Cationic Liposomes As Delivery Systems For Double-Stranded Pna-Dna Chimeras Exhibiting Decoy Activity Against Nf-Kappab Transcription Factors(401 views) Borgatti M, Breda L, Cortesi R, Nastruzzi C, Romanelli A, Saviano M, Bianchi N, Mischiati C, Pedone C, Gambari R
Department of Biochemistry and Molecular Biology, University of Ferrara, Via Luigi Borsari 46, 44100 Ferrara, Italy
Department of Pharmaceutical Sciences, University of Ferrara, Ferrara, Italy
Institute of Biostructures and Bioimages, CNR, Napoli, Italy
Biotechnology Center, University of Ferrara, Ferrara, Italy
References: Nielsen, P.E., Egholm, M., Berg, R.H., Buchardt, O., Sequence-selective recognition of DNA by strand displacement with a thymine-substituted polyamide (1991) Science, 254, pp. 1497-150
Egholm, M., Buchardt, O., Nielsen, P.E., Berg, R.H., Peptide nucleic acids (PNA): Oligonucleotide analogues with an achiral peptide backbone (1992) J. Am. Chem. Soc., 114, pp. 1895-1897
Demidov, V.V., Potaman, V.N., Frank-Kamenetsk, M.D., Egholm, M., Buchard, O., Sonnichsen, S.H., Nielsen, P.E., Stability of peptide nucleic acids in human serum and cellular extracts (1994) Biochem. Pharmacol., 48, pp. 1310-1313
Scarfì, S., Giovine, M., Gasparini, A., Damonte, G., Millo, E., Pozzolini, M., Benatti, U., Modified peptide nucleic acids are internalized in mouse macrophages RAW 264.7 and inhibit inducible nitric oxide synthase (1999) FEBS Lett., 451, pp. 264-268
Gambari, R., Peptide nucleic acids (PNAs): A tool for the development of gene expression modifiers (2001) Curr. Pharm. Des., 7, pp. 1839-1862
Betts, L., Josey, J.A., Veal, J.M., Jordan, S.R., A nucleic acid triple helix formed by a peptide nucleic acid-DNA complex (1995) Science, 270, pp. 1838-1841
Larsen, H.J., Nielsen, P.E., Transcription-mediated binding of peptide nucleic acid (PNA) to double-stranded DNA: Sequence-specific suicide transcription (1996) Nucleic Acids Res., 24, pp. 458-463
Hanvey, J.C., Peffer, N.J., Bisi, J.E., Thomson, S.A., Cadilla, R., Josey, J.A., Ricca, D.J., Babiss, L.E., Antisense and antigene properties of peptide nucleic acids (1992) Science, 258, pp. 1481-1485
Misra, H.S., Pandey, P.K., Modak, M.J., Vinayak, R., Pandey, V.N., Polyamide nucleic acid-DNA chimera lacking the phosphate backbone are novel primers for polymerase reaction catalyzed by DNA polymerases (1998) Biochemistry, 37, pp. 1917-1925
Vinayak, R., Van der Laan, A.C., Brill, R., Otteson, K., Andrus, A., Kuyl-Yeheskiely, E., Van Boom, J.H., Automated chemical synthesis of PNA and PNA-DNA chimera on a nucleic acid synthesizer (1997) Nucleosides Nucleotides, 16, pp. 1653-1656
Romanelli, E., Pedone, C., Saviano, M., Bianchi, N., Borgatti, M., Mischiati, C., Gambari, R., Molecular interactions between nuclear factor κB (NF-κB) transcription factors and a PNA-DNA chimera mimicking NF-κB binding sites (2001) Eur. J. Biochem., 268, pp. 1-11
Mischiati, C., Borgatti, M., Bianchi, N., Rutigliano, C., Tomassetti, M., Feriotto, G., Gambari, R., Interaction of the human NF-kappaB p52 transcription factor with DNA-PNA hybrids mimicking the NF-kappaB binding sites of the human immunodeficiency virus type 1 promoter (1999) J. Biol. Chem., 274, pp. 33114-33122
Saviano, M., Romanelli, A., Bucci, E., Pedone, C., Mischiati, C., Bianchi, N., Feriotto, G., Gambari, R., Computational procedures to explain the different biological activity of DNA/DNA, DNA/PNA and PNA/PNA hybrid molecules mimicking NF-kappaB binding sites (2000) J. Biomol. Struct. Dyn., 18, pp. 353-362
Allen, T.M., Liposomal drug formulations. Rationale for development and what we can expect for the future (1998) Drugs, 56, pp. 747-756
Birchall, J.C., Kellaway, I.W., Mills, S.N., Physico-chemical characterisation and transfection efficiency of lipid-based gene delivery complexes (1999) Int. J. Pharm., 183, pp. 195-207
Ross, P.C., Hui, S.W., Lipoplex size is a major determinant of in vitro lipofection efficiency (1999) Gene Ther., 6, pp. 651-659
Gursel, I., Gursel, M., Ishii, K.J., Klinman, D.M., Sterically stabilized cationic liposomes improve the uptake and immunostimulatory activity of CpG oligonucleotides (2001) J. Immunol., 167, pp. 3324-3328
Bender, J., Kampfer, M., Klein, A., Faithful expression of a heterologous gene carried on an artificial macronuclear chromosome in Euplotes crassus (1999) Nucleic Acids Res., 27, pp. 3168-3172
Koning, G.A., Morselt, H.W., Gorter, A., Allen, T.M., Zalipsky, S., Kamps, J.A., Scherphof, G.L., Pharmacokinetics of differently designed immunoliposome formulations in rats with or without hepatic colon cancer metastases (2001) Pharm. Res., 18, pp. 1291-1298
Nastruzzi, C., Cortesi, R., Esposito, E., Gambari, R., Borgatti, M., Bianchi, N., Feriotto, G., Mischiati, C., Liposomes as carriers for DNA-PNA hybrids (2000) J. Control Release, 68, pp. 237-249
Nastruzzi, C., Gambari, R., Menegatti, E., Walde, P., Luisi, P.L., Tumor cell growth inhibition by liposome-encapsulated aromatic polyamidines (1990) J. Pharm. Sci., 79, pp. 672-677
Clusel, C., Meguenni, S., Elias, I., Vasseur, M., Blumenfeld, M., Inhibition of HSV-1 proliferation by decoy phosphodiester oligonucleotides containing ICP4 recognition sequences (1994) Gene Expr., 4, pp. 301-309
Cho-Chung, Y.S., Park, Y.G., Nesterova, M., Lee, Y.N., Cho, Y.S., CRE-decoy oligonucleotide-inhibition of gene expression and tumor growth (2000) Mol. Cell. Biochem., 212, pp. 29-34
Ishibashi, H., Nakagawa, K., Onimaru, M., Castellanous, E.J., Kaneda, Y., Nakashima, Y., Shirasuna, K., Sueishi, K., Sp1 decoy transfected to carcinoma cells suppresses the expression of vascular endothelial growth factor, transforming growth factor beta1, and tissue factor and also cell growth and invasion activities (2000) Cancer Res., 60, pp. 6531-6536
Kawauchi, M., Suzuki, J., Morishita, R., Wada, Y., Izawa, A., Tomita, N., Amano, J., Isobe, M., Gene therapy for attenuating cardiac allograft arteriopathy using ex vivo E2F decoy transfection by HVJ-AVE-liposome method in mice and nonhuman primates (2000) Circ. Res., 87, pp. 1063-1068
Lee, Y.N., Park, Y.G., Choi, Y.H., Cho, Y.S., Cho-Chung, Y.S., CRE-transcription factor decoy oligonucleotide inhibition of MCF-7 breast cancer cells: Cross-talk with p53 signaling pathway (2000) Biochemistry, 39, pp. 4863-4868
Tomita, N., Morishita, R., Tomita, S., Gibbons, G.H., Zhang, L., Horiuchi, M., Kaneda, Y., Dzau, V.J., Transcription factor decoy for NF-kappaB inhibits TNF-alpha-induced cytokine and adhesion molecule expression in vivo (2000) Gene Ther., 7, pp. 1326-1332
Vos, I.H., Govers, R., Grone, H.J., Kleij, L., Schurink, M., De Weger, R.A., Goldschmeding, R., Rabrlink, T.J., NF-kappaB decoy oligodeoxynucleotides reduce monocyte infiltration in renal allografts (2000) FASEB J., 14, pp. 815-822
Sambrook, J., Fritsch, E.F., Maniatis, T., (1989) Molecular cloning: a laboratory manual. 2nd ed., , Cold Spring harbor, NY: Cold Spring Harbor Press
Nielsen, P. E., Egholm, M., Berg, R. H., Buchardt, O., Sequence-selective recognition of DNA by strand displacement with a thymine-substituted polyamide (1991) Science, 254, pp. 1497-150
Demidov, V. V., Potaman, V. N., Frank-Kamenetsk, M. D., Egholm, M., Buchard, O., Sonnichsen, S. H., Nielsen, P. E., Stability of peptide nucleic acids in human serum and cellular extracts (1994) Biochem. Pharmacol., 48, pp. 1310-1313
Scarf, S., Giovine, M., Gasparini, A., Damonte, G., Millo, E., Pozzolini, M., Benatti, U., Modified peptide nucleic acids are internalized in mouse macrophages RAW 264. 7 and inhibit inducible nitric oxide synthase (1999) FEBS Lett., 451, pp. 264-268
Larsen, H. J., Nielsen, P. E., Transcription-mediated binding of peptide nucleic acid (PNA) to double-stranded DNA: Sequence-specific suicide transcription (1996) Nucleic Acids Res., 24, pp. 458-463
Hanvey, J. C., Peffer, N. J., Bisi, J. E., Thomson, S. A., Cadilla, R., Josey, J. A., Ricca, D. J., Babiss, L. E., Antisense and antigene properties of peptide nucleic acids (1992) Science, 258, pp. 1481-1485
Misra, H. S., Pandey, P. K., Modak, M. J., Vinayak, R., Pandey, V. N., Polyamide nucleic acid-DNA chimera lacking the phosphate backbone are novel primers for polymerase reaction catalyzed by DNA polymerases (1998) Biochemistry, 37, pp. 1917-1925
Allen, T. M., Liposomal drug formulations. Rationale for development and what we can expect for the future (1998) Drugs, 56, pp. 747-756
Birchall, J. C., Kellaway, I. W., Mills, S. N., Physico-chemical characterisation and transfection efficiency of lipid-based gene delivery complexes (1999) Int. J. Pharm., 183, pp. 195-207
Ross, P. C., Hui, S. W., Lipoplex size is a major determinant of in vitro lipofection efficiency (1999) Gene Ther., 6, pp. 651-659
Koning, G. A., Morselt, H. W., Gorter, A., Allen, T. M., Zalipsky, S., Kamps, J. A., Scherphof, G. L., Pharmacokinetics of differently designed immunoliposome formulations in rats with or without hepatic colon cancer metastases (2001) Pharm. Res., 18, pp. 1291-1298
Cho-Chung, Y. S., Park, Y. G., Nesterova, M., Lee, Y. N., Cho, Y. S., CRE-decoy oligonucleotide-inhibition of gene expression and tumor growth (2000) Mol. Cell. Biochem., 212, pp. 29-34
Lee, Y. N., Park, Y. G., Choi, Y. H., Cho, Y. S., Cho-Chung, Y. S., CRE-transcription factor decoy oligonucleotide inhibition of MCF-7 breast cancer cells: Cross-talk with p53 signaling pathway (2000) Biochemistry, 39, pp. 4863-4868
Vos, I. H., Govers, R., Grone, H. J., Kleij, L., Schurink, M., De Weger, R. A., Goldschmeding, R., Rabrlink, T. J., NF-kappaB decoy oligodeoxynucleotides reduce monocyte infiltration in renal allografts (2000) FASEB J., 14, pp. 815-822
Cationic Liposomes As Delivery Systems For Double-Stranded Pna-Dna Chimeras Exhibiting Decoy Activity Against Nf-Kappab Transcription Factors
Peptide nucleic acids (PNAs) have been recently proposed as useful molecules in pharmacogenetic therapy, especially due to the fact that they show a very high stability with respect to DNA and RNA. However, PNAs are not efficient decoy molecules, are characterized by negligible cell internalization and low solubility and are not suitable to be delivered by liposomes. With respect to the biological activity of PNA-based molecules, PDP deserve great consideration, due to the fact that they exhibit high levels of solubility, and are expected to be resistant to proteinases and exonucleases. In this manuscript we determined whether double-stranded molecules based on PNA-DNA chimeras containing NF-kappaB binding sites, exhibit decoy activity against NF-kappaB transcription factors. In addition, we determined whether they can be complexed by cationic liposomes. The results obtained demonstrated that hybrids based on PNA-DNA chimeras are powerful decoy molecules against NF-kappaB p52 transcription factor. In addition, we found that cationic liposomes can be proposed for in vitro delivery to target cells of these decoy molecules. The results presented in this paper are thus of practical importance, since the simplicity and the versatility of the cationic liposome technology have made cationic liposomes useful nonviral gene delivery systems for human gene therapy. (C) 2002 Elsevier Science Inc. All rights reserved
Cationic Liposomes As Delivery Systems For Double-Stranded Pna-Dna Chimeras Exhibiting Decoy Activity Against Nf-Kappab Transcription Factors
Vitiello M, Finamore E, Falanga A, Raieta K, Cantisani M, Galdiero F, Pedone C, Galdiero M, Galdiero S * Fusion in Coq(479 views) Lecture Notes In Computer Science (ISSN: 0302-9743, 0302-974335404636319783540463634, 0302-974335402975459783540297543), 2001; 2178LNCS: 583-596. Impact Factor:0.415 ViewExport to BibTeXExport to EndNote