystallization (2003) J. Struct. Biol., 142, pp. 88-97
Derewenda, Z.S., Application of protein engineering to enhance crystallizability and improve crystal properties (2010) Acta Crystallogr. D Biol. Crystallogr., 66, pp. 604-615
Geerlof, A., Brown, J., Coutard, B., Egloff, M.P., Enguita, F.J., Fogg, M.J., Gilbert, R.J., Wilmanns, M., The impact of protein characterization in structural proteomics (2006) Acta Crystallogr. D Biol. Crystallogr., 62, pp. 1125-1136
Niesen, F.H., Koch, A., Lenski, U., Harttig, U., Roske, Y., Heinemann, U., Hofmann, K.P., An approach to quality management in structural biology: Biophysical selection of proteins for successful crystallization (2008) J. Struct. Biol., 162, pp. 451-459
Campbell, J.W., Duee, E., Hodgson, G., Mercer, W.D., Stammers, D.K., Wendell, P.L., Muirhead, H., Watson, H.C., X-ray diffraction studies on enzymes in the glycolytic pathway (1972) Cold Spring Harb. Symp. Quant. Biol., 36, pp. 165-170
Appelt, K., Bacquet, R.J., Bartlett, C.A., Booth, C.L., Freer, S.T., Fuhry, M.A., Gehring, M.R., Janson, C.A., Design of enzyme inhibitors using iterative protein crystallographic analysis (1991) J. Med. Chem., 34, pp. 1925-1934
McLachlan, M.J., Johannes, T.W., Zhao, H., Further improvement of phosphite dehydrogenase thermostability by saturation mutagenesis (2008) Biotechnol. Bioeng., 99, pp. 268-274
Rothe, A., Hosse, R.J., Power, B.E., In vitro display technologies reveal novel biopharmaceutics (2006) FASEB J., 20, pp. 1599-1610
Derewenda, Z.S., Rational protein crystallization by mutational surface engineering (2004) Structure, 12, pp. 529-535
Yakunin, A.F., Yee, A.A., Savchenko, A., Edwards, A.M., Arrowsmith, C.H., Structural proteomics: A tool for genome annotation (2004) Curr. Opin. Chem. Biol., 8, pp. 42-48
Derewenda, Z.S., The use of recombinant methods and molecular engineering in protein crystallization (2004) Methods, 34, pp. 354-363
Swartz, J.R., Advances in Escherichia coli production of therapeutic proteins (2001) Curr. Opin. Biotechnol., 12, pp. 195-201
Goulding, C.W., Perry, L.J., Protein production in Escherichia coli for structural studies by X-ray crystallography (2003) J. Struct. Biol., 142, pp. 133-143
Baneyx, F., Recombinant protein expression in Escherichia coli (1999) Curr. Opin. Biotechnol., 10, pp. 411-421
Anthony, L.C., Suzuki, H., Filutowicz, M., Tightly regulated vectors for the cloning and expression of toxic genes (2004) J. Microbiol. Methods, 58, pp. 243-250
Dyson, M.R., Shadbolt, S.P., Vincent, K.J., Perera, R.L., McCafferty, J., Production of soluble mammalian proteins in Escherichia coli: Identification of protein features that correlate with successful expression (2004) BMC Biotechnol., 4, p. 32
Zoonens, M., Miroux, B., Expression of membrane proteins at the Escherichia coli membrane for structural studies (2010) Methods Mol. Biol., 601, pp. 49-66
Nannenga, B.L., Baneyx, F., Reprogramming chaperone pathways to improve membrane protein expression in Escherichia coli (2011) Protein Sci., , Epub ahead of print
Braun, P., LaBaer, J., High throughput protein production for functional proteomics (2003) Trends Biotechnol., 21, pp. 383-388
Hoffmann, A., Funkner, A., Neumann, P., Juhnke, S., Walther, M., Schierhorn, A., Weininger, U., Stubbs, M.T., Biophysical characterization of refolded drosophila spatzle, a cystine knot protein, reveals distinct properties of three isoforms (2008) J. Biol. Chem., 283, pp. 32598-32609
Ito, L., Hidaka, Y., Okumura, M., Konishi, H., Adermann, K., Yamaguchi, H., Crystallization and preliminary X-ray structural studies of human prouroguanylin (2008) Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun., 64, pp. 531-532
Winograd, E., Pulido, M.A., Wasserman, M., Production of DNA-recombinant polypeptides by tac-inducible vectors using micromolar concentrations of IPTG (1993) Biotechniques, 14, p. 886. , 890
Vera, A., Gonzalez-Montalban, N., Aris, A., Villaverde, A., The conformational quality of insoluble recombinant proteins is enhanced at low growth temperatures (2007) Biotechnol. Bioeng., 96, pp. 1101-1106
Johnston, K., Clements, A., Venkataramani, R.N., Trievel, R.C., Marmorstein, R., Coexpression of proteins in bacteria using T7-based expression plasmids: Expression of heteromeric cell-cycle and transcriptional regulatory complexes (2000) Protein Expr. Purif., 20, pp. 435-443
Kerrigan, J.J., Xie, Q., Ames, R.S., Lu, Q., Production of protein complexes via co-expression (2011) Protein Expr. Purif., 75, pp. 1-14
De Marco, A., De Marco, V., Bacteria co-transformed with recombinant proteins and chaperones cloned in independent plasmids are suitable for expression tuning (2004) J. Biotechnol., 109, pp. 45-52
Rinas, U., Hoffmann, F., Betiku, E., Estape, D., Marten, S., Inclusion body anatomy and functioning of chaperone-mediated in vivo inclusion body disassembly during high-level recombinant protein production in Escherichia coli (2007) J. Biotechnol., 127, pp. 244-257
De Marco, A., Strategies for successful recombinant expression of disulfide bond-dependent proteins in Escherichia coli (2009) Microb. Cell Fact., 8, p. 26
Sorensen, H.P., Mortensen, K.K., Soluble expression of recombinant proteins in the cytoplasm of Escherichia coli (2005) Microb. Cell Fact., 4, p. 1
Rosano, G.L., Ceccarelli, E.A., Rare codon content affects the solubility of recombinant proteins in a codon bias-adjusted Escherichia coli strain (2009) Microb. Cell Fact., 8, p. 41
Esposito, D., Chatterjee, D.K., Enhancement of soluble protein expression through the use of fusion tags (2006) Curr. Opin. Biotechnol., 17, pp. 353-358
Kapust, R.B., Waugh, D.S., Escherichia coli maltose-binding protein is uncommonly effective at promoting the solubility of polypeptides to which it is fused (1999) Protein Sci., 8, pp. 1668-1674
LaVallie, E.R., Lu, Z., Diblasio-Smith, E.A., Collins-Racie, L.A., McCoy, J.M., Thioredoxin as a fusion partner for production of soluble recombinant proteins in Escherichia coli (2000) Methods Enzymol., 326, pp. 322-340
Davis, G.D., Elisee, C., Newham, D.M., Harrison, R.G., New fusion protein systems designed to give soluble expression in Escherichia coli (1999) Biotechnol. Bioeng., 65, pp. 382-388
Smith, D.B., Generating fusions to glutathione-S-transferase for protein studies (2000) Methods Enzymol., 326, pp. 254-270
Bach, H., Mazor, Y., Shaky, S., Shoham-Lev, A., Berdichevsky, Y., Gutnick, D.L., Benhar, I., Escherichia coli maltose-binding protein as a molecular chaperone for recombinant intracellular cytoplasmic single-chain antibodies (2001) J. Mol. Biol., 312, pp. 79-93
Nallamsetty, S., Waugh, D.S., Solubility-enhancing proteins mbp and nusa play a passive role in the folding of their fusion partners (2006) Protein Expr. Purif., 45, pp. 175-182
Dummler, A., Lawrence, A.M., De Marco, A., Simplified screening for the detection of soluble fusion constructs expressed in E. coli using a modular set of vectors (2005) Microb. Cell Fact., 4, p. 34
McGuffin, L.J., Bryson, K., Jones, D.T., The Psipred protein structure prediction server (2000) Bioinformatics, 16, pp. 404-405
Cuff, J.A., Clamp, M.E., Siddiqui, A.S., Finlay, M., Barton, G.J., Jpred: A consensus secondary structure prediction server (1998) Bioinformatics, 14, pp. 892-893
Ward, J.J., McGuffin, L.J., Bryson, K., Buxton, B.F., Jones, D.T., The Disopred server for the prediction of protein disorder (2004) Bioinformatics, 20, pp. 2138-2139
Xue, B., Dunbrack, R.L., Williams, R.W., Dunker, A.K., Uversky, V.N., PONDR-FIT: A meta-predictor of intrinsically disordered amino acids (2010) Biochim. Biophys. Acta, 1804, pp. 996-1010
Gruber, M., Soding, J., Lupas, A.N., Comparative analysis of coiled-coil prediction methods (2006) J. Struct. Biol., 155, pp. 140-145
Krogh, A., Larsson, B., Von Heijne, G., Sonnhammer, E.L., Predicting transmembrane protein topology with a hidden markov model: Application to complete genomes (2001) J. Mol. Biol., 305, pp. 567-580
Bendtsen, J.D., Nielsen, H., Von Heijne, G., Brunak, S., Improved prediction of signal peptides: SignalP 3.0 (2004) J. Mol. Biol., 340, pp. 783-795
Bateman, A., Birney, E., Cerruti, L., Durbin, R., Etwiller, L., Eddy, S.R., Griffiths-Jones, S., Sonnhammer, E.L., The Pfam protein families database (2002) Nucleic Acids Res., 30, pp. 276-280
Finn, R., Griffiths-Jones, S., Bateman, A., Identifying protein domains with the Pfam database (2003) Curr. Protoc. Bioinformatics, , Chapter 2, Unit 2.5
Marsden, R.L., McGuffin, L.J., Jones, D.T., Rapid protein domain assignment from amino acid sequence using predicted secondary structure (2002) Protein Sci., 11, pp. 2814-2824
Miyazaki, S., Kuroda, Y., Yokoyama, S., Characterization and prediction of linker sequences of multi-domain proteins by a neural network (2002) J. Struct. Funct. Genomics, 2, pp. 37-51
Jawhari, A., Boussert, S., Lamour, V., Atkinson, R.A., Kieffer, B., Poch, O., Potier, N., Poterszman, A., Domain architecture of the p62 subunit from the human transcription/repair factor TFIIH deduced by limited proteolysis and mass spectrometry analysis (2004) Biochemistry, 43, pp. 14420-14430
Katoh, K., Kuma, K., Miyata, T., Toh, H., Improvement in the accuracy of multiple sequence alignment program mafft (2005) Genome Inform., 16, pp. 22-33
Cooper, D.R., Surendranath, Y., Devedjiev, Y., Bielnicki, J., Derewenda, Z.S., Structure of the Bacillus subtilis ohrb hydroperoxide-resistance protein in a fully oxidized state (2007) Acta Crystallogr. D Biol. Crystallogr., 63, pp. 1269-1273
Huang, Y., Smith, B.S., Chen, L.X., Baxter, R.H., Deisenhofer, J., Insights into pilus assembly and secretion from the structure and functional characterization of usher PapC (2009) Proc. Natl. Acad. Sci. USA, 106, pp. 7403-7407
Slabinski, L., Jaroszewski, L., Rychlewski, L., Wilson, I.A., Lesley, S.A., Godzik, A., Xtalpred: A web server for prediction of protein crystallizability (2007) Bioinformatics, 23, pp. 3403-3405
Koth, C.M., Orlicky, S.M., Larson, S.M., Edwards, A.M., Use of limited proteolysis to identify protein domains suitable for structural analysis (2003) Methods Enzymol., 368, pp. 77-84
Fontana, A., De Laureto, P.P., Spolaore, B., Frare, E., Picotti, P., Zambonin, M., Probing protein structure by limited proteolysis (2004) Acta Biochim. Pol., 51, pp. 299-321
Dong, A., Xu, X., Edwards, A.M., Chang, C., Chruszcz, M., Cuff, M., Cymborowski, M., Zhu, H., In situ proteolysis for protein crystallization and structure determination (2007) Nat. Methods, 4, pp. 1019-1021
Wernimont, A., Edwards, A., In situ proteolysis to generate crystals for structure determination: An update (2009) PLoS ONE, 4, pp. e5094
Wang, W., Malcolm, B.A., Two-stage PCR protocol allowing introduction of multiple mutations, deletions and insertions using Quikchange site-directed mutagenesis (1999) Biotechniques, 26, pp. 680-682
Trevino, S.R., Scholtz, J.M., Pace, C.N., Amino acid contribution to protein solubility: Asp, glu, and ser contribute more favorably than the other hydrophilic amino acids in rnase sa (2007) J. Mol. Biol., 366, pp. 449-460
Niessing, D., Huttelmaier, S., Zenklusen, D., Singer, R.H., Burley, S.K., She2p is a novel rna binding protein with a basic helical hairpin motif (2004) Cell, 119, pp. 491-502
Patel, S.B., Cameron, P.M., O'Keefe, S.J., Frantz-Wattley, B., Thompson, J., O'Neill, E.A., Tennis, T., Scapin, G., The three-dimensional structure of map kinase p38beta: Different features of the ATP-binding site in p38beta compared with p38alpha (2009) Acta Crystallogr. D Biol. Crystallogr., 65, pp. 777-785
Salgado, P.S., Taylor, J.D., Cota, E., Matthews, S.J., Extending the usability of the phasing power of diselenide bonds: SeCys SAD phasing of CsgC using a non-auxotrophic strain (2011) Acta Crystallogr. D Biol. Crystallogr., 67, pp. 8-13
Garcia, K.C., Degano, M., Stanfield, R.L., Brunmark, A., Jackson, M.R., Peterson, P.A., Teyton, L., Wilson, I.A., An alphabeta t cell receptor structure at 2.5 a and its orientation in the tcr-mhc complex (1996) Science, 274, pp. 209-219
Ruggiero, A., Di Maro, A., Severino, V., Chambery, A., Berisio, R., Crystal structure of PD-L1, a ribosome inactivating protein from Phytolacca dioica l. Leaves with the property to induce DNA cleavage (2009) Biopolymers, 91, pp. 1135-1142
Watanabe, L., De Moura, P.R., Bleicher, L., Nascimento, A.S., Zamorano, L.S., Calvete, J.J., Sanz, L., Polikarpov, I., Crystal structure and statistical coupling analysis of highly glycosylated peroxidase from royal palm tree (Roystonea regia) (2010) J. Struct. Biol., 169, pp. 226-242
Mohanty, A.K., Fisher, A.J., Yu, Z., Pradeep, M.A., Janjanam, J., Kaushik, J.K., Cloning, expression, characterization and crystallization of brp39, a signalling glycoprotein expressed during mammary gland apoptosis (2009) Protein Expr. Purif., 64, pp. 213-218
Puthalakath, H., Burke, J., Gleeson, P.A., Glycosylation defect in lec1 chinese hamster ovary mutant is due to a point mutation in N-acetylglucosaminyltransferase I gene (1996) J. Biol. Chem., 271, pp. 27818-27822
Chang, V.T., Crispin, M., Aricescu, A.R., Harvey, D.J., Nettleship, J.E., Fennelly, J.A., Yu, C., Davis, S.J., Glycoprotein structural genomics: Solving the glycosylation problem (2007) Structure, 15, pp. 267-273
Bornhorst, J.A., Falke, J.J., Purification of proteins using polyhistidine affinity tags (2000) Methods Enzymol., 326, pp. 245-254
Magnusdottir, A., Johansson, I., Dahlgren, L.G., Nordlund, P., Berglund, H., Enabling imac purification of low abundance recombinant proteins from E (2009) Coli Lysates. Nat. Methods, 6, pp. 477-478
Bucher, M.H., Evdokimov, A.G., Waugh, D.S., Differential effects of short affinity tags on the crystallization of pyrococcus furiosus maltodextrin-binding protein (2002) Acta Crystallogr. D Biol. Crystallogr., 58, pp. 392-397
Chatterjee, D.K., Esposito, D., Enhanced soluble protein expression using two new fusion tags (2006) Protein Expr. Purif., 46, pp. 122-129
Malhotra, A., Tagging for protein expression (2009) Methods Enzymol., 463, pp. 239-258
Smyth, D.R., Mrozkiewicz, M.K., McGrath, W.J., Listwan, P., Kobe, B., Crystal structures of fusion proteins with large-affinity tags (2003) Protein Sci., 12, pp. 1313-1322
Suzuki, N., Hiraki, M., Yamada, Y., Matsugaki, N., Igarashi, N., Kato, R., Dikic, I., Kawasaki, M., Crystallization of small proteins assisted by green fluorescent protein (2011) Acta Crystallogr. D Biol. Crystallogr., 66, pp. 1059-1066
Kovari, L.C., Momany, C., Rossmann, M.G., The use of antibody fragments for crystallization and structure determinations (1995) Structure, 3, pp. 1291-1293
Hunte, C., Michel, H., Crystallisation of membrane proteins mediated by antibody fragments (2002) Curr. Opin. Struct. Biol., 12, pp. 503-508
Sennhauser, G., Grutter, M.G., Chaperone-assisted crystallography with DARPins (2008) Structure, 16, pp. 1443-1453
Koide, S., Engineering of recombinant crystallization chaperones (2009) Curr. Opin. Struct Biol., 19, pp. 449-457
Gebauer, M., Skerra, A., Engineered protein scaffolds as nextgeneration antibody therapeutics (2009) Curr. Opin. Chem. Biol., 13, pp. 245-255
Ruggiero, A., Masullo, M., Marasco, D., Ruocco, M.R., Grimaldi, P., Arcari, P., Zagari, A., Vitagliano, L., The dimeric structure of Sulfolobus solfataricus thioredoxin A2 and the basis of its thermostability (2009) Proteins, 77, pp. 1004-1008
Ruggiero, A., Lanzotti, M.A., Ruocco, M.R., Grimaldi, P., Marasco, D., Arcari, P., Masullo, M., Vitagliano, L., Crystallization and preliminary X-ray crystallographic analysis of two dimeric hyperthermostable Thioredoxins isolated from Sulfolobus solfataricus (2009) Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun., 65, pp. 604-607
Derewenda, Z.S., It's all in the crystals (2011) Acta Crystallogr. D Biol. Crystallogr., 67, pp. 243-248
Derewenda, Z.S., Vekilov, P.G., Entropy and surface engineering in protein crystallization (2006) Acta Crystallogr. D Biol. Crystallogr., 62, pp. 116-124
Bordner, A.J., Abagyan, R., Statistical analysis and prediction of protein-protein interfaces (2005) Proteins, 60, pp. 353-366
Ofran, Y., Rost, B., Analysing six types of protein-protein interfaces (2003) J. Mol. Biol., 325, pp. 377-387
Cieslik, M., Derewenda, Z.S., The role of entropy and polarity in intermolecular contacts in protein crystals (2009) Acta Crystallogr. D Biol Crystallogr., 65, pp. 500-509
Price, W.N., Chen, Y., Handelman, S.K., Neely, H., Manor, P., Karlin, R., Nair, R., Hunt, J.F., Understanding the physical properties that control protein crystallization by analysis of large-scale experimental data (2009) Nat. Biotechnol., 27, pp. 51-57
Goldschmidt, L., Cooper, D.R., Derewenda, Z.S., Eisenberg, D., Toward rational protein crystallization: A web server for the design of crystallizable protein variants (2007) Protein Sci., 16, pp. 1569-1576
Cooper, D.R., Boczek, T., Grelewska, K., Pinkowska, M., Sikorska, M., Zawadzki, M., Derewenda, Z., Protein crystallization by surface entropy reduction: Optimization of the SER strategy (2007) Acta Crystallogr. D Biol. Crystallogr., 63, pp. 636-645
Ullah, H., Scappini, E.L., Moon, A.F., Williams, L.V., Armstrong, D.L., Pedersen, L.C., Structure of a signal transduction regulator, RACK1, from Arabidopsis thaliana (2008) Protein Sci., 17, pp. 1771-1780
Moon, A.F., Mueller, G.A., Zhong, X., Pedersen, L.C., A synergistic approach to protein crystallization: Combination of a fixed-arm carrier with surface entropy reduction (2010) Protein Sci., 19, pp. 901-913
Ruggiero, A., Tizzano, B., Geerlof, A., Pedone, E., Pedone, C., Wilmanns, M., Berisio, R., Expression, purification, crystallization and preliminary X-ray crystallographic analysis of a resuscitationpromoting factor from Mycobacterium tuberculosis (2007) Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun., 63, pp. 870-873
Ruggiero, A., Squeglia, F., Pirone, L., Correale, S., Berisio, R., Expression, purification, crystallization and preliminary X-ray crystallographic analysis of a major fragment of the resuscitationpromoting factor RpfB from Mycobacterium tuberculosis (2011) Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun., 67, pp. 164-168
Cohen-Gonsaud, M., Barthe, P., Bagneris, C., Henderson, B., Ward, J., Roumestand, C., Keep, N.H., The structure of a resuscitation-promoting factor domain from Mycobacterium tuberculosis shows homology to lysozymes (2005) Nat. Struct. Mol. Biol., 12, pp. 270-273
Hett, E.C., Chao, M.C., Steyn, A.J., Fortune, S.M., Deng, L.L., Rubin, E.J., A partner for the resuscitation-promoting factors of Mycobacterium tuberculosis (2007) Mol. Microbiol., 66, pp. 658-668
Gao, L.Y., Pak, M., Kish, R., Kajihara, K., Brown, E.J., A mycobacterial operon essential for virulence in vivo and invasion and intracellular persistence in macrophages (2006) Infect. Immun., 74, pp. 1757-1767
Ruggiero, A., Marasco, D., Squeglia, F., Soldini, S., Pedone, E., Pedone, C., Berisio, R., Structure and functional regulation of RipA, a mycobacterial enzyme essential for daughter cell separation (2010) Structure, 18, pp. 1184-1190
Yang, W., Fucini, R.V., Fahr, B.T., Randal, M., Lind, K.E., Lam, M.B., Lu, W., Ballinger, M.D., Fragment-based discovery of nonpeptidic Bace-1 inhibitors using tethering (2009) Biochemistry, 48, pp. 4488-4496
Bauman, J.D., Das, K., Ho, W.C., Baweja, M., Himmel, D.M., Clark Jr., A.D., Oren, D.A., Arnold, E., Crystal engineering of HIV-1 reverse transcriptase for structure-based drug design (2008) Nucleic Acids Res., 36, pp. 5083-5092
Mizianty, M.J., Kurgan, L., Meta prediction of protein crystallization propensity (2009) Biochem. Biophys. Res. Commun., 390, pp. 10-15
Meroueh, S.O., Bencze, K.Z., Hesek, D., Lee, M., Fisher, J.F., Stemmler, T.L., Mobashery, S., Three-dimensional structure of the bacterial cell wall peptidoglycan (2006) Proc. Natl. Acad. Sci. USA, 103, pp. 4404-4409
Schmeing, T. M., Ramakrishnan, V., What recent ribosome structures have revealed about the mechanism of translation (2009) Nature, 461, pp. 1234-1242
Winn, M. D., Ballard, C. C., Cowtan, K. D., Dodson, E. J., Emsley, P., Evans, P. R., Keegan, R. M., Wilson, K. S., Overview of the ccp4 suite and current developments (2011) Acta Crystallogr. D Biol. Crystallogr., 67, pp. 235-242
Jia, Y., Liu, X. Y., From surface self-assembly to crystallization: Prediction of protein crystallization conditions (2006) J. Phys. Chem. B, 110, pp. 6949-6955
Liu, J., Yin, D. C., Guo, Y. Z., Wang, X. K., Xie, S. X., Lu, Q. Q., Liu, Y. M., Selecting temperature for protein crystallization screens using the temperature dependence of the second virial coefficient (2011) PLoS ONE, 6, pp. e17950
Jancarik, J. K. S. H., Sparse matrix sampling: A screening method for crystallization of proteins (1991) J. Appl. Cryst., 24, pp. 409-411
Chayen, N. E., Saridakis, E., Protein crystallization: From purified protein to diffraction-quality crystal (2008) Nat. Methods, 5, pp. 147-153
Dale, G. E., Oefner, C., D'Arcy, A., The protein as a variable in protein crystallization (2003) J. Struct. Biol., 142, pp. 88-97
Derewenda, Z. S., Application of protein engineering to enhance crystallizability and improve crystal properties (2010) Acta Crystallogr. D Biol. Crystallogr., 66, pp. 604-615
Niesen, F. H., Koch, A., Lenski, U., Harttig, U., Roske, Y., Heinemann, U., Hofmann, K. P., An approach to quality management in structural biology: Biophysical selection of proteins for successful crystallization (2008) J. Struct. Biol., 162, pp. 451-459
Campbell, J. W., Duee, E., Hodgson, G., Mercer, W. D., Stammers, D. K., Wendell, P. L., Muirhead, H., Watson, H. C., X-ray diffraction studies on enzymes in the glycolytic pathway (1972) Cold Spring Harb. Symp. Quant. Biol., 36, pp. 165-170
McLachlan, M. J., Johannes, T. W., Zhao, H., Further improvement of phosphite dehydrogenase thermostability by saturation mutagenesis (2008) Biotechnol. Bioeng., 99, pp. 268-274
Derewenda, Z. S., Rational protein crystallization by mutational surface engineering (2004) Structure, 12, pp. 529-535
Yakunin, A. F., Yee, A. A., Savchenko, A., Edwards, A. M., Arrowsmith, C. H., Structural proteomics: A tool for genome annotation (2004) Curr. Opin. Chem. Biol., 8, pp. 42-48
Derewenda, Z. S., The use of recombinant methods and molecular engineering in protein crystallization (2004) Methods, 34, pp. 354-363
Swartz, J. R., Advances in Escherichia coli production of therapeutic proteins (2001) Curr. Opin. Biotechnol., 12, pp. 195-201
Goulding, C. W., Perry, L. J., Protein production in Escherichia coli for structural studies by X-ray crystallography (2003) J. Struct. Biol., 142, pp. 133-143
Anthony, L. C., Suzuki, H., Filutowicz, M., Tightly regulated vectors for the cloning and expression of toxic genes (2004) J. Microbiol. Methods, 58, pp. 243-250
Dyson, M. R., Shadbolt, S. P., Vincent, K. J., Perera, R. L., McCafferty, J., Production of soluble mammalian proteins in Escherichia coli: Identification of protein features that correlate with successful expression (2004) BMC Biotechnol., 4, p. 32
Nannenga, B. L., Baneyx, F., Reprogramming chaperone pathways to improve membrane protein expression in Escherichia coli (2011) Protein Sci., , Epub ahead of print
Kerrigan, J. J., Xie, Q., Ames, R. S., Lu, Q., Production of protein complexes via co-expression (2011) Protein Expr. Purif., 75, pp. 1-14
Sorensen, H. P., Mortensen, K. K., Soluble expression of recombinant proteins in the cytoplasm of Escherichia coli (2005) Microb. Cell Fact., 4, p. 1
Rosano, G. L., Ceccarelli, E. A., Rare codon content affects the solubility of recombinant proteins in a codon bias-adjusted Escherichia coli strain (2009) Microb. Cell Fact., 8, p. 41
Kapust, R. B., Waugh, D. S., Escherichia coli maltose-binding protein is uncommonly effective at promoting the solubility of polypeptides to which it is fused (1999) Protein Sci., 8, pp. 1668-1674
LaVallie, E. R., Lu, Z., Diblasio-Smith, E. A., Collins-Racie, L. A., McCoy, J. M., Thioredoxin as a fusion partner for production of soluble recombinant proteins in Escherichia coli (2000) Methods Enzymol., 326, pp. 322-340
Davis, G. D., Elisee, C., Newham, D. M., Harrison, R. G., New fusion protein systems designed to give soluble expression in Escherichia coli (1999) Biotechnol. Bioeng., 65, pp. 382-388
Smith, D. B., Generating fusions to glutathione-S-transferase for protein studies (2000) Methods Enzymol., 326, pp. 254-270
McGuffin, L. J., Bryson, K., Jones, D. T., The Psipred protein structure prediction server (2000) Bioinformatics, 16, pp. 404-405
Cuff, J. A., Clamp, M. E., Siddiqui, A. S., Finlay, M., Barton, G. J., Jpred: A consensus secondary structure prediction server (1998) Bioinformatics, 14, pp. 892-893
Ward, J. J., McGuffin, L. J., Bryson, K., Buxton, B. F., Jones, D. T., The Disopred server for the prediction of protein disorder (2004) Bioinformatics, 20, pp. 2138-2139
Bendtsen, J. D., Nielsen, H., Von Heijne, G., Brunak, S., Improved prediction of signal peptides: SignalP 3. 0 (2004) J. Mol. Biol., 340, pp. 783-795
Marsden, R. L., McGuffin, L. J., Jones, D. T., Rapid protein domain assignment from amino acid sequence using predicted secondary structure (2002) Protein Sci., 11, pp. 2814-2824
Cooper, D. R., Surendranath, Y., Devedjiev, Y., Bielnicki, J., Derewenda, Z. S., Structure of the Bacillus subtilis ohrb hydroperoxide-resistance protein in a fully oxidized state (2007) Acta Crystallogr. D Biol. Crystallogr., 63, pp. 1269-1273
Koth, C. M., Orlicky, S. M., Larson, S. M., Edwards, A. M., Use of limited proteolysis to identify protein domains suitable for structural analysis (2003) Methods Enzymol., 368, pp. 77-84
Trevino, S. R., Scholtz, J. M., Pace, C. N., Amino acid contribution to protein solubility: Asp, glu, and ser contribute more favorably than the other hydrophilic amino acids in rnase sa (2007) J. Mol. Biol., 366, pp. 449-460
Patel, S. B., Cameron, P. M., O'Keefe, S. J., Frantz-Wattley, B., Thompson, J., O'Neill, E. A., Tennis, T., Scapin, G., The three-dimensional structure of map kinase p38beta: Different features of the ATP-binding site in p38beta compared with p38alpha (2009) Acta Crystallogr. D Biol. Crystallogr., 65, pp. 777-785
Salgado, P. S., Taylor, J. D., Cota, E., Matthews, S. J., Extending the usability of the phasing power of diselenide bonds: SeCys SAD phasing of CsgC using a non-auxotrophic strain (2011) Acta Crystallogr. D Biol. Crystallogr., 67, pp. 8-13
Garcia, K. C., Degano, M., Stanfield, R. L., Brunmark, A., Jackson, M. R., Peterson, P. A., Teyton, L., Wilson, I. A., An alphabeta t cell receptor structure at 2. 5 a and its orientation in the tcr-mhc complex (1996) Science, 274, pp. 209-219
Mohanty, A. K., Fisher, A. J., Yu, Z., Pradeep, M. A., Janjanam, J., Kaushik, J. K., Cloning, expression, characterization and crystallization of brp39, a signalling glycoprotein expressed during mammary gland apoptosis (2009) Protein Expr. Purif., 64, pp. 213-218
Chang, V. T., Crispin, M., Aricescu, A. R., Harvey, D. J., Nettleship, J. E., Fennelly, J. A., Yu, C., Davis, S. J., Glycoprotein structural genomics: Solving the glycosylation problem (2007) Structure, 15, pp. 267-273
Bornhorst, J. A., Falke, J. J., Purification of proteins using polyhistidine affinity tags (2000) Methods Enzymol., 326, pp. 245-254
Bucher, M. H., Evdokimov, A. G., Waugh, D. S., Differential effects of short affinity tags on the crystallization of pyrococcus furiosus maltodextrin-binding protein (2002) Acta Crystallogr. D Biol. Crystallogr., 58, pp. 392-397
Smyth, D. R., Mrozkiewicz, M. K., McGrath, W. J., Listwan, P., Kobe, B., Crystal structures of fusion proteins with large-affinity tags (2003) Protein Sci., 12, pp. 1313-1322
Kovari, L. C., Momany, C., Rossmann, M. G., The use of antibody fragments for crystallization and structure determinations (1995) Structure, 3, pp. 1291-1293
Derewenda, Z. S., It's all in the crystals (2011) Acta Crystallogr. D Biol. Crystallogr., 67, pp. 243-248
Derewenda, Z. S., Vekilov, P. G., Entropy and surface engineering in protein crystallization (2006) Acta Crystallogr. D Biol. Crystallogr., 62, pp. 116-124
Bordner, A. J., Abagyan, R., Statistical analysis and prediction of protein-protein interfaces (2005) Proteins, 60, pp. 353-366
Price, W. N., Chen, Y., Handelman, S. K., Neely, H., Manor, P., Karlin, R., Nair, R., Hunt, J. F., Understanding the physical properties that control protein crystallization by analysis of large-scale experimental data (2009) Nat. Biotechnol., 27, pp. 51-57
Cooper, D. R., Boczek, T., Grelewska, K., Pinkowska, M., Sikorska, M., Zawadzki, M., Derewenda, Z., Protein crystallization by surface entropy reduction: Optimization of the SER strategy (2007) Acta Crystallogr. D Biol. Crystallogr., 63, pp. 636-645
Moon, A. F., Mueller, G. A., Zhong, X., Pedersen, L. C., A synergistic approach to protein crystallization: Combination of a fixed-arm carrier with surface entropy reduction (2010) Protein Sci., 19, pp. 901-913
Hett, E. C., Chao, M. C., Steyn, A. J., Fortune, S. M., Deng, L. L., Rubin, E. J., A partner for the resuscitation-promoting factors of Mycobacterium tuberculosis (2007) Mol. Microbiol., 66, pp. 658-668
Gao, L. Y., Pak, M., Kish, R., Kajihara, K., Brown, E. J., A mycobacterial operon essential for virulence in vivo and invasion and intracellular persistence in macrophages (2006) Infect. Immun., 74, pp. 1757-1767
Bauman, J. D., Das, K., Ho, W. C., Baweja, M., Himmel, D. M., Clark Jr., A. D., Oren, D. A., Arnold, E., Crystal engineering of HIV-1 reverse transcriptase for structure-based drug design (2008) Nucleic Acids Res., 36, pp. 5083-5092
Mizianty, M. J., Kurgan, L., Meta prediction of protein crystallization propensity (2009) Biochem. Biophys. Res. Commun., 390, pp. 10-15
Meroueh, S. O., Bencze, K. Z., Hesek, D., Lee, M., Fisher, J. F., Stemmler, T. L., Mobashery, S., Three-dimensional structure of the bacterial cell wall peptidoglycan (2006) Proc. Natl. Acad. Sci. USA, 103, pp. 4404-4409
Enhanced crystallizability by protein engineering approaches: A general overview
Santulli G, Cipolletta E, Sorriento D, Del Giudice C, Anastasio A, Monaco S, Maione AS, Condorelli G, Puca A, Trimarco B, Illario M, Iaccarino G * CaMK4 gene deletion induces hypertension(348 views) J Am Heart Assoc Journal Of The American Heart Association (ISSN: 2047-9980), 2012; 1(4): N/D-N/D. Impact Factor:2.882 ViewExport to BibTeXExport to EndNote
Vitiello M, Finamore E, Falanga A, Raieta K, Cantisani M, Galdiero F, Pedone C, Galdiero M, Galdiero S * Fusion in Coq(479 views) Lecture Notes In Computer Science (ISSN: 0302-9743, 0302-974335404636319783540463634, 0302-974335402975459783540297543), 2001; 2178LNCS: 583-596. Impact Factor:0.415 ViewExport to BibTeXExport to EndNote