Nitric oxide and some nitric oxide donor compounds enhance the cytotoxicity of cisplatin(483 views) Wink DA, Cook JA, Christodoulou D, Krishna MC, Pacelli R, Kim S, DeGraff W, Gamson J, Vodovotz Y, Russo A, Mitchell JB
Keywords: Cisplatin, N Acetyl S Nitrosopenicillamine, Nitric Oxide, Nitric Oxide Donor, Reactive Oxygen Metabolite, S Nitrosoglutathione, Animal Cell, Article, Controlled Study, Drug Cytotoxicity, Hamster, Lung Fibroblast, Nitrosation, Nonhuman, Priority Journal, Antineoplastic Agents, Cell Line, Cricetinae, Cricetulus, Drug Synergism, Nitric Oxide Synthase, Spectrometry, Fluorescence, Cricetulus Griseus,
Affiliations: Radiation Biology Branch, National Cancer Institute, Bethesda, MD 20892, United States
Lab. of Comparative Carcinogenesis, National Cancer Institute, Frederick Cancer R. and D. Center, Frederick, MD 21702, United States
References: Chaney, S.G., Sancar, A., DNA repair: Enzymatic mechanisms and relevance to drug response (1996) J. Natl. Cancer Inst., 88, pp. 1346-136
Mitchell, J.B., Wink, D.A., Degraff, W., Gamson, J., Keefer, L.K., Krishna, M.C., Hypoxic mammalian cell radiosensitization by nitric oxide (1993) Cancer Res., 53, pp. 5845-5848
Laval, F., Wink, D.A., Inhibition by nitric oxide of the repair proteinO6 (1994) Carcinogenesis, 15, pp. 443-447
Mitchell, J.B., Cook, J.A., Krishna, M.C., Degraff, W., Gamson, J., Fisher, J., Christodoulou, D., Wink, D.A., Radiation sensitization by nitric oxide releasing agents (1996) Br. J. Cancer, 74, pp. 5181-5184
Son, K., Kim, Y.M., In vivo cisplatin-exposed macrophages increase immunostimulant-induced nitric oxide synthesis for tumor cell killing (1995) Cancer Res., 55, pp. 5524-5527
Nims, R.W., Darbyshire, J.F., Saavedra, J.E., Christodoulou, D., Hanbauer, I., Cox, G.W., Grisham, M.B., Wink, D.A., Colorimetric methods for the determination of nitric oxide concentration in neutral aqueous solutions (1995) Methods: Companion Methods Enzymol., 7, pp. 48-54
Hrabie, J., Klose, J., Wink, D.A., Keefer, L.K., New nitric oxide-releasing zwitterions derived from polyamines (1993) J. Org. Chem., 58, pp. 1472-1476
Maragos, C.M., Morley, D., Wink, D.A., Dunams, T.M., Saavedra, J.E., Hoffman, A., Bove, A.A., Keefer, L.K., Complexes of NO with nucleophiles as agents for the controlled biological release of nitric oxide: Vasorelaxant effects (1991) J. Med. Chem., 34, pp. 3242-3247
Maragos, C.M., Wang, J.M., Hrabie, J.A., Oppenheim, J.J., Keefer, L.K., Nitric oxide/nucleophile complexes inhibit the in vitro proliferation of A375 melanoma cells via nitric oxide release (1993) Cancer Res., 53, pp. 564-568
Miles, A.M., Wink, D.A., Cook, J.C., Grisham, M.B., Determination of nitric oxide using fluorescence spectroscopy (1996) Methods Enzymol., 268, pp. 105-120
Wink, D.A., Hanbauer, I., Grisham, M.B., Laval, F., Nims, R.W., Laval, J., Cook, J.C., Mitchell, J.B., The chemical biology of NO: Insights into regulation, protective and toxic mechanisms of nitric oxide (1996) Curr. Top. Cell. Regul., 34, pp. 159-187
Wink, D.A., Grisham, M., Mitchell, J.B., Ford, P.C., Direct and Indirect Effects of Nitric Oxide. Biologically relevant chemical reactions in biology of NO (1996) Methods Enzymol., 268, pp. 12-31
Keefer, L.K., Nims, R.W., Davies, K.W., Wink, D.A., NONOates (diazenolate-2-oxides) as nitric oxide dosage forms (1996) Methods Enzymol., 268, pp. 281-294
Misra, R.R., Hochadel, J.F., Smith, G.T., Waalkes, M.P., Wink, D.A., Evidence that nitric oxide enhances cadmium toxicity by displacing the metals from metallothionein (1996) Chem. Res. Toxicol., 10, pp. 326-332
Graziewicz, M., Wink, D.A., Laval, F., Nitric oxide inhibits DNA ligase activity: Potential mechanisms for NO mediated DNA damage (1996) Carcinogenesis, 17, pp. 2501-2505
Kroncke, K.-D., Fechsel, K., Schmidt, T., Zenke, F.T., Dasting, I., Wesener, J.R., Bettermann, H., Kolb-Bachofen, V., Nitric oxide destroys zinc-finger clusters inducing zinc release from metallothionein and inhibition of the zinc finger-type yeast transcription activator LAC9 (1994) Biochem. Biophys. Res. Commun., 200, pp. 1105-1110
Wink, D.A., Laval, J., The Fpg protein, a DNA repair enzyme, is inhibited by the biomediator nitric oxide in vitro and in vivo (1994) Carcinogenesis, 15, pp. 2125-2129
Chaney, S. G., Sancar, A., DNA repair: Enzymatic mechanisms and relevance to drug response (1996) J. Natl. Cancer Inst., 88, pp. 1346-136
Mitchell, J. B., Wink, D. A., Degraff, W., Gamson, J., Keefer, L. K., Krishna, M. C., Hypoxic mammalian cell radiosensitization by nitric oxide (1993) Cancer Res., 53, pp. 5845-5848
Mitchell, J. B., Cook, J. A., Krishna, M. C., Degraff, W., Gamson, J., Fisher, J., Christodoulou, D., Wink, D. A., Radiation sensitization by nitric oxide releasing agents (1996) Br. J. Cancer, 74, pp. 5181-5184
Son, K., Kim, Y. M., In vivo cisplatin-exposed macrophages increase immunostimulant-induced nitric oxide synthesis for tumor cell killing (1995) Cancer Res., 55, pp. 5524-5527
Nims, R. W., Darbyshire, J. F., Saavedra, J. E., Christodoulou, D., Hanbauer, I., Cox, G. W., Grisham, M. B., Wink, D. A., Colorimetric methods for the determination of nitric oxide concentration in neutral aqueous solutions (1995) Methods: Companion Methods Enzymol., 7, pp. 48-54
Maragos, C. M., Morley, D., Wink, D. A., Dunams, T. M., Saavedra, J. E., Hoffman, A., Bove, A. A., Keefer, L. K., Complexes of NO with nucleophiles as agents for the controlled biological release of nitric oxide: Vasorelaxant effects (1991) J. Med. Chem., 34, pp. 3242-3247
Maragos, C. M., Wang, J. M., Hrabie, J. A., Oppenheim, J. J., Keefer, L. K., Nitric oxide/nucleophile complexes inhibit the in vitro proliferation of A375 melanoma cells via nitric oxide release (1993) Cancer Res., 53, pp. 564-568
Miles, A. M., Wink, D. A., Cook, J. C., Grisham, M. B., Determination of nitric oxide using fluorescence spectroscopy (1996) Methods Enzymol., 268, pp. 105-120
Wink, D. A., Hanbauer, I., Grisham, M. B., Laval, F., Nims, R. W., Laval, J., Cook, J. C., Mitchell, J. B., The chemical biology of NO: Insights into regulation, protective and toxic mechanisms of nitric oxide (1996) Curr. Top. Cell. Regul., 34, pp. 159-187
Wink, D. A., Grisham, M., Mitchell, J. B., Ford, P. C., Direct and Indirect Effects of Nitric Oxide. Biologically relevant chemical reactions in biology of NO (1996) Methods Enzymol., 268, pp. 12-31
Keefer, L. K., Nims, R. W., Davies, K. W., Wink, D. A., NONOates (diazenolate-2-oxides) as nitric oxide dosage forms (1996) Methods Enzymol., 268, pp. 281-294
Misra, R. R., Hochadel, J. F., Smith, G. T., Waalkes, M. P., Wink, D. A., Evidence that nitric oxide enhances cadmium toxicity by displacing the metals from metallothionein (1996) Chem. Res. Toxicol., 10, pp. 326-332
Kroncke, K. -D., Fechsel, K., Schmidt, T., Zenke, F. T., Dasting, I., Wesener, J. R., Bettermann, H., Kolb-Bachofen, V., Nitric oxide destroys zinc-finger clusters inducing zinc release from metallothionein and inhibition of the zinc finger-type yeast transcription activator LAC9 (1994) Biochem. Biophys. Res. Commun., 200, pp. 1105-1110
Nitric oxide and some nitric oxide donor compounds enhance the cytotoxicity of cisplatin
A major emphasis in cancer therapy research is finding mechanisms to enhance the effectiveness of clinically used chemotherapeutic agents. In this report, we show the effects of direct NO exposure or NO delivery agents such as NONOate NO donors, DEA/NO ((C2H5)(2)N[N(O)NO]Na--(+)) and PAPA/ NO (NH2(C3H6)(N[N(O)NO]C3H7)), Or S-nitrosothiol NO donors (GSNO, S-nitrosoglutathione, and SNAP, S-nitroso-N-acetylpenicillamine) on the cytotoxicity of cisplatin with Chinese hamster V79 lung fibroblast cells. Cells pretreated with bolus NO or NO delivered from NONOate NO donors were markedly sensitized to subsequent cisplatin treatment, whereas S-nitrosothiol NO donors exerted little effect. The enhancement in cisplatin cytotoxicity from pretreatment with DEA/NO and PAPA/ NO persisted for similar to 180 and 240 min, respectively; thereafter cytotoxicity returned to a level consistent with cisplatin treatment alone. Pretreatment of cells with GSNO or SNAP did not enhance cisplatin cytotoxity. To discern why there were differential effects among the different NO donors, formation of NO over the time course of the experiment was assessed by the nitrosation of 2,3-diaminonaphthylene. Bolus NO, DEA/NO, and PAPA/NO produced more reactive nitrogen oxide species (RNOS) than did treatment with GSNO or SNAP. Previously reported electrochemical studies revealed that temporal NO concentrations measured from DEA/NO and PAPA/NO (1 mM) were greater than 5 mu M. It appears that the flux of NO, as well as the amount of RNOS, is important in the NO-mediated enhancement of cisplatin cytotoxicity. Our results demonstrate the importance of NO delivery systems in the enhancement of cisplatin cytotoxicity and may provide insights into strategies for participation of NO donors and nitric oxide synthase with cisplatin therapy. (C) 1997 Academic Press.
Nitric oxide and some nitric oxide donor compounds enhance the cytotoxicity of cisplatin
No results.
Nitric oxide and some nitric oxide donor compounds enhance the cytotoxicity of cisplatin
Santulli G, Cipolletta E, Sorriento D, Del Giudice C, Anastasio A, Monaco S, Maione AS, Condorelli G, Puca A, Trimarco B, Illario M, Iaccarino G * CaMK4 gene deletion induces hypertension(349 views) J Am Heart Assoc Journal Of The American Heart Association (ISSN: 2047-9980), 2012; 1(4): N/D-N/D. Impact Factor:2.882 ViewExport to BibTeXExport to EndNote