Dipartimento di Scienze Chimiche, Chemistry Department, Università di Catania, Viale Andrea Doria 6, 95125 Catania, Italy
Istituto Biostrutture e Bioimmagini, CNR, Viale A. Doria 6, Catania, Italy
References: Hardy, J., Selkoe, D.J., The amyloid hypothesis of Alzheimer's disease: Progress and problems on the road to therapeutics (2002) Science, 297 (5580), pp. 353-356. , DOI 10.1126/science.107299
Hardy, J., The amyloid hypothesis for Alzheimer's disease: A critical reappraisal (2009) J. Neurochem., 110, pp. 1129-1134
Pimplikar, S.W., Reassessing the amyloid cascade hypothesis of Alzheimer's disease (2009) Int. J. Biochem. Cell Biol., 41, pp. 1261-1268
Golde, T.E., Dickson, D., Hutton, M., Filling the gaps in the Aβ cascade hypothesis of Alzheimer's disease (2006) Current Alzheimer Research, 3 (5), pp. 421-430. , http://docstore.ingenta.com/cgi-bin/ds_deliver/1/u/d/ISIS/33818346.1/ben/ car/2006/00000003/00000005/art00003/CF9471361F91AADA116520262296C62E08219F4879. pdf?link=http://www.ingentaconnect.com/error/delivery&format=pdf, DOI 10.2174/156720506779025189
Jakob-Roetne, R., Jacobsen, H., Alzheimer's disease: From pathology to therapeutic approaches (2009) Angew. Chem., Int. Ed., 48, pp. 3030-3059
Lesné, S., Koh, M.T., Kotilinek, L., Kayed, R., Glabe, C.G., Yang, A., Gallagher, M., Ashe, K.H., A specific amyloid-beta protein assembly in the brain impairs memory (2006) Nature, 440, pp. 352-357
Bush, A.I., Tanzi, R.E., Therapeutics for Alzheimer's Disease Based on the Metal Hypothesis (2008) Neurotherapeutics, 5 (3), pp. 421-432. , DOI 10.1016/j.nurt.2008.05.001, PII S1933721308000901
Vigo-Pelfrey, C., Lee, D., Keim, P., Lieberburg, I., Schenk, D.B., Characterization of β-amyloid peptide from human cerebrospinal fluid (1993) Journal of Neurochemistry, 61 (5), pp. 1965-1968. , DOI 10.1111/j.1471-4159.1993.tb09841.x
Zou, L., Yang, R., Zhang, P., Dai, Y., The enhancement of amyloid precursor protein and β-site amyloid cleavage enzyme 1 interaction: Amyloid-β production with aging (2010) Int. J. Mol. Med., 25, pp. 401-407
Silverberg, G.D., Miller, M.C., Messier, A.A., Majmudar, S., MacHan, J.T., Donahue, J.E., (2010) J. Neuropathol. Exp. Neurol., 69, pp. 98-108. , Amyloid deposition and influx transporter expression at the blood-brain barrier increase in normal aging
Head, E., Pop, V., Sarsoza, F., Kayed, R., Beckett, T.L., Studzinski, C.M., (2010) J. Alzheimer's Dis., 20, pp. 637-646. , Amyloid β-peptide and oligomers in the brain and CSF of aged canines
Wisniewski, T., Lalowski, M., Bobik, M., Russell, M., Strosznajder, J., Frangione, B., Amyloid β 1-42 deposits do not lead to Alzheimer's neuritic plaques in aged dogs (1996) Biochemical Journal, 313 (2), pp. 575-580
Lovell, M.A., Robertson, J.D., Teesdale, W.J., Campbell, J.L., Markesbery, W.R., Copper, iron and zinc in Alzheimer's disease senile plaques (1998) Journal of the Neurological Sciences, 158 (1), pp. 47-52. , DOI 10.1016/S0022-510X(98)00092-6, PII S0022510X98000926
Nunomura, A., Perry, G., Aliev, G., Hirai, K., Takeda, A., Balraj, E.K., (2001) J. Neuropathol. Exp. Neurol., 60, pp. 759-767. , Oxidative damage is the earliest event in Alzheimer disease
Lahiri, D.K., Chen, D.-M., Lahiri, P., Bondy, S., Greig, N.H., Amyloid, cholinesterase, melatonin, and metals and their roles in aging and neurodegenerative diseases (2005) Annals of the New York Academy of Sciences, 1056, pp. 430-449. , DOI 10.1196/annals.1352.008
Žerovnik, E., Protein conformational pathology in Alzheimer's and other neuro-degenerative diseases, new targets for therapy (2010) Curr. Alzheimer Res., 7, pp. 74-83
Roberts, B.R., Bush, A.I., Role of metals in Alzheimer disease (2010) Protein Misfolding Dis., pp. 545-558
Bonda, D.J., Lee, H.-G., Blair, J.A., Zhu, X., Perry, G., Smith, M.A., Role of metal dyshomeostasis in Alzheimer's disease (2011) Metallomics, 3, pp. 267-270
Adlard, P.A., Bush, A.I., Metals and Alzheimer's disease (2006) Journal of Alzheimer's Disease, 10 (2-3), pp. 145-163
Cuajungco, M.P., Faget, K.Y., Huang, X., Tanzi, R.E., Bush, A.I., Metal chelation as a potential therapy for Alzheimer's disease (2000) Annals of the New York Academy of Sciences, 920, pp. 292-304
Bush, A.I., Drug development based on the metals hypothesis of Alzheimer's disease (2008) J. Alzheimer's Dis., 15, pp. 223-240
Bandyopadhyay, S., Huang, X., Lahiri, D.K., Rogers, J.T., Novel drug targets based on metallobiology of Alzheimer's disease (2010) Expert Opin. Ther. Targets, 14, pp. 1177-1197
Liu, G., Garrett, M.R., Men, P., Zhu, X., Perry, G., Smith, M.A., Nanoparticle and other metal chelation therapeutics in Alzheimer disease (2005) Biochimica et Biophysica Acta - Molecular Basis of Disease, 1741 (3), pp. 246-252. , DOI 10.1016/j.bbadis.2005.06.006, PII S0925443905001067
Choi, J.-S., Braymer, J.J., Nanga, R.P.R., Ramamoorthy, Y., Lima, M.H., Design of small molecules that target metal-Aβ species and regulate metal-induced Aβ aggregation and neurotoxicity (2010) Proc. Natl. Acad. Sci. U. S. A., 107, pp. 21990-21995
Becker, J.S., Matusch, A., Palm, C., Salber, D., Morton, K.A., Becker, J.S., Bioimaging of metals in brain tissue by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) and metallomics (2010) Metallomics, 2, pp. 104-111
Grasso, G., The use of mass spectrometry to study amyloid-β peptides (2011) Mass Spectrom. Rev., 30, pp. 347-365
Speziali, M., Orvini, E., Metals distribution and regionalization in the brain (2003) Metal Ions and Neurodegenerative Disorders, pp. 15-65
Rajan, K.S., Colburn, R.W., Davis, J.M., Distribution of metal ions in the subcellular fractions of several rat brain areas (1976) Life Sci., 18, pp. 423-431
Nolan, E.M., Lippard, S.J., Small-molecule fluorescent sensors for investigating zinc metalloneurochemistry (2009) Acc. Chem. Res., 42, pp. 193-203
Grasso, G., La Mendola, D., Milardi, D., Metal ions and the clearance of misfolded proteins (2011) Neurodegeneration: Metallostasis and Proteostasis, pp. 83-111. , ed. D. Milardi and E. Rizzarelli, The Royal Society of Chemistry, London, UK
Adlard, P.A., Bica, L., White, A.R., Nurjono, M., Filiz, G., Crouch, P.J., (2011) PLoS One, 6, p. 17669. , Metal ionophore treatment restores dendritic spine density and synaptic protein levels in a mouse model of Alzheimer's disease
Faux, N.G., Ritchie, C.W., Gunn, A., Rembach, A., Tsatsanis, A., Bedo, J., (2010) J. Alzheimer's Dis., 20, pp. 509-516. , PBT2 rapidly improves cognition in Alzheimer's disease: additional phase II analyses
Milardi, D., Pappalardo, G., Rizzarelli, E., Sovago, I., The inorganic side of Alzheimer's disease (2011) Neurodegeneration Metallostasis and Proteostasis, pp. 112-140. , ed. D. Milardi and E. Rizzarelli, The Royal Society of Chemistry, London, UK
Tian, J., Shi, J., Zhang, L., Yin, J., Hu, Q., Xu, Y., (2009) Curr. Alzheimer Res., 6, pp. 118-131. , GEPT extract reduces Abeta deposition by regulating the balance between production and degradation of Abeta in APPV717I transgenic mice
Wang, X., Su, B., Siedlak, S.L., Moreira, P.I., Fujioka, H., Wang, Y., (2008) Proc. Natl. Acad. Sci. U. S. A., 105, pp. 19318-19323. , Amyloid-beta overproduction causes abnormal mitochondrial dynamics via differential modulation of mitochondrial fission/fusion proteins
Leissring, M.A., The AβCs of Aβ-cleaving proteases (2008) J. Biol. Chem., 283, pp. 29645-29649
Eggert, S., Paliga, K., Soba, P., Evin, G., Masters, C.L., Weidemann, A., (2004) J. Biol. Chem., 279, pp. 18146-18156. , The proteolytic processing of the amyloid precursor protein gene family members APLP-1 and APLP-2 involves α-, β-, γ-, and ε-like cleavages
Xia, W., From presenilinase to γ-secretase, cleave to capacitate (2008) Curr. Alzheimer Res., 5, pp. 172-178
Park, H.J., Kim, S.-S., Seong, Y.-M., Kim, K.-H., Goo, H.G., Yoon, E.J., β-Amyloid precursor protein is a direct cleavage target of HtrA2 serine protease (2006) J. Biol. Chem., 281, pp. 34277-34287
Tanzi, R.E., Moir, R.D., Wagner, S.L., Clearance of Alzheimer's Aβ peptide: The many roads to perdition (2004) Neuron, 43 (5), pp. 605-608. , DOI 10.1016/j.neuron.2004.08.024, PII S0896627304005331
Sambamurti, K., Greig, N.H., Lahiri, D.K., Advances in the cellular and molecular biology of the beta-amyloid protein in Alzheimer's disease (2002) NeuroMolecular Medicine, 1 (1), pp. 1-31. , DOI 10.1385/NMM:1:1:1
Lopez Salon, M., Pasquini, L., Besio Moreno, M., Pasquini, J.M., Soto, E., Relationship between β-amyloid degradation and the 26S proteasome in neural cells (2003) Experimental Neurology, 180 (2), pp. 131-143. , DOI 10.1016/S0014-4886(02)00060-2
Mawuenyega, K.G., Sigurdson, W., Ovod, V., Munsell, L., Kasten, T., Morris, J.C., (2010) Science, 330, p. 1774. , Decreased clearance of CNS beta-amyloid in Alzheimer's disease
Hersh, L.B., Peptidases, proteases and amyloid β-peptide catabolism (2003) Current Pharmaceutical Design, 9 (6), pp. 449-454. , DOI 10.2174/1381612033391676
Guan, H., Liu, Y., Daily, A., Police, S., Kim, M.-H., Oddo, S., (2009) J. Neurosci. Res., 87, pp. 1462-1473. , Peripherally expressed neprilysin reduces brain amyloid burden: a novel approach for treating Alzheimer's disease
Nalivaeva, N.N., Beckett, C., Belyaev, N.D., Turner, A.J., Are amyloid-degrading enzymes viable therapeutic targets in Alzheimer's disease? (2012) J. Neurochem., 120, pp. 167-185
Iwata, N., Mizukami, H., Shirotani, K., Takaki, Y., Muramatsu, S., Lu, B., (2004) J. Neurosci., 24, pp. 991-998. , Presynaptic localization of neprilysin contributes to efficient clearance of amyloid-beta peptide in mouse brain
Farris, W., Schütz, S.G., Cirrito, J.R., Shankar, G.M., Sun, X., George, A., (2007) Am. J. Pathol., 171, pp. 241-251. , Loss of neprilysin function promotes amyloid plaque formation and causes cerebral amyloid angiopathy
Qiu, W.Q., Folstein, M.F., Insulin, insulin-degrading enzyme and amyloid-β peptide in Alzheimer's disease: Review and hypothesis (2006) Neurobiology of Aging, 27 (2), pp. 190-198. , DOI 10.1016/j.neurobiolaging.2005.01.004, PII S0197458005000199
Eckman, E.A., Reed, D.K., Eckman, C.B., Degradation of the Alzheimer's amyloid beta peptide by endothelin-converting enzyme (2001) J. Biol. Chem., 276, pp. 24540-24548
Palmer, J.C., Baig, S., Kehoe, P.G., Love, S., Endothelin-converting enzyme-2 is increased in Alzheimer's disease and up-regulated by Abeta (2009) Am. J. Pathol., 175, pp. 262-270
Hemming, M.L., Selkoe, D.J., Amyloid β-protein is degraded by cellular angiotensin-converting enzyme (ACE) and elevated by an ACE inhibitor (2005) Journal of Biological Chemistry, 280 (45), pp. 37644-37650. , DOI 10.1074/jbc.M508460200
Liao, M.C., Van Nostrand, W.E., Degradation of soluble and fibrillar amyloid beta-protein by matrix metalloproteinase (MT1-MMP) in vitro (2010) Biochemistry, 49, pp. 1127-1136
Hernandez-Guillamon, M., Mawhirt, S., Fossati, S., Blais, S., Pares, M., Penalba, A., (2010) J. Biol. Chem., 285, pp. 27144-27158. , Matrix metalloproteinase 2 (MMP-2) degrades soluble vasculotropic amyloid-beta E22Q and L34V mutants, delaying their toxicity for human brain microvascular endothelial cells
Mizoguchi, H., Takuma, K., Fukuzaki, E., Ibi, D., Someya, E., Akazawa, K.H., (2009) J. Pharmacol. Exp. Ther., 331, pp. 14-22. , Matrix metalloprotease-9 inhibition improves amyloid beta-mediated cognitive impairment and neurotoxicity in mice
Malito, E., Hulse, R.E., Tang, W.J., Amyloid beta-degrading cryptidases: Insulin degrading enzyme, presequence peptidase, and neprilysin (2008) Cell. Mol. Life Sci., 65, pp. 2574-2585
Zhao, J., Pei, G., Evoking plasmin for β-amyloid clearance (2008) Cell Res., 18, pp. 803-804
Nalivaeva, N.N., Fisk, L.R., Belyaev, N.D., Turner, A.J., Amyloid-degrading enzymes as therapeutic targets in Alzheimer's disease (2008) Current Alzheimer Research, 5 (2), pp. 212-224. , http://docstore.ingenta.com/cgi-bin/ds_deliver/1/u/d/ISIS/43586647.1/ben/ car/2008/00000005/00000002/art00013/90EFF3E5451A69AD1208150300DDDAC72661D64958. pdf?link=http://www.ingentaconnect.com/error/delivery&format=pdf, DOI 10.2174/156720508783954785
Cabrol, C., Huzarska, M.A., Dinolfo, C., Rodriguez, M.C., Reinstatler, L., Ni, J., (2009) PLoS One, 4, p. 5274. , Small-molecule activators of insulin-degrading enzyme discovered through high-throughput compound screening
Grasso, G., D'Agata, R., Rizzarelli, E., Spoto, G., D'Andrea, L., Pedone, C., (2005) J. Mass Spectrom., 40, pp. 1565-1571. , Activity of anchored human matrix metalloproteinase-1 catalytic domain on Au (111) surfaces monitored by ESI-MS
Grasso, G., Fragai, M., Rizzarelli, E., Spoto, G., Yeo, K.J., In situ AP/MALDI-MS characterization of anchored matrix metalloproteinases (2006) Journal of Mass Spectrometry, 41 (12), pp. 1561-1569. , DOI 10.1002/jms.1126
Falkous, G., Harris, J.B., Mantle, D., Effect of neurotoxic metal ions in vitro on proteolytic enzyme activities in human cerebral cortex (1995) Clin. Chim. Acta, 238, pp. 125-135
Strozyk, D., Launer, L.J., Adlard, P.A., Cherny, R.A., Tsatsanis, A., Volitakis, I., (2009) Neurobiol. Aging, 30, pp. 1069-1077. , Zinc and copper modulate Alzheimer Aβ levels in human cerebrospinal fluid
Donnelly, P.S., Caragounis, A., Du, T., Laughton, K.M., Volitakis, I., Cherny, R.A., (2008) J. Biol. Chem., 283, pp. 4568-4577. , Selective intracellular release of copper and zinc ions from bis(thiosemicarbazonato) complexes reduces levels of Alzheimer disease amyloid-β peptide
Domingo, J.L., Aluminum and other metals in Alzheimer's disease: A review of potential therapy with chelating agents (2006) Journal of Alzheimer's Disease, 10 (2-3), pp. 331-341
Maccioni, R.B., Munoz, J.P., Barbeito, L., The molecular bases of Alzheimer's disease and other neurodegenerative disorders (2001) Archives of Medical Research, 32 (5), pp. 367-381. , DOI 10.1016/S0188-4409(01)00316-2, PII S0188440901003162
Maynard, C.J., Cappai, R., Volitakis, I., Cherny, R.A., White, A.R., Beyreuther, K., Masters, C.L., Li, Q.-X., Overexpression of Alzheimer's disease amyloid-β opposes the age-dependent elevations of brain copper and iron (2002) Journal of Biological Chemistry, 277 (47), pp. 44670-44676. , DOI 10.1074/jbc.M204379200
Prohaska, J.R., Role of copper transporters in copper homeostasis (2008) Am. J. Clin. Nutr., 88, pp. 826S-829S
Lichten, L.A., Cousins, R.J., Mammalian zinc transporters: Nutritional and physiologic regulation (2009) Annu. Rev. Nutr., 29, pp. 153-176
Burdo, J.R., Connor, J.R., Brain iron uptake and homeostatic mechanisms: An overview (2003) BioMetals, 16 (1), pp. 63-75. , DOI 10.1023/A:1020718718550
Babich, P.S., Tsymbalenko, N.V., Klotchenko, S.A., Platonova, N.A., Masalova, O.O., Zatulovski, E.A., Shavlovskii, M.M., Puchkova, L.V., Effect of a deficiency of ceruloplasmin copper in blood plasma on copper metabolism in the brain (2009) Bull. Exp. Biol. Med., 148, pp. 592-597
Lyubartseva, G., Lovell, M.A., A potential role for zinc alterations in the pathogenesis of Alzheimer's disease (2012) BioFactors, 38, pp. 98-106
Adlard, P.A., Parncutt, J.M., Finkelstein, D.I., Bush, A.I., Cognitive loss in zinc transporter-3 knock-out mice: A phenocopy for the synaptic and memory deficits of Alzheimer's disease? (2010) J. Neurosci., 30, pp. 1631-1636
Beyer, N., Coulson, D.T., Heggarty, S., Ravid, R., Hellemans, J., Irvine, G.B., Johnston, J.A., Zinc transporter mRNA levels in Alzheimer's disease postmortem brain (2012) J. Alzheimer's Dis., 29, pp. 863-873
Lang, M., Wang, L., Fan, Q., Xiao, G., Wang, X., Zhong, Y., Zhou, B., Genetic inhibition of solute-linked carrier 39 family transporter 1 ameliorates aβ pathology in a Drosophila model of Alzheimer's disease (2012) PLoS Genet., 8, p. 1002683
Vasudevaraju, P., Bharathi, T.J., Shamasundar, N.M., Subba Rao, K., Balaraj, B.M., Ksj, R., Rao, T.S.S., New evidence on iron, copper accumulation and zinc depletion and its correlation with DNA integrity in aging human brain regions (2010) Indian J. Psychiatry, 52, pp. 140-144
Basun, H., Forssell, L.G., Wetterberg, L., Winblad, B., Metals and trace elements in plasma and cerebrospinal fluid in normal aging and Alzheimer's disease (1991) J. Neural Transm.: Parkinson's Dis. Dementia Sect., 3, pp. 231-258
Wang, H., Wang, M., Wang, B., Li, M., Chen, H., Yu, X., Zhao, Y., Chai, Z., The distribution profile and oxidation states of biometals in APP transgenic mouse brain: Dyshomeostasis with age and as a function of the development of Alzheimer's disease (2012) Metallomics, 4, pp. 289-296
Deibel, M.A., Ehmann, W.D., Markesbery, W.R., Copper, iron, and zinc imbalances in severely degenerated brain regions in Alzheimer's disease: Possible relation to oxidative stress (1996) Journal of the Neurological Sciences, 143 (1-2), pp. 137-142. , DOI 10.1016/S0022-510X(96)00203-1, PII S0022510X96002031
Loeffler, D.A., DeMaggio, A.J., Juneau, P.L., Brickman, C.M., Mashour, G.A., Finkelman, J.H., Pomara, N., LeWitt, P.A., Ceruloplasmin is increased in cerebrospinal fluid in Alzheimer's disease but not Parkinson's disease (1994) Alzheimer Disease and Associated Disorders, 8 (3), pp. 190-197
Bayer, T.A., Schafer, S., Simons, A., Kemmling, A., Kamer, T., Tepest, R., Eckert, A., Multhaup, G., Dietary Cu stabilizes brain superoxide dismutase 1 activity and reduces amyloid Aβ production in APP23 transgenic mice (2003) Proceedings of the National Academy of Sciences of the United States of America, 100 (SUPPL. 2), pp. 14187-14192. , DOI 10.1073/pnas.2332818100
Huang, X., Atwood, C.S., Moir, R.D., Hartshorn, M.A., Tanzi, R.E., Bush, A.I., Trace metal contamination initiates the apparent auto-aggregation, amyloidosis, and oligomerization of Alzheimer's Aβ peptides (2004) Journal of Biological Inorganic Chemistry, 9 (8), pp. 954-960. , DOI 10.1007/s00775-004-0602-8
Hu, W.-P., Chang, G.-L., Chen, S.-J., Kuo, Y.-M., Kinetic analysis of β-amyloid peptide aggregation induced by metal ions based on surface plasmon resonance biosensing (2006) Journal of Neuroscience Methods, 154 (1-2), pp. 190-197. , DOI 10.1016/j.jneumeth.2005.12.016, PII S0165027005004632
Damante, C.A., Sz, K., Nagy, Z., Pappalardo, G., Grasso, G., Impellizzeri, G., (2008) Inorg. Chem., 47, pp. 9669-9683. , The metal loading ability of β-amyloid N-terminus: a combined potentiometric and spectroscopic study of copper(ii) complexes with β-amyloid(1-16), its short or mutated peptide fragments, and its polyethylene glycol (PEG)-ylated analogue
Faller, P., Hureau, C., Bioinorganic chemistry of copper and zinc ions coordinated to amyloid-beta peptide (2009) Dalton Trans., pp. 1080-1094
Feaga, H.A., Maduka, R.C., Foster, M.N., Szalai, V.A., Affinity of Cu+ for the copper-binding domain of the amyloid-β peptide of Alzheimer's disease (2011) Inorg. Chem., 50, pp. 1614-1618
Arena, G., Pappalardo, G., Sovago, I., Rizzarelli, E., Copper(ii) interaction with amyloid-β: Affinity and speciation (2012) Coord. Chem. Rev., 256, pp. 3-12
Klug, G.M.J.A., Losic, D., Subasinghe, S.S., Aguilar, M.-I., Martin, L.L., Small, D.H., β-Amyloid protein oligomers induced by metal ions and acid pH are distinct from those generated by slow spontaneous ageing at neutral pH (2003) European Journal of Biochemistry, 270 (21), pp. 4282-4293. , DOI 10.1046/j.1432-1033.2003.03815.x
Jun, S., Saxena, S., The aggregated state of amyloid-β peptide in vitro depends on Cu 2+ ion concentration (2007) Angewandte Chemie - International Edition, 46 (21), pp. 3959-3961. , DOI 10.1002/anie.200700318
Dong, J., Canfield, J.M., Mehta, A.K., Shokes, J.E., Tian, B., Childers, W.S., (2007) Proc. Natl. Acad. Sci. U. S. A., 104, pp. 13313-13318. , Engineering metal ion coordination to regulate amyloid fibril assembly and toxicity
Lim, K.H., Kim, Y.K., Chang, Y.T., Investigations of the molecular mechanism of metal-induced Aβ (1-40) amyloidogenesis (2007) Biochemistry, 46, pp. 13523-13532
Hou, L., Zagorski, M.G., NMR reveals anomalous copper(II) binding to the amyloid Aβ peptide of Alzheimer's disease (2006) Journal of the American Chemical Society, 128 (29), pp. 9260-9261. , DOI 10.1021/ja046032u
Zou, J., Kajita, K., Sugimoto, N., Cu2+ inhibits the aggregation of amyloid β-peptide(1-42) in vitro (2001) Angewandte Chemie - International Edition, 40 (12), pp. 2274-2277. , DOI 10.1002/1521-3773(20010618)40:12<2274::AID-ANIE2274>
3.0.CO
Yoshiike, Y., Tanemura, K., Murayama, O., Akagi, T., Murayama, M., Sato, S., (2001) J. Biol. Chem., 276, pp. 32293-32299. , New insights on how metals disrupt amyloid β-aggregation and their effects on amyloid-β cytotoxicity
Ryu, J., Girigoswami, K., Ha, C., Ku, S.H., Park, C.B., Influence of multiple metal ions on β-amyloid aggregation and dissociation on a solid surface (2008) Biochemistry, 47 (19), pp. 5328-5335. , DOI 10.1021/bi800012e
Lee, J.S., Ryu, J., Park, C.B., High-throughput analysis of Azheimer's β-amyloid aggregation using a microfluidic self-assembly of monomers (2009) Anal. Chem., 81, pp. 2751-2759
Jun, S., Gillespie, J.R., Shin, B., Saxena, S., The second Cu(ii)-binding site in a proton-rich environment interferes with the aggregation of amyloid-β(1-40) into amyloid fibrils (2009) Biochemistry, 48, pp. 10724-10732
Valle-Delgado, J.J., Alfonso-Prieto, M., De Groot, N.S., Ventura, S., Samitier, J., Rovira, C., (2010) FASEB J., 24, pp. 4250-4261. , Modulation of Aβ42 fibrillogenesis by glycosaminoglycan structure
Crouch, P.J., Tew, D.J., Du, T., Nguyen, D.N., Caragounis, A., Filiz, G., (2009) J. Neurochem., 108, pp. 1198-1207. , Restored degradation of the Alzheimer's amyloid-β peptide by targeting amyloid formation
Yan, P., Hu, X., Song, H., Yin, K., Bateman, R.J., Cirrito, J.R., (2006) J. Biol. Chem., 281, pp. 24566-24574. , Matrix metalloproteinase-9 degrades amyloid-β fibrils in vitro and compact plaques in situ
Bateman, R.J., Munsell, L.Y., Morris, J.C., Swarm, R., Yarasheski, K.E., Holtzman, D.M., Human amyloid-β synthesis and clearance rates as measured in cerebrospinal fluid in vivo (2006) Nature Medicine, 12 (7), pp. 856-861. , DOI 10.1038/nm1438, PII NM1438
Plant, L.D., Boyle, J.P., Smith, I.F., Peers, C., Pearson, H.A., The production of amyloid β peptide is a critical requirement for the viability of central neurons (2003) Journal of Neuroscience, 23 (13), pp. 5531-5535
Cirrito, J.R., Yamada, K.A., Finn, M.B., Sloviter, R.S., Bales, K.R., May, P.C., Schoepp, D.D., Holtzman, D.M., Synaptic activity regulates interstitial fluid amyloid-β levels in vivo (2005) Neuron, 48 (6), pp. 913-922. , DOI 10.1016/j.neuron.2005.10.028, PII S0896627305009396
Giuffrida, M.L., Caraci, F., Pignataro, B., Cataldo, S., De Bona, P., Bruno, V., (2009) J. Neurosci., 29, pp. 10582-10587. , Beta-amyloid monomers are neuroprotective
Epting, K.L., Vieille, C., Zeikus, J.G., Kelly, R.M., Influence of divalent cations on the structural thermostability and thermal inactivation kinetics of class II xylose isomerases (2005) FEBS Journal, 272 (6), pp. 1454-1464. , DOI 10.1111/j.1742-4658.2005.04577.x
Li, W.F., Zhou, X.X., Lu, P., Structural features of thermozymes (2005) Biotechnology Advances, 23 (4), pp. 271-281. , DOI 10.1016/j.biotechadv.2005.01.002
Lu, Z.J., Markham, G.D., Metal ion activation of S-adenosylmethionine decarboxylase reflects cation charge density (2007) Biochemistry, 46 (27), pp. 8172-8180. , DOI 10.1021/bi6025962
Pey, A.L., Martinez, A., Iron binding effects on the kinetic stability and unfolding energetics of a thermophilic phenylalanine hydroxylase from Chloroflexus aurantiacus (2009) JBIC, J. Biol. Inorg. Chem., 14, pp. 521-531
Potter, S.Z., Zhu, H., Shaw, B.F., Rodriguez, J.A., Doucette, P.A., Sohn, S.H., (2007) J. Am. Chem. Soc., 129, pp. 4575-4583. , Binding of a single zinc ion to one subunit of copper-zinc superoxide dismutase apoprotein substantially influences the structure and stability of the entire homodimeric protein
Han, Q., Fu, Y., Zhou, H., He, Y., Luo, Y., Contributions of Zn(II)-binding to the structural stability of endostatin (2007) FEBS Letters, 581 (16), pp. 3027-3032. , DOI 10.1016/j.febslet.2007.05.058, PII S0014579307005947
Hadden, J.M., Declais, A.-C., Phillips, S.E.V., Lilley, D.M.J., Metal ions bound at the active site of the junction-resolving enzyme T7 endonuclease I (2002) EMBO Journal, 21 (13), pp. 3505-3515. , DOI 10.1093/emboj/cdf337
Pingoud, A., Fuxreiter, M., Pingoud, V., Wende, W., Type II restriction endonucleases: Structure and mechanism (2005) Cell. Mol. Life Sci., 62, pp. 685-707
Aqvist, J., Warshel, A., Free energy relationships in metalloenzyme-catalyzed reactions. Calculations of the effects of metal ion substitutions in staphylococcal nuclease (1990) Journal of the American Chemical Society, 112 (8), pp. 2860-2868
Xie, F., Dupureur, C.M., Kinetic analysis of product release and metal ions in a metallonuclease (2009) Arch. Biochem. Biophys., 483, pp. 1-9
Louie, A.Y., Meade, T.J., Lippard, S.J., Metal complexes as enzyme inhibitors (1999) Chemical Reviews, 99 (9), pp. 2711-2734. , DOI 10.1021/cr9804285
Kukreja, R.V., Sharma, S., Cai, S., Singh, B.R., Role of two active site Glu residues in the molecular action of botulinum neurotoxin endopeptidase (2007) Biochimica et Biophysica Acta - Proteins and Proteomics, 1774 (2), pp. 213-222. , DOI 10.1016/j.bbapap.2006.11.007, PII S157096390600375X
Selevsek, N., Rival, S., Tholey, A., Heinzle, E., Heinz, U., Hemmingsen, L., (2009) J. Biol. Chem., 284, pp. 16419-16431. , Zinc ion-induced domain organization in metallo-β-lactamases: a flexible "zinc arm" for rapid metal ion transfer?
Maric, S., Donnelly, S.M., Robinson, M.W., Skinner-Adams, T., Trenholme, K.R., Gardiner, D.L., (2009) Biochemistry, 48, pp. 5435-5439. , The M17 leucine aminopeptidase of the malaria parasite plasmodium falciparum: importance of active site metal ions in the binding of substrates and inhibitors
Souliere, M.F., Perreault, J.-P., Bisaillon, M., Characterization of the vaccinia virus D10 decapping enzyme provides evidence for a two-metal-ion mechanism (2009) Biochem. J., 420, pp. 27-35
Lai, B., Li, Y., Cao, A., Lai, L., Metal ion binding and enzymatic mechanism of Methanococcus jannaschii RNase HII (2003) Biochemistry, 42 (3), pp. 785-791. , DOI 10.1021/bi026960a
Krajewska, B., Mono- (Ag, Hg) and di- (Cu, Hg) valent metal ions effects on the activity of jack bean urease. Probing the modes of metal binding to the enzyme (2008) J. Enzyme Inhib. Med. Chem., 23, pp. 535-542
Benkovic, P.A., Caperelli, C.A., De Maine, M., Benkovic, S.J., Binding and kinetic data for rabbit liver fructose-1,6-bisphosphatase with Zn2+ as cofactor (1978) Proceedings of the National Academy of Sciences of the United States of America, 75 (5), pp. 2185-2189
Graham, S.C., Bond, C.S., Freeman, H.C., Guss, J.M., Structural and functional implications of metal ion selection in aminopeptidase P, a metalloprotease with a dinuclear metal center (2005) Biochemistry, 44 (42), pp. 13820-13836. , DOI 10.1021/bi0512849
Lupidi, G., Angeletti, M., Eleuteri, A.M., Fioretti, E., Marini, S., Gioia, M., (2002) Coord. Chem. Rev., 228, pp. 263-269. , Aluminum modulation of proteolytic activities
Hersh, L.B., Rodgers, D.W., Neprilysin and amyloid beta peptide degradation (2008) Current Alzheimer Research, 5 (2), pp. 225-231. , http://docstore.ingenta.com/cgi-bin/ds_deliver/1/u/d/ISIS/43586657.1/ben/ car/2008/00000005/00000002/art00014/40C87F41293D312B12081503640612F8CD32E48B59. pdf?link=http://www.ingentaconnect.com/error/delivery&format=pdf, DOI 10.2174/156720508783954703
McDermott, J.R., Gibson, A.M., Degradation of Alzheimer's beta-amyloid protein by human and rat brain peptidases: Involvement of insulin-degrading enzyme (1997) Neurochem. Res., 22, pp. 49-56
Vekrellis, K., Ye, Z., Qiu, W.Q., Walsh, D., Hartley, D., Chesneau, V., Rosner, M.R., Selkoe, D.J., Neurons regulate extracellular levels of amyloid β-protein via proteolysis by insulin-degrading enzyme (2000) Journal of Neuroscience, 20 (5), pp. 1657-1665
Farris, W., Mansourian, S., Chang, Y., Lindsley, L., Eckman, E.A., Frosch, M.P., Eckman, C.B., Guenette, S., Insulin-degrading enzyme regulates the levels of insulin, amyloid β-protein, and the β-amyloid precursor protein intracellular domain in vivo (2003) Proceedings of the National Academy of Sciences of the United States of America, 100 (7), pp. 4162-4167. , DOI 10.1073/pnas.0230450100
Luchsinger, J.A., Tang, M.-X., Shea, S., Mayeux, R., Hyperinsulinemia and risk of Alzheimer disease (2004) Neurology, 63 (7), pp. 1187-1192
Kurochkin, I.V., Goto, S., Alzheimer's beta-amyloid peptide specifically interacts with and is degraded by insulin degrading enzyme (1994) FEBS Lett., 345, pp. 33-37
Mukherjee, A., Song, E., Kihiko-Ehmann, M., Goodman Jr., J.P., Pyrek, J.S., Estus, S., (2000) J. Neurosci., 20, pp. 8745-8749. , Insulysin hydrolyzes amyloid β peptides to products that are neither neurotoxic nor deposit on amyloid plaques
Grasso, G., Rizzarelli, E., Spoto, G., AP-MALDI/MS complete characterization of insulin fragments produced by the interaction of IDE with bovine insulin (2007) J. Mass Spectrom., 42, pp. 1590-1598
Grasso, G., Bush, A.I., D'Agata, R., Rizzarelli, E., Spoto, G., Enzyme solid-state support assays: A surface plasmon resonance and mass spectrometry coupled study of immobilized insulin degrading enzyme (2009) Eur. Biophys. J., 38, pp. 407-414
Leissring, M.A., Lu, A., Condron, M.M., Teplow, D.B., Stein, R.L., Farris, W., (2003) J. Biol. Chem., 278, pp. 37314-37320. , Kinetics of amyloidβ-protein degradation determined by novel fluorescence- and fluorescence polarization-based assays
Kurochkin, I.V., Amyloidogenic determinant as a substrate recognition motif of insulin-degrading enzyme (1998) FEBS Letters, 427 (2), pp. 153-156. , DOI 10.1016/S0014-5793(98)00422-0, PII S0014579398004220
Shen, Y., Joachimiak, A., Rich Rosner, M., Tang, W.-J., Structures of human insulin-degrading enzyme reveal a new substrate recognition mechanism (2006) Nature, 443 (7113), pp. 870-874. , DOI 10.1038/nature05143, PII NATURE05143
Ciaccio, C., Tundo, G.F., Grasso, G., Spoto, G., Marasco, D., Ruvo, M., (2009) J. Mol. Biol., 385, pp. 1556-1567. , Somatostatin: a novel substrate and a modulator of insulin degrading enzyme activity
Grasso, G., Pietropaolo, A., Spoto, G., Pappalardo, G., Tundo, G.R., Ciaccio, C., (2011) Chem.-Eur. J., 17, pp. 2752-2762. , Copper(i) and Copper(ii) inhibit Aβ peptides proteolysis by insulin-degrading enzyme differently: implications for metallostasis alteration in Alzheimer's disease
Grasso, G., Salomone, F., Tundo, G.R., Pappalardo, G., Ciaccio, C., Spoto, G., Pietropaolo, A., Rizzarelli, E., Metal ions affect insulin-degrading enzyme activity (2012) J. Inorg. Biochem., , 10.1016/j.jinorgbio.2012.06.010
Hersh, L.B., The insulysin (insulin degrading enzyme) enigma (2006) Cellular and Molecular Life Sciences, 63 (21), pp. 2432-2434. , DOI 10.1007/s00018-006-6238-9
Authier, F., Posner, B.I., Bergeron, J.J.M., Insulin-degrading enzyme (1996) Clinical and Investigative Medicine, 19 (3), pp. 149-160
Hamel, F.G., Mahoney, M.J., Duckworth, W.C., Degradation of intraendosomal insulin by insulin-degrading enzyme without acidification (1991) Diabetes, 40, pp. 436-443
Farris, W., Leissring, M.A., Hemming, M.L., Chang, A.Y., Selkoe, D.J., Alternative splicing of human insulin-degrading enzyme yields a novel isoform with a decreased ability to degrade insulin and amyloid β-protein (2005) Biochemistry, 44 (17), pp. 6513-6525. , DOI 10.1021/bi0476578
Seta, K.A., Roth, R.A., Overexpression of insulin degrading enzyme: Cellular localization and effects on insulin signaling (1997) Biochemical and Biophysical Research Communications, 231 (1), pp. 167-171. , DOI 10.1006/bbrc.1997.6066
Gokhale, N.H., Cowan, J.A., Metallopeptide-promoted inactivation of angiotensin-converting enzyme and endothelin-converting enzyme 1: Toward dual-action therapeutics (2006) Journal of Biological Inorganic Chemistry, 11 (7), pp. 937-947. , DOI 10.1007/s00775-006-0145-2
Axelsen, P.H., Komatsu, H., Murray, I.V.J., Oxidative stress and cell membranes in the pathogenesis of Alzheimer's disease (2011) Physiology, 26, pp. 54-69
Hensley, K., Carney, J.M., Mattson, M.P., Aksenova, M., Harris, M., Wu, J.F., (1994) Proc. Natl. Acad. Sci. U. S. A., 91, pp. 3270-3274. , A model for β-amyloid aggregation and neurotoxicity based on free radical generation by the peptide: relevance to Alzheimer disease
Butterfield, D.A., Hensley, K., Harris, M., Mattson, M., Carney, J., β-amyloid peptide free radical fragments initiate synaptosomal lipoperoxidation in a sequence-specific fashion: Implications to Alzheimer's disease (1994) Biochem. Biophys. Res. Commun., 200, pp. 710-715
Tsai, H.-H.G., Lee, J.-B., Tseng, S.-S., Pan, X.-A., Shih, Y.-C., Folding and membrane insertion of amyloid-beta (25-35) peptide and its mutants: Implications for aggregation and neurotoxicity (2010) Proteins, 78, pp. 1909-1925
Bose, P.P., Chatterjee, U., Nerelius, C., Govender, T., Norstroem, T., Gogoll, A., (2009) J. Med. Chem., 52, pp. 8002-8009. , Poly-N-methylated amyloid β-peptide (Aβ) C-terminal fragments reduce Aβ toxicity in vitro and in Drosophila melanogaster
Misiti, F., Sampaolese, B., Pezzotti, M., Marini, S., Coletta, M., Ceccarelli, L., (2005) Neurochem. Int., 46, pp. 575-583. , Aβ(31-35) peptide induce apoptosis in PC 12 cells: contrast with Aβ(25-35) peptide and examination of underlying mechanisms
Kasturirangan, S., Sierks, M., Targeted hydrolysis of beta-amyloid with engineered antibody fragments (2010) Curr. Alzheimer Res., 7, pp. 214-222
Amadoruge, P.C., Barnham, K.J., Alzheimer's disease and metals: A review of the involvement of cellular membrane receptors in metallosignalling (2011) Int. J. Alzheimer's Dis., , 10.4061/2011/542043
Ostrakhovitch, E.A., Lordnejad, M.R., Schliess, F., Sies, H., Klotz, L.-O., Copper ions strongly activate the phosphoinositide-3-kinase/Akt pathway independent of the generation of reactive oxygen species (2002) Archives of Biochemistry and Biophysics, 397 (2), pp. 232-239. , DOI 10.1006/abbi.2001.2559
Uranga, R.M., Giusto, N.M., Salvador, G.A., Effect of transition metals in synaptic damage induced by amyloid beta peptide (2010) Neuroscience, 170, pp. 381-389
Travaglia, A., Arena, G., Fattorusso, R., Isernia, C., La Mendola, D., Malgieri, G., Nicoletti, V.G., Rizzarelli, E., The inorganic perspective of nerve growth factor: Interactions of Cu 2+ and Zn2+ with the N-terminus fragment of nerve growth factor encompassing the recognition domain of the TrkA receptor (2011) Chem.-Eur. J., 17, pp. 3726-3738
Konishi, H., Matsuzaki, H., Tanaka, M., Takemura, Y., Kuroda, S., Ono, Y., (1997) FEBS Lett., 410, pp. 493-498. , Activation of protein kinase B (Akt/RAC-protein kinase) by cellular stress and its association with heat shock protein Hsp27
Kim, J.H., Cho, H., Ryu, S.E., Choi, M.U., Effects of metal ions on the activity of protein tyrosine phosphatase VHR: Highly potent and reversible oxidative inactivation by Cu2+ ion (2000) Arch. Biochem. Biophys., 382, pp. 72-80
Haase, H., Maret, W., Intracellular zinc fluctuations modulate protein tyrosine phosphatase activity in insulin/insulin-like growth factor-1 signaling (2003) Experimental Cell Research, 291 (2), pp. 289-298. , DOI 10.1016/S0014-4827(03)00406-3
White, A.R., Du, T., Laughton, K.M., Volitakis, I., Sharples, R.A., Xilinas, M.E., (2006) J. Biol. Chem., 281, pp. 17670-17680. , Degradation of the Alzheimer disease amyloid β-peptide by metal-dependent up-regulation of metalloprotease activity
Price, K., Filiz, G., Caragounis, A., Du, T., Laughton, K.M., Masters, C.L., (2008) Int. J. Biochem. Cell Biol., 40, pp. 1901-1917. , Activation of epidermal growth factor receptor by metal-ligand complexes decreases levels of extracellular amyloid beta peptide
Zheng, H., Youdim, M.B.H., Fridkin, M., Site-activated multifunctional chelator with acetylcholinesterase and neuroprotective-neurorestorative moieties for Alzheimer's therapy (2009) J. Med. Chem., 52, pp. 4095-4098
Liu, G., Men, P., Kudo, W., Perry, G., Smith, M.A., Nanoparticle-chelator conjugates as inhibitors of amyloid-β aggregation and neurotoxicity: A novel therapeutic approach for Alzheimer disease (2009) Neurosci. Lett., 455, pp. 187-190
Fukami, S., Iwata, N., Saido, T.C., Therapeutic strategies of Alzheimer's disease through manipulation of Aβ metabolism: A focus on Aβ-degrading peptidase, neprilysin (2002) Drug Development Research, 56 (2), pp. 171-183. , DOI 10.1002/ddr.10073
Cherny, R.A., Atwood, C.S., Xilinas, M.E., Gray, N.D., Jones, W.D., McLean, C.A., (2001) Neuron, 30, pp. 665-676. , Treatment with a copper-zinc chelator markedly and rapidly inhibits β-amyloid accumulation in Alzheimer's disease transgenic mice
Ritchie, C.W., Bush, A.I., Mackinnon, A., Macfarlane, S., Mastwyk, M., MacGregor, L., Kiers, L., Masters, C.L., Metal-Protein Attenuation with Iodochlorhydroxyquin (Clioquinol) Targeting Aβ Amyloid Deposition and Toxicity in Alzheimer Disease: A Pilot Phase 2 Clinical Trial (2003) Archives of Neurology, 60 (12), pp. 1685-1691. , DOI 10.1001/archneur.60.12.1685
Wang, Y., Branicky, R., Stepanyan, Z., Carroll, M., Guimond, M.-P., Hihi, A., (2009) J. Biol. Chem., 284, pp. 314-323. , The anti-neurodegeneration drug clioquinol inhibits the aging-associated protein CLK-1
Mok, S.S., Bush, A.I., Therapeutics of Alzheimer's disease based on metal bioavailability (2010) Oxid. Stress Dis., 26, pp. 117-132
Donnelly, P.S., Xiao, Z., Wedd, A.G., Copper and Alzheimer's disease (2007) Current Opinion in Chemical Biology, 11 (2), pp. 128-133. , DOI 10.1016/j.cbpa.2007.01.678, PII S136759310700018X
Crouch, P.J., Hung, L.W., Adlard, P.A., Cortes, M., Lal, V., Filiz, G., (2009) Proc. Natl. Acad. Sci. U. S. A., 106, pp. 381-386. , Increasing Cu bioavailability inhibits Abeta oligomers and tau phosphorylation
Malm, T.M., Iivonen, H., Goldsteins, G., Keksa-Goldsteine, V., Ahtoniemi, T., Kanninen, K., (2007) J. Neurosci., 27, pp. 3712-3721. , Pyrrolidine dithiocarbamate activates Akt and improves spatial learning in APP/PS1 mice without affecting beta-amyloid burden
White, L.D., Cory-Slechta, D.A., Gilbert, M.E., Tiffany-Castiglioni, E., Zawia, N.H., Virgolini, M., (2007) Toxicol. Appl. Pharmacol., 225, pp. 1-27. , New and evolving concepts in the neurotoxicology of lead
Huang, H., Bihaqi, S.W., Cui, L., Zawia, N.H., In vitro Pb exposure disturbs the balance between Aβ production and elimination: The role of AβPP and neprilysin (2011) NeuroToxicology, 32, pp. 300-306
Basha, M.R., Murali, M., Siddiqi, H.K., Ghosal, K., Siddiqi, O.K., Lashuel, H.A., (2005) FASEB J., 19, pp. 2083-2084. , Lead (Pb) exposure and its effect on APP proteolysis and Abeta aggregation
Zhu, X., Raina, A.K., Lee, H.-G., Casadesus, G., Smith, M.A., Perry, G., Oxidative stress signalling in Alzheimer's disease (2004) Brain Research, 1000 (1-2), pp. 32-39. , DOI 10.1016/j.brainres.2004.01.012, PII S0006899304000770
Laferla, F.M., Calcium dyshomeostasis and intracellular signaling in Alzheimer's disease (2002) Nat. Rev. Neurosci., 3, pp. 862-872
Matute, C., Calcium dyshomeostasis in white matter pathology (2010) Cell Calcium, 47, pp. 150-157
Zhu, X., Beal, M.F., Wang, X., Perry, G., Smith, M.A., Supnet, C., (2010) J. Alzheimer's Dis., 20, pp. 487-S498. , Neuronal calcium signaling, mitochondrial dysfunction, and Alzheimer's disease
Abramov, A.Y., Canevari, L., Duchen, M.R., Changes in intracellular calcium and glutathione in astrocytes as the primary mechanism of amyloid neurotoxicity (2003) Journal of Neuroscience, 23 (12), pp. 5088-5095
Hermes, M., Eichhoff, G., Garaschuk, O., Intracellular calcium signalling in Alzheimer's disease (2010) J. Cell. Mol. Med., 14, pp. 30-41
Lin, H., Zhu, Y.J., Lal, R., Amyloid β protein (1-40) forms calcium-permeable, Zn 2+-sensitive channel in reconstituted lipid vesicles (1999) Biochemistry, 38, pp. 11189-11196
Phinney, A.L., Drisaldi, B., Schmidt, S.D., Lugowski, S., Coronado, V., Liang, Y., Horne, P., Coomaraswamy, J., (2003) Proc. Natl. Acad. Sci. U. S. A., 100, pp. 14193-14198. , In vivo reduction of amyloid-β by a mutant copper transporter
Pimplikar, S. W., Reassessing the amyloid cascade hypothesis of Alzheimer's disease (2009) Int. J. Biochem. Cell Biol., 41, pp. 1261-1268
Golde, T. E., Dickson, D., Hutton, M., Filling the gaps in the A cascade hypothesis of Alzheimer's disease (2006) Current Alzheimer Research, 3 (5), pp. 421-430. , http: //docstore. ingenta. com/cgi-bin/ds_deliver/1/u/d/ISIS/33818346. 1/ben/ car/2006/00000003/00000005/art00003/CF9471361F91AADA116520262296C62E08219F4879. pdf? link=http: //www. ingentaconnect. com/error/delivery&format=pdf, DOI 10. 2174/156720506779025189
Lesn, S., Koh, M. T., Kotilinek, L., Kayed, R., Glabe, C. G., Yang, A., Gallagher, M., Ashe, K. H., A specific amyloid-beta protein assembly in the brain impairs memory (2006) Nature, 440, pp. 352-357
Bush, A. I., Tanzi, R. E., Therapeutics for Alzheimer's Disease Based on the Metal Hypothesis (2008) Neurotherapeutics, 5 (3), pp. 421-432. , DOI 10. 1016/j. nurt. 2008. 05. 001, PII S1933721308000901
Silverberg, G. D., Miller, M. C., Messier, A. A., Majmudar, S., MacHan, J. T., Donahue, J. E., (2010) J. Neuropathol. Exp. Neurol., 69, pp. 98-108. , Amyloid deposition and influx transporter expression at the blood-brain barrier increase in normal aging
Lovell, M. A., Robertson, J. D., Teesdale, W. J., Campbell, J. L., Markesbery, W. R., Copper, iron and zinc in Alzheimer's disease senile plaques (1998) Journal of the Neurological Sciences, 158 (1), pp. 47-52. , DOI 10. 1016/S0022-510X (98) 00092-6, PII S0022510X98000926
Lahiri, D. K., Chen, D. -M., Lahiri, P., Bondy, S., Greig, N. H., Amyloid, cholinesterase, melatonin, and metals and their roles in aging and neurodegenerative diseases (2005) Annals of the New York Academy of Sciences, 1056, pp. 430-449. , DOI 10. 1196/annals. 1352. 008
erovnik, E., Protein conformational pathology in Alzheimer's and other neuro-degenerative diseases, new targets for therapy (2010) Curr. Alzheimer Res., 7, pp. 74-83
Roberts, B. R., Bush, A. I., Role of metals in Alzheimer disease (2010) Protein Misfolding Dis., pp. 545-558
Bonda, D. J., Lee, H. -G., Blair, J. A., Zhu, X., Perry, G., Smith, M. A., Role of metal dyshomeostasis in Alzheimer's disease (2011) Metallomics, 3, pp. 267-270
Adlard, P. A., Bush, A. I., Metals and Alzheimer's disease (2006) Journal of Alzheimer's Disease, 10 (2-3), pp. 145-163
Cuajungco, M. P., Faget, K. Y., Huang, X., Tanzi, R. E., Bush, A. I., Metal chelation as a potential therapy for Alzheimer's disease (2000) Annals of the New York Academy of Sciences, 920, pp. 292-304
Bush, A. I., Drug development based on the metals hypothesis of Alzheimer's disease (2008) J. Alzheimer's Dis., 15, pp. 223-240
Choi, J. -S., Braymer, J. J., Nanga, R. P. R., Ramamoorthy, Y., Lima, M. H., Design of small molecules that target metal-A species and regulate metal-induced A aggregation and neurotoxicity (2010) Proc. Natl. Acad. Sci. U. S. A., 107, pp. 21990-21995
Becker, J. S., Matusch, A., Palm, C., Salber, D., Morton, K. A., Becker, J. S., Bioimaging of metals in brain tissue by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) and metallomics (2010) Metallomics, 2, pp. 104-111
Rajan, K. S., Colburn, R. W., Davis, J. M., Distribution of metal ions in the subcellular fractions of several rat brain areas (1976) Life Sci., 18, pp. 423-431
Nolan, E. M., Lippard, S. J., Small-molecule fluorescent sensors for investigating zinc metalloneurochemistry (2009) Acc. Chem. Res., 42, pp. 193-203
Adlard, P. A., Bica, L., White, A. R., Nurjono, M., Filiz, G., Crouch, P. J., (2011) PLoS One, 6, p. 17669. , Metal ionophore treatment restores dendritic spine density and synaptic protein levels in a mouse model of Alzheimer's disease
Faux, N. G., Ritchie, C. W., Gunn, A., Rembach, A., Tsatsanis, A., Bedo, J., (2010) J. Alzheimer's Dis., 20, pp. 509-516. , PBT2 rapidly improves cognition in Alzheimer's disease: additional phase II analyses
Leissring, M. A., The A Cs of A -cleaving proteases (2008) J. Biol. Chem., 283, pp. 29645-29649
Park, H. J., Kim, S. -S., Seong, Y. -M., Kim, K. -H., Goo, H. G., Yoon, E. J., -Amyloid precursor protein is a direct cleavage target of HtrA2 serine protease (2006) J. Biol. Chem., 281, pp. 34277-34287
Tanzi, R. E., Moir, R. D., Wagner, S. L., Clearance of Alzheimer's A peptide: The many roads to perdition (2004) Neuron, 43 (5), pp. 605-608. , DOI 10. 1016/j. neuron. 2004. 08. 024, PII S0896627304005331
Mawuenyega, K. G., Sigurdson, W., Ovod, V., Munsell, L., Kasten, T., Morris, J. C., (2010) Science, 330, p. 1774. , Decreased clearance of CNS beta-amyloid in Alzheimer's disease
Miners, J. S., Baig, S., Palmer, J., Palmer, L. E., Kehoe, P. G., Love, S., A -degrading enzymes in Alzheimer's disease (2008) Brain Pathol., 18, pp. 240-252
Hersh, L. B., Peptidases, proteases and amyloid -peptide catabolism (2003) Current Pharmaceutical Design, 9 (6), pp. 449-454. , DOI 10. 2174/1381612033391676
Nalivaeva, N. N., Beckett, C., Belyaev, N. D., Turner, A. J., Are amyloid-degrading enzymes viable therapeutic targets in Alzheimer's disease? (2012) J. Neurochem., 120, pp. 167-185
Farris, W., Sch tz, S. G., Cirrito, J. R., Shankar, G. M., Sun, X., George, A., (2007) Am. J. Pathol., 171, pp. 241-251. , Loss of neprilysin function promotes amyloid plaque formation and causes cerebral amyloid angiopathy
Qiu, W. Q., Folstein, M. F., Insulin, insulin-degrading enzyme and amyloid- peptide in Alzheimer's disease: Review and hypothesis (2006) Neurobiology of Aging, 27 (2), pp. 190-198. , DOI 10. 1016/j. neurobiolaging. 2005. 01. 004, PII S0197458005000199
Eckman, E. A., Reed, D. K., Eckman, C. B., Degradation of the Alzheimer's amyloid beta peptide by endothelin-converting enzyme (2001) J. Biol. Chem., 276, pp. 24540-24548
Palmer, J. C., Baig, S., Kehoe, P. G., Love, S., Endothelin-converting enzyme-2 is increased in Alzheimer's disease and up-regulated by Abeta (2009) Am. J. Pathol., 175, pp. 262-270
Hemming, M. L., Selkoe, D. J., Amyloid -protein is degraded by cellular angiotensin-converting enzyme (ACE) and elevated by an ACE inhibitor (2005) Journal of Biological Chemistry, 280 (45), pp. 37644-37650. , DOI 10. 1074/jbc. M508460200
Liao, M. C., Van Nostrand, W. E., Degradation of soluble and fibrillar amyloid beta-protein by matrix metalloproteinase (MT1-MMP) in vitro (2010) Biochemistry, 49, pp. 1127-1136
Nalivaeva, N. N., Fisk, L. R., Belyaev, N. D., Turner, A. J., Amyloid-degrading enzymes as therapeutic targets in Alzheimer's disease (2008) Current Alzheimer Research, 5 (2), pp. 212-224. , http: //docstore. ingenta. com/cgi-bin/ds_deliver/1/u/d/ISIS/43586647. 1/ben/ car/2008/00000005/00000002/art00013/90EFF3E5451A69AD1208150300DDDAC72661D64958. pdf? link=http: //www. ingentaconnect. com/error/delivery&format=pdf, DOI 10. 2174/156720508783954785
Donnelly, P. S., Caragounis, A., Du, T., Laughton, K. M., Volitakis, I., Cherny, R. A., (2008) J. Biol. Chem., 283, pp. 4568-4577. , Selective intracellular release of copper and zinc ions from bis (thiosemicarbazonato) complexes reduces levels of Alzheimer disease amyloid- peptide
Domingo, J. L., Aluminum and other metals in Alzheimer's disease: A review of potential therapy with chelating agents (2006) Journal of Alzheimer's Disease, 10 (2-3), pp. 331-341
Maccioni, R. B., Munoz, J. P., Barbeito, L., The molecular bases of Alzheimer's disease and other neurodegenerative disorders (2001) Archives of Medical Research, 32 (5), pp. 367-381. , DOI 10. 1016/S0188-4409 (01) 00316-2, PII S0188440901003162
Maynard, C. J., Cappai, R., Volitakis, I., Cherny, R. A., White, A. R., Beyreuther, K., Masters, C. L., Li, Q. -X., Overexpression of Alzheimer's disease amyloid- opposes the age-dependent elevations of brain copper and iron (2002) Journal of Biological Chemistry, 277 (47), pp. 44670-44676. , DOI 10. 1074/jbc. M204379200
Prohaska, J. R., Role of copper transporters in copper homeostasis (2008) Am. J. Clin. Nutr., 88, pp. 826S-829S
Lichten, L. A., Cousins, R. J., Mammalian zinc transporters: Nutritional and physiologic regulation (2009) Annu. Rev. Nutr., 29, pp. 153-176
Burdo, J. R., Connor, J. R., Brain iron uptake and homeostatic mechanisms: An overview (2003) BioMetals, 16 (1), pp. 63-75. , DOI 10. 1023/A: 1020718718550
Babich, P. S., Tsymbalenko, N. V., Klotchenko, S. A., Platonova, N. A., Masalova, O. O., Zatulovski, E. A., Shavlovskii, M. M., Puchkova, L. V., Effect of a deficiency of ceruloplasmin copper in blood plasma on copper metabolism in the brain (2009) Bull. Exp. Biol. Med., 148, pp. 592-597
Adlard, P. A., Parncutt, J. M., Finkelstein, D. I., Bush, A. I., Cognitive loss in zinc transporter-3 knock-out mice: A phenocopy for the synaptic and memory deficits of Alzheimer's disease? (2010) J. Neurosci., 30, pp. 1631-1636
Deibel, M. A., Ehmann, W. D., Markesbery, W. R., Copper, iron, and zinc imbalances in severely degenerated brain regions in Alzheimer's disease: Possible relation to oxidative stress (1996) Journal of the Neurological Sciences, 143 (1-2), pp. 137-142. , DOI 10. 1016/S0022-510X (96) 00203-1, PII S0022510X96002031
Loeffler, D. A., DeMaggio, A. J., Juneau, P. L., Brickman, C. M., Mashour, G. A., Finkelman, J. H., Pomara, N., LeWitt, P. A., Ceruloplasmin is increased in cerebrospinal fluid in Alzheimer's disease but not Parkinson's disease (1994) Alzheimer Disease and Associated Disorders, 8 (3), pp. 190-197
Bayer, T. A., Schafer, S., Simons, A., Kemmling, A., Kamer, T., Tepest, R., Eckert, A., Multhaup, G., Dietary Cu stabilizes brain superoxide dismutase 1 activity and reduces amyloid A production in APP23 transgenic mice (2003) Proceedings of the National Academy of Sciences of the United States of America, 100 (SUPPL. 2), pp. 14187-14192. , DOI 10. 1073/pnas. 2332818100
Hu, W. -P., Chang, G. -L., Chen, S. -J., Kuo, Y. -M., Kinetic analysis of -amyloid peptide aggregation induced by metal ions based on surface plasmon resonance biosensing (2006) Journal of Neuroscience Methods, 154 (1-2), pp. 190-197. , DOI 10. 1016/j. jneumeth. 2005. 12. 016, PII S0165027005004632
Damante, C. A., Sz, K., Nagy, Z., Pappalardo, G., Grasso, G., Impellizzeri, G., (2008) Inorg. Chem., 47, pp. 9669-9683. , The metal loading ability of -amyloid N-terminus: a combined potentiometric and spectroscopic study of copper (ii) complexes with -amyloid (1-16), its short or mutated peptide fragments, and its polyethylene glycol (PEG) -ylated analogue
Feaga, H. A., Maduka, R. C., Foster, M. N., Szalai, V. A., Affinity of Cu+ for the copper-binding domain of the amyloid- peptide of Alzheimer's disease (2011) Inorg. Chem., 50, pp. 1614-1618
Klug, G. M. J. A., Losic, D., Subasinghe, S. S., Aguilar, M. -I., Martin, L. L., Small, D. H., -Amyloid protein oligomers induced by metal ions and acid pH are distinct from those generated by slow spontaneous ageing at neutral pH (2003) European Journal of Biochemistry, 270 (21), pp. 4282-4293. , DOI 10. 1046/j. 1432-1033. 2003. 03815. x
Lim, K. H., Kim, Y. K., Chang, Y. T., Investigations of the molecular mechanism of metal-induced A (1-40) amyloidogenesis (2007) Biochemistry, 46, pp. 13523-13532
Lee, J. S., Ryu, J., Park, C. B., High-throughput analysis of Azheimer's -amyloid aggregation using a microfluidic self-assembly of monomers (2009) Anal. Chem., 81, pp. 2751-2759
Valle-Delgado, J. J., Alfonso-Prieto, M., De Groot, N. S., Ventura, S., Samitier, J., Rovira, C., (2010) FASEB J., 24, pp. 4250-4261. , Modulation of A 42 fibrillogenesis by glycosaminoglycan structure
Crouch, P. J., Tew, D. J., Du, T., Nguyen, D. N., Caragounis, A., Filiz, G., (2009) J. Neurochem., 108, pp. 1198-1207. , Restored degradation of the Alzheimer's amyloid- peptide by targeting amyloid formation
Bateman, R. J., Munsell, L. Y., Morris, J. C., Swarm, R., Yarasheski, K. E., Holtzman, D. M., Human amyloid- synthesis and clearance rates as measured in cerebrospinal fluid in vivo (2006) Nature Medicine, 12 (7), pp. 856-861. , DOI 10. 1038/nm1438, PII NM1438
Plant, L. D., Boyle, J. P., Smith, I. F., Peers, C., Pearson, H. A., The production of amyloid peptide is a critical requirement for the viability of central neurons (2003) Journal of Neuroscience, 23 (13), pp. 5531-5535
Cirrito, J. R., Yamada, K. A., Finn, M. B., Sloviter, R. S., Bales, K. R., May, P. C., Schoepp, D. D., Holtzman, D. M., Synaptic activity regulates interstitial fluid amyloid- levels in vivo (2005) Neuron, 48 (6), pp. 913-922. , DOI 10. 1016/j. neuron. 2005. 10. 028, PII S0896627305009396
Giuffrida, M. L., Caraci, F., Pignataro, B., Cataldo, S., De Bona, P., Bruno, V., (2009) J. Neurosci., 29, pp. 10582-10587. , Beta-amyloid monomers are neuroprotective
Epting, K. L., Vieille, C., Zeikus, J. G., Kelly, R. M., Influence of divalent cations on the structural thermostability and thermal inactivation kinetics of class II xylose isomerases (2005) FEBS Journal, 272 (6), pp. 1454-1464. , DOI 10. 1111/j. 1742-4658. 2005. 04577. x
Li, W. F., Zhou, X. X., Lu, P., Structural features of thermozymes (2005) Biotechnology Advances, 23 (4), pp. 271-281. , DOI 10. 1016/j. biotechadv. 2005. 01. 002
Lu, Z. J., Markham, G. D., Metal ion activation of S-adenosylmethionine decarboxylase reflects cation charge density (2007) Biochemistry, 46 (27), pp. 8172-8180. , DOI 10. 1021/bi6025962
Pey, A. L., Martinez, A., Iron binding effects on the kinetic stability and unfolding energetics of a thermophilic phenylalanine hydroxylase from Chloroflexus aurantiacus (2009) JBIC, J. Biol. Inorg. Chem., 14, pp. 521-531
Potter, S. Z., Zhu, H., Shaw, B. F., Rodriguez, J. A., Doucette, P. A., Sohn, S. H., (2007) J. Am. Chem. Soc., 129, pp. 4575-4583. , Binding of a single zinc ion to one subunit of copper-zinc superoxide dismutase apoprotein substantially influences the structure and stability of the entire homodimeric protein
Hadden, J. M., Declais, A. -C., Phillips, S. E. V., Lilley, D. M. J., Metal ions bound at the active site of the junction-resolving enzyme T7 endonuclease I (2002) EMBO Journal, 21 (13), pp. 3505-3515. , DOI 10. 1093/emboj/cdf337
Louie, A. Y., Meade, T. J., Lippard, S. J., Metal complexes as enzyme inhibitors (1999) Chemical Reviews, 99 (9), pp. 2711-2734. , DOI 10. 1021/cr9804285
Kukreja, R. V., Sharma, S., Cai, S., Singh, B. R., Role of two active site Glu residues in the molecular action of botulinum neurotoxin endopeptidase (2007) Biochimica et Biophysica Acta - Proteins and Proteomics, 1774 (2), pp. 213-222. , DOI 10. 1016/j. bbapap. 2006. 11. 007, PII S157096390600375X
Souliere, M. F., Perreault, J. -P., Bisaillon, M., Characterization of the vaccinia virus D10 decapping enzyme provides evidence for a two-metal-ion mechanism (2009) Biochem. J., 420, pp. 27-35
Benkovic, P. A., Caperelli, C. A., De Maine, M., Benkovic, S. J., Binding and kinetic data for rabbit liver fructose-1, 6-bisphosphatase with Zn2+ as cofactor (1978) Proceedings of the National Academy of Sciences of the United States of America, 75 (5), pp. 2185-2189
Graham, S. C., Bond, C. S., Freeman, H. C., Guss, J. M., Structural and functional implications of metal ion selection in aminopeptidase P, a metalloprotease with a dinuclear metal center (2005) Biochemistry, 44 (42), pp. 13820-13836. , DOI 10. 1021/bi0512849
Hersh, L. B., Rodgers, D. W., Neprilysin and amyloid beta peptide degradation (2008) Current Alzheimer Research, 5 (2), pp. 225-231. , http: //docstore. ingenta. com/cgi-bin/ds_deliver/1/u/d/ISIS/43586657. 1/ben/ car/2008/00000005/00000002/art00014/40C87F41293D312B12081503640612F8CD32E48B59. pdf? link=http: //www. ingentaconnect. com/error/delivery&format=pdf, DOI 10. 2174/156720508783954703
McDermott, J. R., Gibson, A. M., Degradation of Alzheimer's beta-amyloid protein by human and rat brain peptidases: Involvement of insulin-degrading enzyme (1997) Neurochem. Res., 22, pp. 49-56
Luchsinger, J. A., Tang, M. -X., Shea, S., Mayeux, R., Hyperinsulinemia and risk of Alzheimer disease (2004) Neurology, 63 (7), pp. 1187-1192
Kurochkin, I. V., Goto, S., Alzheimer's beta-amyloid peptide specifically interacts with and is degraded by insulin degrading enzyme (1994) FEBS Lett., 345, pp. 33-37
Leissring, M. A., Lu, A., Condron, M. M., Teplow, D. B., Stein, R. L., Farris, W., (2003) J. Biol. Chem., 278, pp. 37314-37320. , Kinetics of amyloid -protein degradation determined by novel fluorescence- and fluorescence polarization-based assays
Kurochkin, I. V., Amyloidogenic determinant as a substrate recognition motif of insulin-degrading enzyme (1998) FEBS Letters, 427 (2), pp. 153-156. , DOI 10. 1016/S0014-5793 (98) 00422-0, PII S0014579398004220
Hersh, L. B., The insulysin (insulin degrading enzyme) enigma (2006) Cellular and Molecular Life Sciences, 63 (21), pp. 2432-2434. , DOI 10. 1007/s00018-006-6238-9
Hamel, F. G., Mahoney, M. J., Duckworth, W. C., Degradation of intraendosomal insulin by insulin-degrading enzyme without acidification (1991) Diabetes, 40, pp. 436-443
Seta, K. A., Roth, R. A., Overexpression of insulin degrading enzyme: Cellular localization and effects on insulin signaling (1997) Biochemical and Biophysical Research Communications, 231 (1), pp. 167-171. , DOI 10. 1006/bbrc. 1997. 6066
Gokhale, N. H., Cowan, J. A., Metallopeptide-promoted inactivation of angiotensin-converting enzyme and endothelin-converting enzyme 1: Toward dual-action therapeutics (2006) Journal of Biological Inorganic Chemistry, 11 (7), pp. 937-947. , DOI 10. 1007/s00775-006-0145-2
Axelsen, P. H., Komatsu, H., Murray, I. V. J., Oxidative stress and cell membranes in the pathogenesis of Alzheimer's disease (2011) Physiology, 26, pp. 54-69
Butterfield, D. A., Hensley, K., Harris, M., Mattson, M., Carney, J., -amyloid peptide free radical fragments initiate synaptosomal lipoperoxidation in a sequence-specific fashion: Implications to Alzheimer's disease (1994) Biochem. Biophys. Res. Commun., 200, pp. 710-715
Tsai, H. -H. G., Lee, J. -B., Tseng, S. -S., Pan, X. -A., Shih, Y. -C., Folding and membrane insertion of amyloid-beta (25-35) peptide and its mutants: Implications for aggregation and neurotoxicity (2010) Proteins, 78, pp. 1909-1925
Bose, P. P., Chatterjee, U., Nerelius, C., Govender, T., Norstroem, T., Gogoll, A., (2009) J. Med. Chem., 52, pp. 8002-8009. , Poly-N-methylated amyloid -peptide (A) C-terminal fragments reduce A toxicity in vitro and in Drosophila melanogaster
Amadoruge, P. C., Barnham, K. J., Alzheimer's disease and metals: A review of the involvement of cellular membrane receptors in metallosignalling (2011) Int. J. Alzheimer's Dis., , 10. 4061/2011/542043
Ostrakhovitch, E. A., Lordnejad, M. R., Schliess, F., Sies, H., Klotz, L. -O., Copper ions strongly activate the phosphoinositide-3-kinase/Akt pathway independent of the generation of reactive oxygen species (2002) Archives of Biochemistry and Biophysics, 397 (2), pp. 232-239. , DOI 10. 1006/abbi. 2001. 2559
Uranga, R. M., Giusto, N. M., Salvador, G. A., Effect of transition metals in synaptic damage induced by amyloid beta peptide (2010) Neuroscience, 170, pp. 381-389
Kim, J. H., Cho, H., Ryu, S. E., Choi, M. U., Effects of metal ions on the activity of protein tyrosine phosphatase VHR: Highly potent and reversible oxidative inactivation by Cu2+ ion (2000) Arch. Biochem. Biophys., 382, pp. 72-80
White, A. R., Du, T., Laughton, K. M., Volitakis, I., Sharples, R. A., Xilinas, M. E., (2006) J. Biol. Chem., 281, pp. 17670-17680. , Degradation of the Alzheimer disease amyloid -peptide by metal-dependent up-regulation of metalloprotease activity
Cherny, R. A., Atwood, C. S., Xilinas, M. E., Gray, N. D., Jones, W. D., McLean, C. A., (2001) Neuron, 30, pp. 665-676. , Treatment with a copper-zinc chelator markedly and rapidly inhibits -amyloid accumulation in Alzheimer's disease transgenic mice
Ritchie, C. W., Bush, A. I., Mackinnon, A., Macfarlane, S., Mastwyk, M., MacGregor, L., Kiers, L., Masters, C. L., Metal-Protein Attenuation with Iodochlorhydroxyquin (Clioquinol) Targeting A Amyloid Deposition and Toxicity in Alzheimer Disease: A Pilot Phase 2 Clinical Trial (2003) Archives of Neurology, 60 (12), pp. 1685-1691. , DOI 10. 1001/archneur. 60. 12. 1685
Mok, S. S., Bush, A. I., Therapeutics of Alzheimer's disease based on metal bioavailability (2010) Oxid. Stress Dis., 26, pp. 117-132
Donnelly, P. S., Xiao, Z., Wedd, A. G., Copper and Alzheimer's disease (2007) Current Opinion in Chemical Biology, 11 (2), pp. 128-133. , DOI 10. 1016/j. cbpa. 2007. 01. 678, PII S136759310700018X
Crouch, P. J., Hung, L. W., Adlard, P. A., Cortes, M., Lal, V., Filiz, G., (2009) Proc. Natl. Acad. Sci. U. S. A., 106, pp. 381-386. , Increasing Cu bioavailability inhibits Abeta oligomers and tau phosphorylation
Malm, T. M., Iivonen, H., Goldsteins, G., Keksa-Goldsteine, V., Ahtoniemi, T., Kanninen, K., (2007) J. Neurosci., 27, pp. 3712-3721. , Pyrrolidine dithiocarbamate activates Akt and improves spatial learning in APP/PS1 mice without affecting beta-amyloid burden
White, L. D., Cory-Slechta, D. A., Gilbert, M. E., Tiffany-Castiglioni, E., Zawia, N. H., Virgolini, M., (2007) Toxicol. Appl. Pharmacol., 225, pp. 1-27. , New and evolving concepts in the neurotoxicology of lead
Basha, M. R., Murali, M., Siddiqi, H. K., Ghosal, K., Siddiqi, O. K., Lashuel, H. A., (2005) FASEB J., 19, pp. 2083-2084. , Lead (Pb) exposure and its effect on APP proteolysis and Abeta aggregation
Zhu, X., Raina, A. K., Lee, H. -G., Casadesus, G., Smith, M. A., Perry, G., Oxidative stress signalling in Alzheimer's disease (2004) Brain Research, 1000 (1-2), pp. 32-39. , DOI 10. 1016/j. brainres. 2004. 01. 012, PII S0006899304000770
Laferla, F. M., Calcium dyshomeostasis and intracellular signaling in Alzheimer's disease (2002) Nat. Rev. Neurosci., 3, pp. 862-872
Zhu, X., Beal, M. F., Wang, X., Perry, G., Smith, M. A., Supnet, C., (2010) J. Alzheimer's Dis., 20, pp. 487-S498. , Neuronal calcium signaling, mitochondrial dysfunction, and Alzheimer's disease
Abramov, A. Y., Canevari, L., Duchen, M. R., Changes in intracellular calcium and glutathione in astrocytes as the primary mechanism of amyloid neurotoxicity (2003) Journal of Neuroscience, 23 (12), pp. 5088-5095
Lin, H., Zhu, Y. J., Lal, R., Amyloid protein (1-40) forms calcium-permeable, Zn 2+-sensitive channel in reconstituted lipid vesicles (1999) Biochemistry, 38, pp. 11189-11196
Phinney, A. L., Drisaldi, B., Schmidt, S. D., Lugowski, S., Coronado, V., Liang, Y., Horne, P., Coomaraswamy, J., (2003) Proc. Natl. Acad. Sci. U. S. A., 100, pp. 14193-14198. , In vivo reduction of amyloid- by a mutant copper transporter