Keywords: Amino Acids, Chiral Recognition, Circular Dichroism, Fluorescence, Stability Constants, Ternary Copper(ii) Complexes, Aromatic Amino Acid, Beta Cyclodextrin Derivative, Glycinate Copper, Article, Binding Site, Calorimetry, Chirality, Conformation, Electron Spin Resonance, Enantiomer, High Performance Liquid Chromatography, Potentiometry, Priority Journal, Proton Nuclear Magnetic Resonance, Proton Transport, Stereochemistry, Thermodynamics, Alanine, Aminopyridines, Beta-Cyclodextrins, High Pressure Liquid, Electron Spin Resonance Spectroscopy, Magnetic Resonance Spectroscopy, Molecular Conformation, Spectrometry, Spectrophotometry, Ultraviolet, Stereoisomerism, Tryptophan, Ternary Copper (ii) Complexes,
Affiliations: Dipartimento di Scienze Chimiche, Universitè di Catania, Catania, Italy
Dipto. di Scienze degli Alimenti, Univ. Federico II di Napoli, Napoli, Italy
Ist. Stud. Sostanze Naturali I., CNR, Catania, Italy
Dipto. di Chim. Organ. e Industriale, Università di Parma, Parma, Italy
Istituto di Chimica Biologica, Università di Parma, Parma, Italy
References: Bender, M.L., Komiyama, M., (1978) Cyclodextrin Chemistry, , Berlin: Springer Verlag, and references include
Szejtli, J., (1988) Cyclodextrin Technology, , Dordrecht: Kluwer Academic Press, and references included
Sanger, W., Cyclodextrin inclusion compounds (1980) Angew. Chem. Int. Ed. Engl., 19, pp. 344-362
D'Souza, V.T., Bender, M.L., Miniature models of enzymes (1987) Acc. Chem. Res., 20, pp. 146-152. , and references included
Tabushi, I., Design and synthesis of artificial enzymes (1984) Tetrahedron, 40, pp. 269-292
Breslow, R., Zhang, B., Very fast ester hydrolysis by a cyclodextrin dimer with a catalytic linking group (1992) J. Am. Chem. Soc., 114, pp. 5882-5883
Tabushi, I., Cyclodextrin catalysis as a model for enzyme action (1982) Acc. Chem. Res., 15, pp. 66-72
Menges, R.A., Armstrong, D.W., Chiral separations using native and functionalized cyclodextrin-bonded stationary phases in high-pressure liquid chromatography (1991) ACS Symposium Series No. 471, , Chiral Separations by Liquid Chromatography. Ahuja, S., ed. Washington, D.C.: ACS, chapter 4
Schurig, V., Nowotny, H.P., Gas chromatographic separation of enantiomers on cyclodextrin derivatives (1990) Angew. Chem. Int. Ed. Engl., 29, pp. 939-957
Nishi, H., Terabe, S., Optical resolution of drugs in capillary electrophoretic techniques (1995) J. Chromatogr. A, 694, pp. 245-276
Szejtli, J., Complexation of metal ions by cyclodextrins (1990) Starch/Staerke, 42, pp. 444-447
Stoddart, J.F., Zarzycki, R., Cyclodextrins as second sphere ligands for transition metal complexes (1988) Recl. Trav. Chim. Pays-Bas, 107, pp. 515-528. , and references included
Bonomo, R.P., Cucinotta, V., D'Alessandro, F., Impellizzeri, G., Maccarrone, G., Vecchio, G., Rizzarelli, E., Conformational features and coordination properties of functionalized cyclodextrins. Formation, stability, and structure of proton and copper(II) complexes of histamine bearing β-cyclodextrin in aqueous solution (1991) Inorg. Chem., 30, pp. 2708-2713
Kuroda, Y., Sasaki, Y., Shiroiwa, Y., Tabushi, I., Cyclodextrin sandwiched Fe4S4 cluster (1988) J. Am. Chem. Soc., 110, pp. 4049-4050
Breslow, R., Overman, L., An "artificial enzyme" combining a metal catalytic group and a hydrophobic binding cavity (1970) J. Am. Chem. Soc., 92, pp. 1075-1077
Akkaya, E.U., Czarnik, A.W., Synthesis and reactivity of cobalt (III) complexes bearing primary- and secondary-side cyclodextrin binding sites. A tale of two CDs (1988) J. Am. Chem. Soc., 110, pp. 8553-8554
Tabushi, I., Reductive dioxygen activation by use of artificial P-450 systems (1988) Coord. Chem. Rev., 86, pp. 1-42
Tabushi, I., Kuroda, Y., Bis(histamino)cyclodextrin-Zn-imidazole complex as an artificial carbonic anhydrase (1984) J. Am. Chem. Soc., 106, pp. 4580-4584
Tabushi, I., Shimizu, N., Sugimoto, T., Shiozuka, M., Yamamura, K., Cyclodextrin flexibly capped with metal ion (1977) J. Am. Chem. Soc., 99, pp. 7100-7102
Cucinotta, V., Mangano, A., Nobile, G., Santoro, A.M., Vecchio, G., New platinum (II) complexes of β-cyclodextrin diamine derivatives and their antitumor activity (1993) J. Inorg. Biochem., 52, p. 183
Amico, P., Arena, G., Daniele, P.G., Ostacoli, G., Rizzarelli, E., Sammartano, S., Mixed-metal complexes in solution 3. Thermodynamic study of heterobinuclear copper(II)-L-histidine and -histamine complexes in aqueous solution (1981) Inorg. Chem., 20, pp. 772-777
Bonomo, R.P., Calì, R., Cucinotta, V., Impellizzeri, G., Rizzarelli, E., Copper(II) complexes of diastereoisomeric dipeptides in aqueous solution. Effect of side-chain groups on the thermodynamic stereoselectivity (1986) Inorg. Chem., 26, pp. 1641-1646
Borghesani, G., Pulidori, F., Remelli, M., Purrello, R., Rizzarelli, E., Non-covalent interactions in thermodynamic stereoselectivity of mixed-ligand copper(II)-D- or L-histidine complexes with L-amino acids. A possible model of metal ion-assisted molecular recognition (1990) J. Chem. Soc. Dalton Trans., pp. 2095-2100
Corradini, R., Dossena, A., Impellizzeri, G., Maccarrone, G., Marchelli, R., Rizzarelli, E., Sartor, G., Vecchio, G., Chiral recognition and separation of amino acids by means of a copper(II) complex of histamine monofunctionalized β-cyclodextrin (1994) J. Am. Chem. Soc., 116, pp. 10267-10274
Corradini, R., Impellizzeri, G., Maccarrone, G., Marchelli, R., Rizzarelli, E., Vecchio, G., Thermodynamics of chiral recognition of aromatic amino acids by histamine functionalized β-cyclodextrin copper(II) complex in aqueous solution (1991) Chemistry and Properties of Biomedical Systems, pp. 209-220. , Rizzarelli, E., Theophanides, T., eds. Dordrecht: Kluwer
Gil-Av, E., Tishbee, A., Hare, P.E., Resolution of underivatized amino acids by reversed phase chromatography (1980) J. Am. Chem. Soc., 102, pp. 5115-5117
Arena, G., Rizzarelli, E., Sammartano, S., Rigano, C., A non-linear least-squares approach to the refinement of all parameters involved in acid-base titration (1979) Talanta, 26, p. 1
Gans, P., Sabatini, A., Vacca, A., SUPERQUAD: An improved general program for the computation of formation constants from potentiometric data (1985) J. Chem. Soc. Dalton Trans., pp. 1195-1200
Rigano, C., Rizzarelli, E., Sammartano, S., A Computer method for the calculation of enthalpy changes for ion association in solution from calorimetric data (1979) Thermochim. Acta., 33, p. 211
Smith, R.M., Martell, A.E., (1982) Critical Stability Constants, 5 (FIRST SUPPL.). , New York and London: Plenum Press
Kodaka, M., A general rule for circular dichroism induced by a chiral macrocycle J. Am. Chem. Soc., 115, pp. 3702-3705
Harata, K., Uedaira, H., The circular dichroism spectra of the β-cyclodextrin complex with naphthalene derivatives (1975) Bull. Chem. Soc. Jpn., 48, pp. 375-378
Davankov, V.A., Kurganov, A.A., Ponomareva, T.M., Enantioselectivity of complex formation in ligand-exchange chromatographic systems with chiral stationary, phases and/or chiral mobile phases (1988) J. Chromatogr., 452, pp. 309-316
Cantor, C.R., Schimmel, P.R., (1980) Biophysical Chemistry, (2 PART). , New York: Freeman and Company
Corradini, R., Sartor, G., Marchelli, R., Dossena, A., Spisni, A., Enantioselective fluorescence quenching by a chiral copper (II) complex in ligand exchange equilibria (1992) J. Chem. Soc. Perkin Trans., 2, pp. 1979-1983
Chiral recognition by the copper(ii) complex of 6-deoxy-6-n-(2 - methylaminopyridine)-β-cyclodextrin
A modified β-cyclodextrin bearing a 2-aminomethylpyridine binding site for copper (II) (6-deoxy-6-[N-(2-methylamino)pyridine)]-β-cyclodextrin, CDampy) was synthesized by C6-monofunctionalization. The acid-base properties of the new ligand in aqueous solution were investigated by potentiometry and calorimetry, and its conformations as a function of pH were studied by NMR and circular dichroism (c.d.). The formation of binary copper(II) complexes was studied by potentiometry, EPR, and c.d.. The copper(II) complex was used as chiral selector for the HPLC enantiomeric separation of underivatized aromatic amino acids. Enantioselectivity in the overall stability constants of the ternary complexes with D- or L-Trp was detected by potentiometry, whereas the complexes of the Ala enantiomers did not show any difference in stability. These results were consistent with a preferred cis coordination of the amino group of the ligand and of the amino acid in the ternary complexes ('cis effect'), which leads to the inclusion of the aromatic side chain of D-Trp, but not of that of L-Trp. In Trp-containing ternary complexes, the two enantiomers showed differences in the fluorescence lifetime distribution, consistent with only one conformer of D-Trp and two conformers of L-Trp, and the latter were found to be more accessible to fluorescence quenching by acrylamide and KI.
Chiral recognition by the copper(ii) complex of 6-deoxy-6-n-(2 - methylaminopyridine)-β-cyclodextrin
Kállay C, Dávid A, Timári S, Nagy EM, Sanna D, Garribba E, Micera G, De Bona P, Pappalardo G, Rizzarelli E, Sóvágó I * Copper(II) complexes of rat amylin fragments(360 views) Dalton T (ISSN: 1477-9234, 1477-9226, 1477-9234electronic), 2011 Oct 14; 40(38): 9711-9721. Impact Factor:3.838 ViewExport to BibTeXExport to EndNote