Cellular stress responses, hormetic phytochemicals and vitagenes in aging and longevity(3606 views) Calabrese V, Cornelius C, Dinkova-Kostova AT, Iavicoli I, Di Paola R, Koverech A, Cuzzocrea S, Rizzarelli E, Calabrese EJ
Department of Chemistry, University of Catania, Catania, Italy. calabres@unict.it
Biomedical Research Institute, University of Dundee, Dundee, Scotland, United Kingdom
Departments of Medicine and Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States
Institute of Occupational Medicine, Catholic University of Sacred Heart, Rome, Italy
Department of Clinical and Experimental Medicine and Pharmacology, School of Medicine, University of Messina, Messina, Italy
Interuniversity Consortium INBB, Catania, Italy
Department of Scientific and Medical Affairs, Sigma Tau SpA, Pomezia, 00040, Roma, Italy
Environmental Health Sciences Division, School of Public Health, University of Massachusetts, Amherst, MA, United States
IRCCS Centro Neurolesi 'Bonino-Pulejo', Via Palermo C.Da Casazza, 98100 Messina, Italy
References: Rogina, B., Helfand, S.L., Sir2 mediates longevity in the fly through a pathway related to calorie restriction (2004) Proc. Natl. Acad. Sci. U. S. A., 101, pp. 15998-1600
Wood, J.G., Rogina, B., Lavu, S., Howitz, K., Helfand, S.L., Tatar, M., Sinclair, D., Sirtuin activators mimic caloric restriction and delay ageing in metazoans (2004) Nature, 430, pp. 686-689
Hallows, W.C., Albaugh, B.N., Denu, J.M., Where in the cell is SIRT3? Functional localization of an NAD+-dependent protein deacetylase (2008) Biochem. J., 411, pp. 11-13
Hursting, S.D., Lavigne, J.A., Berrigan, D., Perkins, S.N., Barrett, J.C., Calorie restriction, aging, and cancer prevention: mechanisms of action and applicability to humans (2003) Annu. Rev. Med., 54, pp. 131-152
Saunders, L.R., Verdin, E., Cell biology. Stress response and aging (2009) Science, 323, pp. 1021-1022
Donmez, G., Guarente, L., Aging and disease: connections to sirtuins (2010) Aging Cell, 9, pp. 285-290
Guarente, L., Partridge, L., Wallace, D.C., (2008) Molecular Biology of Aging, , Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY
Schwer, B., Verdin, E., Conserved metabolic regulatory functions of sirtuins (2008) Cell Metab., 7, pp. 104-112
Ozden, O., Park, S.H., Kim, H.S., Jiang, H., Coleman, M.C., Spitz, D.R., Gius, D., Acetylation of MnSOD directs enzymatic activity responding to cellular nutrient status or oxidative stress (2011) Aging, 2011 (3), pp. 102-107
Deribe, Y.L., Pawson, T., Dikic, I., Post-translational modifications in signal integration (2010) Nat. Struct. Mol. Biol., 17, pp. 666-672
Grahnert, A., Grahnert, A., Klein, C., Schilling, E., Wehrhahn, J., Hauschildt, S., NAD+: a modulator of immune functions (2010) Innate Immun., 17, pp. 212-233
Imai, S., Nicotinamide phosphoribosyltransferase (Nampt): a link between NAD biology, metabolism, and diseases (2009) Curr. Pharm. Des., 15, pp. 20-28
Gallí, M., Van Gool, F., Leo, O., Sirtuins and inflammation: friends or foes? (2011) Biochem. Pharmacol., 81, pp. 569-576
Andreou, A.M., Tavernarakis, N., SUMOylation and cell signaling (2009) Biotechnol. J., 4, pp. 1740-1752
Calabrese, V., Scapagnini, G., Giuffrida Stella, A.M., Bates, T.E., Clark, J.B., Mitocondrial involvement in brain function and dysfunction: relevance to aging, neurodegenerative disordes and longevity (2001) Neurochem. Res., 26, pp. 739-764
Druzhyna, N.M., Wilson, G.L., LeDoux, S.P., Mitochondrial DNA repair in aging and disease (2008) Mech. Ageing Dev., 129, pp. 383-390
Hamm-Alvarez, S., Cadenas, E., Mitochondrial medicine and mitochondrion-based therapeutics (2009) Adv. Drug Deliv. Rev., 60, pp. 1437-1438
Calabrese, V., Cornelius, C., Dinkova-Kostova, A.T., Calabrese, E.J., Mattson, M.P., Cellular stress responses, the hormesis paradigm and vitagenes: novel tragets for therapeutic intervention in neurodegenerative disorders (2010) Antioxid. Redox Signal., 13, pp. 1763-1811
Yap, L.P., Garcia, J.V., Han, D., Cadenas, E., The energy-redox axis in aging and age-related neurodegeneration (2009) Adv. Drug Deliv. Rev., 61, pp. 1283-1298
Harman, D., Aging: a theory based on free radical and radiation chemistry (1956) J. Gerontol., 11, pp. 298-300
Harman, D., The biologic clock: the mitochondria? (1972) J. Am. Geriatr. Soc., 20, pp. 145-147
Calabrese, V., Guagliano, E., Sapienza, M., Panebianco, M., Calafato, S., Puleo, E., Pennisi, G., Stella, A.G., Redox regulation of cellular stress response in aging and neurodegenerative disorders: role of vitagenes (2007) Neurochem. Res., 32, pp. 757-773
Schapira, A.H., Primary and secondary defects of the mitochondrial respiratory chain (2002) J. Inherit. Metab. Dis., 25, pp. 207-214
Tonon, C., Lodi, R., Idebenone in Friedreich's ataxia (2008) Expert Opin. Pharmacother., 9, pp. 2327-2337
Petrosillo, G., Matera, M., Casanova, G., Ruggiero, F.M., Paradies, G., Mitochondrialdysfunction in rat brain with aging involvement of complex I, reactive oxygen species and cardiolipin (2008) Neurochem. Int., 53, pp. 126-131
Ames, B.N., Liu, J., Delaying the mitochondrial decay of aging with acetylcarnitine (2004) Ann. N. Y. Acad. Sci., 1033, pp. 108-116
Hempenstall, S., Picchio, L., Mitchell, S.E., Speakman, J.R., Selman, C., The impact of acute caloric restriction on the metabolic phenotype in male C57BL/6 and DBA/2 mice (2010) Mech. Ageing Dev., 131, pp. 111-118
Mattson, M.P., Dietary factors, hormesis and health (2008) Ageing Res. Rev., 7, pp. 43-48
Ristow, M., Zarse, K., How increased oxidative stress promotes longevity and metabolic health: the concept of mitochondrial hormesis (mitohormesis) (2010) Exp. Gerontol., 45, pp. 410-418
Ristow, M., Schmeisser, S., Extending life span by increasing oxidative stress (2011) Free Radic. Biol. Med., 51, pp. 327-336
Forquer, I., Covian, R., Bowman, M.K., Trumpower, B.L., Kramer, D.M., Similar transition states mediate the Q-cycle and superoxide production by the cytochrome bc1 complex (2006) J. Biol. Chem., 281, pp. 38459-38465
Bilban, M., Haschemi, A., Wegiel, B., Chin, B.Y., Wagner, O., Otterbein, L.E., Heme oxygenase and carbon monoxide initiate homeostatic signaling (2008) J. Mol. Med., 86, pp. 267-279
Halliwell, B., The wanderings of a free radical (2009) Free Radic. Biol. Med., 46, pp. 531-542
Calabrese, V., Mancuso, C., Calvani, M., Rizzarelli, E., Butterfield, D.A., Giuffrida Stella, A.M., Nitric oxide in the central nervous system: neuroprotection versus neurotoxicity (2007) Nat. Rev. Neurosci., 8, pp. 766-775
Wang, W., Fang, H., Groom, L., Cheng, A., Zhang, W., Liu, J., Wang, X., Cheng, H., Superoxide flashes in single mitochondria (2008) Cell, 134, pp. 279-290
McCord, J.M., Superoxide dismutase in aging and disease: an overview (2002) Methods Enzymol., 349, pp. 331-341
Cho, D.H., Nakamura, T., Lipton, S.A., Mitochondrial dynamics in cell death and neurodegeneration (2010) Cell. Mol. Life Sci., 67, pp. 3435-3447
Nakamura, T., Cieplak, P., Cho, D.H., Godzik, A., Lipton, S.A., S-Nitrosylation of Drp1 links excessive mitochondrial fission to neuronal injury in neurodegeneration (2010) Mitochondrion, 10, pp. 573-578
Gu, Z., Nakamura, T., Lipton, S.A., Redox reactions induced by nitrosative stress mediate protein misfolding and mitochondrial dysfunction in neurodegenerative diseases (2010) Mol. Neurobiol., 41, pp. 55-72
Büeler, H., Mitochondrial dynamics, cell death and the pathogenesis of Parkinson's disease (2010) Apoptosis, 15, pp. 1336-1353
Knott, A.B., Perkins, G., Schwarzenbacher, R., Bossy-Wetzel, E., Mitochondrial fragmentation in neurodegeneration (2008) Nat. Rev. Neurosci., 9, pp. 505-518
Bonda, D.J., Wang, X., Perry, G., Smith, M.A., Zhu, X., Mitochondrial dynamics in Alzheimer's disease: opportunities for future treatment strategies (2010) Drugs Aging, 27, pp. 181-192
Gottlieb, R.A., Carreira, R.S., Autophagy in health and disease. 5. Mitophagy as a way of life (2010) Am. J. Physiol. Cell Physiol., 299, pp. C203-C210
Rosca, M.G., Lemieux, H., Hoppel, C.L., Mitochondria in the elderly: is acetylcarnitine a rejuvenator? (2009) Adv. Drug Deliv. Rev., 61, pp. 1332-1342
Borniquel, S., García-Quintáns, N., Valle, I., Olmos, Y., Wild, B., Martínez-Granero, F., Soria, E., Monsalve, M., Inactivation of Foxo3a and subsequent downregulation of PGC-1 alpha mediate nitric oxide-induced endothelial cell migration (2010) Mol. Cell. Biol., 30, pp. 4035-4044
Piantadosi, C.A., Carbon monoxide, reactive oxygen signaling, and oxidative stress (2008) Free Radic. Biol. Med., 45, pp. 562-569
Azad, M.B., Chen, Y., Gibson, S.B., Regulation of autophagy by reactive oxygen species (ROS): implications for cancer progression and treatment (2009) Antioxid. Redox Signal., 11, pp. 777-790
Nassif, M., Matus, S., Castillo, K., Hetz, C., Amyotrophic lateral sclerosis pathogenesis: a journey through the secretory pathway (2010) Antioxid. Redox Signal., 13, pp. 1955-1989
Madeo, F., Eisenberg, T., Kroemer, G., Autophagy for the avoidance of neurodegeneration (2009) Genes Dev., 23, pp. 2253-2259
Fujioka, Y., Noda, N.N., Nakatogawa, H., Ohsumi, Y., Inagaki, F., Dimeric coiled-coil structure of Saccharomyces cerevisiae Atg16 and its functional significance in autophagy (2010) J. Biol. Chem., 285, pp. 1508-1515
Jakubowicz-Gil, J., Langner, E., Wertel, I., Piersiak, T., Rzeski, W., Temozolomide, quercetin and cell death in the MOGGCCM astrocytoma cell line (2010) Chem. Biol. Interact., 188, pp. 190-203
Li, Q., Verma, I.M., Nf-kappab regulation in the immune system (2002) Nat. Rev., 2, pp. 725-734
Silverman, N., Maniatis, T., Nf-kappab signaling pathways in mammalian and insect innate immunity (2001) Genes Dev., 15, pp. 2321-2342
Ghosh, S., Hayden, M.S., New regulators of nf-kappab in inflammation (2008) Nat. Rev., 8, pp. 837-848
Hayden, M.S., Ghosh, S., Shared principles in nf-kappab signaling (2008) Cell, 132, pp. 344-362
Criswell, T., Leskov, K., Miyamoto, S., Luo, G., Boothman, D.A., Transcription factors activated in mammalian cells after clinically relevant doses of ionizing radiation (2003) Oncogene, 22, pp. 5813-5827
Janssens, S., Tschopp, J., Signals from within: the DNA-damage-induced nf-kappab response (2006) Cell Death Differ., 13, pp. 773-784
Peters, R.T., Liao, S.M., Maniatis, T., Ikkepsilon is part of a novel pma-inducible ikappab kinase complex (2000) Mol. Cell, 5, pp. 513-522
Shimada, T., Kawai, T., Takeda, K., Matsumoto, M., Inoue, J., Tatsumi, Y., Kanamaru, A., Akira, S., Ikk-i, a novel lipopolysaccharide-inducible kinase that is related to ikappab kinases (1999) Int. Immunol., 11, pp. 1357-1362
Chen, Y., Yang, L., Lee, T.J., Oroxylin a inhibition of lipopolysaccharide-induced inos and cox-2 gene expression via suppression of nuclear factor-kappab activation (2000) Biochem. Pharmacol., 59, pp. 1445-1457
Pahan, K., Sheikh, F.G., Namboodiri, A.M., Singh, I., Lovastatin and phenylacetate inhibit the induction of nitric oxide synthase and cytokines in rat primary astrocytes, microglia, and macrophages (1997) J. Clin. Invest., 100, pp. 2671-2679
Salvemini, D., Mazzon, E., Dugo, L., Riley, D.P., Serraino, I., Caputi, A.P., Cuzzocrea, S., Pharmacological manipulation of the inflammatory cascade by the superoxide dismutase mimetic m40403 (2001) Br. J. Pharmacol., 132, pp. 815-827
Pistritto, G., Mancuso, C., Tringali, G., Perretti, M., Preziosi, P., Navarra, P., The relative contribution of constitutive and inducible cyclooxygenase activity to lipopolysaccharide-induced prostaglandin production by primary cultures of rat hypothalamic astrocytes (1998) Neurosci. Lett., 246, pp. 45-48
Cuzzocrea, S., Caputi, A.P., Zingarelli, B., Peroxynitrite-mediated DNA strand breakage activates poly (adp-ribose) synthetase and causes cellular energy depletion in carrageenan-induced pleurisy (1998) Immunology, 93, pp. 96-101
Salgo, M.G., Bermudez, E., Squadrito, G.L., Pryor, W.A., Peroxynitrite causes DNA damage and oxidation of thiols in rat thymocytes [corrected] (1995) Arch. Biochem. Biophys., 322, pp. 500-505
Gutteridge, J.M., Halliwell, B., Antioxidants: molecules, medicines, and myths (2010) Biochem. Biophys. Res. Commun., 393, pp. 561-564
Salminen, A., Kaarniranta, K., Nf-kappab signaling in the aging process (2009) J. Clin. Immunol., 29, pp. 397-405
Dutta, J., Fan, Y., Gupta, N., Fan, G., Gelinas, C., Current insights into the regulation of programmed cell death by nf-kappab (2006) Oncogene, 25, pp. 6800-6816
Nakano, H., Nakajima, A., Sakon-Komazawa, S., Piao, J.H., Xue, X., Okumura, K., Reactive oxygen species mediate crosstalk between nf-kappab and jnk (2006) Cell Death Differ., 13, pp. 730-737
Hiona, A., Leeuwenburgh, C., Effects of age and caloric restriction on brain neuronal cell death/survival (2004) Ann. N. Y. Acad. Sci., 1019, pp. 96-105
Kim, H.J., Kim, K.W., Yu, B.P., Chung, H.Y., The effect of age on cyclooxygenase-2 gene expression: Nf-kappab activation and ikappabalpha degradation (2000) Free Radic. Biol. Med., 28, pp. 683-692
Helenius, M., Hanninen, M., Lehtinen, S.K., Salminen, A., Changes associated with aging and replicative senescence in the regulation of transcription factor nuclear factor-kappa b (1996) Biochem. J., 318, pp. 603-608
Cuthbertson, D., Smith, K., Babraj, J., Leese, G., Waddell, T., Atherton, P., Wackerhage, H., Rennie, M.J., Anabolic signaling deficits underlie amino acid resistance of wasting, aging muscle (2005) FASEB J., 19, pp. 422-424
Schmitz, M.L., Mattioli, I., Buss, H., Kracht, M., Nf-kappab: a multifaceted transcription factor regulated at several levels (2004) Chembiochem, 5, pp. 1348-1358
Chen, L.F., Greene, W.C., Regulation of distinct biological activities of the nf-kappab transcription factor complex by acetylation (2003) J. Mol. Med., 81, pp. 549-557
Yeung, F., Hoberg, J.E., Ramsey, C.S., Keller, M.D., Jones, D.R., Frye, R.A., Mayo, M.W., Modulation of nf-kappab-dependent transcription and cell survival by the sirt1 deacetylase (2004) EMBO J., 23, pp. 2369-2380
Adler, A.S., Sinha, S., Kawahara, T.L., Zhang, J.Y., Segal, E., Chang, H.Y., Motif module map reveals enforcement of aging by continual nf-kappab activity (2007) Genes Dev., 21, pp. 3244-3257
Burnett, C., Valentini, S., Cabreiro, F., Goss, M., Somogyvári, M., Piper, M.D., Hoddinott, M., Gems, D., Absence of effects of Sir2 overexpression on lifespan in C. elegans and Drosophila (2011) Nature, 477, pp. 482-485
Yogev, O., Goldberg, R., Anzi, S., Yogev, O., Shaulian, E., Jun proteins are starvation-regulated inhibitors of autophagy (2010) Cancer Res., 70, pp. 2318-2327
Morimoto, R.I., Stress, aging, and neurodegenerative disease (2006) N. Engl. J. Med., 355, pp. 2254-2255
Morimoto, R.I., Proteotoxic stress and inducible chaperone networks in neurodegenerative disease and aging (2008) Genes Dev., 22, pp. 1427-1438
Westerheide, S.D., Anckar, J., Stevens, S.M., Sistonen, L., Morimoto, R.I., Stress-inducible regulation of heat shock factor 1 by the deacetylase SIRT1 (2009) Science, 323, pp. 1063-1066
Trott, A., West, J.D., Klaic, L., Westerheide, S.D., Silverman, R.B., Morimoto, R.I., Morano, K.A., Activation of heat shock and antioxidant responses by the natural product celastrol: transcriptional signatures of a thiol-targeted molecule (2008) Mol. Biol. Cell, 19, pp. 1104-1112
Moi, P., Chan, K., Asunis, I., Cao, A., Kan, Y.W., Isolation of NF-E2-related factor 2 (Nrf2), a NF-E2-like basic leucine zipper transcriptional activator that binds to the tandem NF-E2/AP1 repeat of the beta-globin locus control region (1994) Proc. Natl. Acad. Sci. U. S. A., 91, pp. 9926-9930
Anckar, J., Sistonen, L., Heat shock factor 1 as a coordinator of stress and developmental pathways (2007) Adv. Exp. Med. Biol., 594, pp. 78-88
Morimoto, R.I., Regulation of the heat shock transcriptional response: cross talk between a family of heat shock factors, molecular chaperones, and negative regulators (1998) Genes Dev., 12, pp. 3788-3796
Brignull, H.R., Morley, J.F., Morimoto, R.I., The stress of misfolded proteins: C. elegans models for neurodegenerative disease and aging (2007) Adv. Exp. Med. Biol., 594, pp. 167-189
Rossi, A., Trotta, E., Brandi, R., Arisi, I., Coccia, M., Santoro, M.G., AIRAP: a new human Heat shock gene regulated by Heat shock factor 1 (2010) J. Biol. Chem., 285, pp. 13607-13615
Batulan, Z., Shinder, G.A., Minotti, S., He, B.P., Doroudchi, M.M., Nalbantoglu, J., Strong, M.J., Durham, H.D., High threshold for induction of the stress response in motor neurons is associated with failure to activate HSF1 (2003) J. Neurosci., 23, pp. 5789-5798
Calderwood, S.K., Murshid, A., Prince, T., The shock of aging: molecular chaperones and the heat shock response in longevity and aging-a mini-review (2009) Gerontology, 55, pp. 550-558
Lu, M., Kim, H.E., Li, C.R., Kim, S., Kwak, I.J., Lee, Y.J., Kim, S.S., Park, J.S., Two distinct disulfide bonds formed in human heat shock transcription factor 1 act in opposition to regulate its DNA binding activity (2008) Biochemistry, 47, pp. 6007-6015
Söti, C., Csermely, P., Aging cellular networks: chaperones as major participants (2007) Exp. Gerontol., 42, pp. 113-119
Macario, A.J., Conway de Macario, E., Molecular chaperones: multiple functions, pathologies, and potential applications (2007) Front. Biosci., 12, pp. 2588-2600
Csermely, P., Söti, C., Blatch, G.L., Chaperones as parts of cellular networks (2007) Adv. Exp. Med. Biol., 594, pp. 55-63
Broadley, S.A., Hartl, F.U., The role of molecular chaperones in human misfolding diseases (2009) FEBS Lett., 583, pp. 2647-2653
Goloubinoff, P., De Los Rios, P., The mechanism of Hsp70 chaperones: (entropic) pulling the models together (2007) Trends Biochem. Sci., 32, pp. 372-380
Saibil, H.R., Chaperone machines in action (2008) Curr. Opin. Struct. Biol., 18, pp. 35-42
Hipkiss, A.R., On why decreasing protein synthesis can increase lifespan (2007) Mech. Ageing Dev., 128, pp. 412-414
Sharma, S.K., Christen, P., Goloubinoff, P., Disaggregating chaperones: an unfolding story (2009) Curr. Protein Pept. Sci., 10, pp. 432-446
Zhang, K., Zhao, T., Huang, X., Liu, Z.H., Xiong, L., Li, M.M., Wu, L.Y., Fan, M., Preinduction of HSP70 promotes hypoxic tolerance and facilitates acclimatization to acute hypobaric hypoxia in mouse brain (2009) Cell Stress Chaperones, 14, pp. 407-415
Calabrese, V., Giuffrida Stella, A.M., Butterfield, D.A., Scapagnini, G., Redox regulation in neurodegeneration and longevity: role of the heme oxygenase and HSP70 systems in brain stress tolerance (2004) Antioxid. Redox Signal., 6, pp. 895-913
Delgado, M., Varela, N., Gonzalez-Rey, E., Vasoactive intestinal peptide protects against beta-amyloid-induced neurodegeneration by inhibiting microglia activation at multiple levels (2008) Glia, 56, pp. 1091-1103
Kakimura, J., Kitamura, Y., Takata, K., Umeki, M., Suzuki, S., Shibagaki, K., Taniguchi, T., Shimohama, S., Microglial activation and amyloid-beta clearance induced by exogenous heat-shock proteins (2002) FASEB J., 16, pp. 601-603
Bellia, F., Calabrese, V., Guarino, F., Cavallaro, M., Cornelius, C., De Pinto, V., Rizzarelli, E., Carnosinase levels in aging brain: redox state induction and cellular stress response (2009) Antioxid. Redox Signal., 11, pp. 2759-2775
Brown, I.R., Heat shock proteins and protection of the nervous system (2007) Ann. N. Y. Acad. Sci., 1113, pp. 147-158
Calabrese, V., Calafato, S., Cornelius, C., Mancuso, C., Dinkova-Kostova, A., Heme oxygenase: a master vitagene involved in cellular stress response (2008) Enzymes and the Cellular Fight Against Oxidation, pp. 37-661. , Research Signpost, Fort P.O., Trivandrum-695 023, Kerala, India, (2), A.M. Eleuteri (Ed.)
Maines, M.D., The heme oxygenase system: a regulator of second messenger gases (1997) Annu. Rev. Pharmacol. Toxicol., 37, pp. 517-554
Schipper, H.M., Heme oxygenase-1: role in brain aging and neurodegeneration (2000) Exp. Gerontol., 35, pp. 821-830
Stocker, R., Yamamoto, Y., McDonagh, A.F., Glazer, A.N., Ames, B.N., Bilirubin is an antioxidant of possible physiological importance (1987) Science, 235, pp. 1043-1046
Doré, S., Takahashi, M., Ferris, C.D., Zakhary, R., Hester, L.D., Guastella, D., Snyder, S.H., Bilirubin, formed by activation of heme oxygenase-2, protects neurons against oxidative stress injury (1999) Proc. Natl. Acad. Sci. U. S. A., 96, pp. 2445-2450
Mancuso, C., Pani, G., Calabrese, V., Bilirubin: an endogenous scavenger of nitric oxide and reactive nitrogen species (2006) Redox Rep., 11, pp. 207-213
Scapagnini, G., Colombrita, C., Amadio, M., D'Agata, V., Arcelli, E., Sapienza, M., Quattrone, A., Calabrese, V., Curcumin activates defensive genes and protects neurons against oxidative stress (2006) Antioxid. Redox Signal., 8, pp. 395-403
Dennery, P.A., Regulation and role of heme oxygenase in oxidative injury (2000) Curr. Top. Cell. Regul., 36, pp. 181-199
Maines, M.D., Gibbs, P.E.M., 30 some years of heme oxygenase: from a "molecular wrecking ball" to a "mesmerizing" trigger of cellular events (2005) Biochem. Biophys. Res. Commun., 338, pp. 568-577
Kapitulnik, J., Maines, M.D., Pleiotropic functions of biliverdin reductase: cellular signaling and generation of cytoprotective and cytotoxic bilirubin (2009) Trends Pharmacol. Sci., 30, pp. 129-137
Alam, J., Cook, J.L., How many transcription factors does it take to turn on the heme oxygenase-1 gene? (2007) Am. J. Respir. Cell Mol. Biol., 36, pp. 166-174
Nguyen, T., Sherratt, P.J., Pickett, C.B., Regulatory mechanism controlling gene expression mediated by the antioxidant response element (2003) Annu. Rev. Pharmacol. Toxicol., 43, pp. 233-260
Panahian, N., Yoshiura, M., Maines, M.D., Overexpression of heme oxygenase-1 is neuroprotective in a model of permanent middle cerebral artery occlusion in transgenic mice (1999) J. Neurochem., 72, pp. 1187-1203
McCoubrey, W.K., Huang, T.J., Maines, M.D., Heme oxygenase-2 is a hemoprotein and binds heme through heme regulatory motifs that are not involved in heme catalysis (1997) J. Biol. Chem., 272, pp. 12568-12574
Calabrese, V., Bates, T.E., Mancuso, C., Cornelius, C., Ventimiglia, B., Cambria, M.T., Di Renzo, L., Dinkova-Kostova, A.T., Curcumin and the cellular stress response in free radical-related diseases (2008) Mol. Nutr. Food Res., 52, pp. 1062-1073
Calabrese, V., Perluigi, M., Cornelius, C., Coccia, R., Di Domenico, F., Mancuso, C., Pennini, G., Dinkova-Kostova, A.T., Phenolics in aging and neurodegenerative disorders (2009) Phenolic Compounds of Plant Origin and Health: The Biochemistry behind their Nutritional and Pharmacological Value, pp. 427-451. , Wiley & Sons, New York, C.G. Fraga (Ed.)
Motterlini, R., Foresti, R., Bassi, R., Calabrese, V., Clark, J.E., Green, C.J., Endothelial Heme oxygenase-1 induction by hypoxia: modulation by inducible nitric oxide synthase (iNOS) and S-nitrosothiols (2000) J. Biol. Chem., 275, pp. 13613-13620
Lim, G.P., Yang, F., Chu, T., Chen, P., Beech, W., Teter, B., Tran, T., Cole, G.M., Ibuprofen suppresses plaque pathology and inflammation in a mouse model for Alzheimer's disease (2000) J. Neurosci., 20, pp. 5709-5714
Yang, F., Lim, G.P., Begum, A.N., Ubeda, O.J., Simmons, M.R., Ambegaokar, S.S., Chen, P.P., Cole, G.M., Curcumin inhibits formation of amyloid beta oligomers and fibrils, binds plaques, and reduces amyloid in vivo (2005) J. Biol. Chem., 280, pp. 5892-5901
Li, Y., Xu, W., McBurney, M.W., Longo, V.D., SirT1 inhibition reduces IGF-I/IRS-2/Ras/ERK1/2 signaling and ptotects neurons (2008) Cell Metab., 8, pp. 38-48
Anand, P., Nair, H.B., Sung, B., Kunnumakkara, A.B., Yadav, V.R., Tekmal, R.R., Aggarwal, B.B., Design of curcumin-loaded PLGA nanoparticles formulation with enhanced cellular uptake, and increased bioactivity in vitro and superior bioavailability in vivo (2010) Biochem. Pharmacol., 79, pp. 330-338
Sandur, S.K., Deorukhkar, A., Pandey, M.K., Pabón, A.M., Shentu, S., Guha, S., Aggarwal, B.B., Krishnan, S., Curcumin modulates the radiosensitivity of colorectal cancer cells by suppressing constitutive and inducible NF-kappaB activity (2009) Int. J. Radiat. Oncol. Biol. Phys., 75, pp. 534-542
Kitamuro, T., Takahashi, K., Ogawa, K., Udono-Fujimori, R., Takeda, K., Furuyama, K., Nakayama, M., Shibahara, S., Bach1 functions as a hypoxia-inducible repressor for the heme oxygenase-1 gene in human cells (2003) J. Biol. Chem., 278, pp. 9125-9133
Chou, Y.H., Ho, F.M., Liu, D.Z., Lin, S.Y., Tsai, L.H., Chen, C.H., Ho, Y.S., Liang, Y.C., The possible role of heat shock factor-1 in the negative regulation of heme oxygenase-1 (2005) Int. J. Biochem. Cell Biol., 37, pp. 604-615
Schipper, H.M., Song, W., Zukor, H., Hascalovici, J.R., Zeligman, D., Heme oxygenase-1 and neurodegeneration: expanding frontiers of engagement (2009) J. Neurochem., 110, pp. 469-485
Calabrese, E.J., Evidence that hormesis represents an "overcompensation" response to a disruption in homeostasis (1999) Ecotoxicol. Environ. Saf., 42, pp. 135-137
Mitchel, R.E.J., Low doses of radiation reduce risk in vivo (2007) Dose Response, 5, pp. 1-10
Lacassagne, A., Buu-Hoi, N.P., Rudali, G., Induction of the carcinogenic action produced by a weakly carcinogenic hydrocarbon on a highly active carcinogenic hydrocarbon (1945) Br. J. Exp. Pathol., 26, pp. 5-12
Sykes, P.J., Morley, A.A., Hooker, A.M., The pKZ1 recombination mutation assay: a sensitive assay for low dose studies (2006) Dose Response, 4, pp. 91-105
Boreham, D.R., Dolling, J.A., Somers, C., Quinn, J., Mitchel, R.E.J., The adaptive response and protection against heritable mutations and fetal malformation (2006) Dose Response, 4, pp. 317-326
Mothersill, C., Seymour, C.B., Radiation-induced bystander effects and the DNA paradigm: an "out of field" perspective (2006) Mutat. Res., 597, pp. 5-10
Sakai, K., Nomura, T., Ina, Y., Enhancement of bio-protective functions by low dose/dose-rate radiation (2006) Dose Response, 4, pp. 327-332
Scott, B.R., DiPalma, J., Sparsely ionizing diagnostic and natural background radiations are likely preventing cancer and other genomic instability-associated diseases (2006) Dose Response, 5, pp. 230-255
Redpath, J.L., Suppression of neoplastic transformation in vitro by low doses of low LET radiation (2006) Dose Response, 4, pp. 302-308
Calabrese, E.J., Baldwin, L.A., Chemical hormesis: its historical foundations as a biological hypothesis (1999) Toxicol. Pathol., 27, pp. 195-216
Calabrese, E.J., Hormesis (2008) Encyclopedia of Quantitative Risk Assessment and Analysis, pp. 838-844. , Wiley, Chichester, E. Melnick, B. Everitt (Eds.)
Calabrese, E.J., The road to linearity: shy linearity at low doses became the basis for carcinogen risk assessment (2009) Arch. Toxicol., 83, pp. 203-225
Szabadi, E., Model of 2 functionally antagonistic receptor populations activated by same agonist (1977) J. Theor. Biol., 69, pp. 101-112
Stebbing, A.R.D., Effects of low metal levels on a clonal hydroid (1976) J. Mar. Biol. Assoc. U.K., 56, pp. 977-994
Calabrese, E.J., Blain, R., The occurrence of hormetic dose responses in the toxicological literature, the hormesis database: an overview (2005) Toxicol. Appl. Pharmacol., 202, pp. 289-301
Thong, H.Y., Maibach, H.I., Hormesis (biological effects of low level exposure (BELLE)) and dermatology (2008) Dose Response, 6, pp. 1-15
Eaton, D.L., Klaassen, C.D., Principles of toxicology (2003) Casarett & Doull's Essentials of Toxicology, Chap 2, pp. 6-20. , The McGraw-Hill Companies, Inc
Calabrese, E.J., Toxicology rewrites its history and rethinks its future: giving equal focus to both harmful and beneficial effects, Environ. (2011) Toxicol. Chem., 30, pp. 2658-2673
Flood, J.F., Smith, G.E., Cherkin, A., Memory retention-enhancement by cholinergic drug combinations in mice (1982) Gerontologist, 22, pp. 230-231
Calabrese, E.J., Neuroscience and hormesis: overview and general findings (2008) Crit. Rev. Toxicol., 38, pp. 249-252
Calabrese, E.J., Cancer biology and hormesis: human tumor cell lines commonly display hormetic (biphasic) dose responses (2005) Crit. Rev. Toxicol., 35, pp. 463-582
Randall, W.A., Price, C.W., Welch, H., Demonstration of hormesis (increase in fatality rate) by penicillin (1947) Am. J. Public Health, 37, pp. 421-425
Welch, H., Price, C.W., Randall, W.A., Increase in fatality rate of E. Typhosa for white mice by streptomycin (1946) J. Am. Pharm., 35, pp. 155-158
Abramowitz, J., Dai, C., Hirschi, K.K., Dmitieva, R.I., Doris, P.A., Liu, L., Allen, J.C., Ouabain- and marinobufagenin-induced proliferation of human umbilical vein smooth muscle cells and a rat vascular smooth muscle cell lines, A7r5 (2003) Circulation, 108, pp. 3048-3053
Chueh, S.C., Guh, J.H., Chen, J., Lai, M.K., Teng, C.M., Dual effects of ouabain on the regulation of proliferation and apoptosis in human prostatic smooth muscle cells (2001) J. Urol., 166, pp. 347-353
Halliwell, B., Biochemistry of oxidative stress (2007) Biochem. Soc. Trans., 35, pp. 1147-1150
Calabrese, E.J., Stanek, E.J., Nascarella, M.A., Hoffmann, G.R., Hormesis predicts low-dose responses better than threshold models (2008) Int. J. Toxicol., 27, pp. 369-378
Calabrese, E.J., Another California milestone: the first application of hormesis in litigation and regulation (2008) Int. J. Toxicol., 27, pp. 31-33
Calabrese, V., Boyd-Kimball, D., Scapagnini, G., Butterfield, D.A., Nitric oxide and cellular stress response in brain aging and neurodegenerative disorders: the role of vitagenes (2004) In Vivo, 18, pp. 245-267
Mancuso, C., Bates, T.E., Butterfield, D.A., Calafato, S., Cornelius, C., De Lorenzo, A., Dinkova Kostova, A.T., Calabrese, V., Mitochondrial dysfunction, free radical generation and cellular stress response in neurodegenerative disorders (2007) Front. Biosci., 12, pp. 1107-1123
Mattson, M.P., Hormesis and disease resistance: activation of cellular stress response pathways (2008) Hum. Exp. Toxicol., 27, pp. 155-162
Arumugam, T.V., Gleichmann, M., Tang, S.C., Mattson, M.P., Hormesis/preconditioning mechanisms, the nervous system and aging (2006) Ageing Res. Rev., 5, pp. 165-178
Calabrese, E.J., Astrocytes: adaptive responses to low doses of neurotoxins (2008) Crit. Rev. Toxicol., 38, pp. 463-471
Calabrese, E.J., P-Glycoprotein efflux transporter activity often displays biphasic dose-response relationships (2008) Crit. Rev. Toxicol., 38, pp. 473-487
Zhao, J., Kobori, N., Aronowski, J., Dash, P.K., Sulforaphane reduces infarct volume following focal cerebral ischemia in rodents (2006) Neurosci. Lett., 393, pp. 108-112
Zhao, J., Moore, A.N., Redell, J.B., Dash, P.K., Enhancing expression of Nrf2-driven genes protects the blood brain barrier after brain injury (2007) J. Neurosci., 27, pp. 10240-10248
Chen, C.Y., Jang, J.H., Li, M.H., Surh, Y.J., Resveratrol upregulates heme oxygenase-1 expression via activation of NF-E2-related factor 2 in PC12 cells (2005) Biochem. Biophys. Res. Commun., 331, pp. 993-1000
Hayes, J.D., McMahon, M., NRF2 and KEAP1 mutations: permanent activation of an adaptive response in cancer (2009) Trends Biochem. Sci., 34, pp. 176-188
Kobayashi, M., Yamamoto, M., Nrf2-Keap1 regulation of cellular defense mechanisms against electrophiles and reactive oxygen species (2006) Adv. Enzyme Regul., 46, pp. 113-140
Motohashi, H., Yamamoto, M., Nrf2-Keap1 defines a physiologically important stress response mechanism (2004) Trends Mol. Med., 10, pp. 549-557
Prochaska, H.J., De Long, M.J., Talalay, P., On the mechanisms of induction of cancer-protective enzymes: a unifying proposal (1985) Proc. Natl. Acad. Sci. U. S. A., 82, pp. 8232-8236
Prochaska, H.J., Santamaria, A.B., Talalay, P., Rapid detection of inducers of enzymes that protect against carcinogens (1992) Proc. Natl. Acad. Sci. U. S. A., 89, pp. 2394-2398
Zhao, X., Sun, G., Zhang, J., Strong, R., Dash, P.K., Kan, Y.W., Grotta, J.C., Aronowski, J., Transcription factor Nrf2 protects the brain from damage produced by intracerebral hemorrhage (2007) Stroke, 38, pp. 3280-3286
Spencer, S.R., Wilczak, C.A., Talalay, P., Induction of glutathione transferases and NAD(P)H:quinone reductase by fumaric acid derivatives in rodent cells and tissues (1990) Cancer Res., 50, pp. 7871-7875
Mancuso, C., Heme oxygenase and its products in the nervous system (2004) Antioxid. Redox Signal., 6, pp. 878-887
Calabrese, V., Colombrita, C., Scapagnini, G., Calvani, M., Giuffrida Stella, A.M., Butterfield, D.A., Acetylcarnitine and cellular stress response: role in nutritional redox homeostasis and regulation of longevity genes (2006) J. Nutr. Biochem., 17, pp. 73-88
Stocker, R., Antioxidant activities of bile pigments (2004) Antioxid. Redox Signal., 6, pp. 841-849
Mancuso, C., Barone, E., The heme oxygenase/biliverdin reductase pathway in drug research and development (2009) Curr. Drug Metab., 10, pp. 579-594
Mancuso, C., Navarra, P., Preziosi, P., Roles of nitric oxide, carbon monoxide, and hydrogen sulfide in the regulation of the hypothalamic-pituitary-adrenal axis (2010) J. Neurochem., 113, pp. 563-575
Barone, E., Mancuso, C., Di Domenico, F., Sultana, R., Murphy, M.P., Head, E., Butterfield, D.A., Biliverdin reductase-A: a novel drug target for atorvastatin in a dog preclinical model of Alzheimer disease (2011) J. Neurochem., , (Epub ahead of print)
Mancuso, C., Perluigi, M., Cini, C., De Marco, C., Giuffrida Stella, A.M., Calabrese, V., Heme oxygenase and cyclooxygenase in the central nervous system: a functional interplay (2006) J. Neurosci. Res., 84, pp. 1385-1391
Mancuso, C., Scapagnini, G., Curro, D., Giuffrida Stella, A.M., De Marco, C., Butterfield, D.A., Calabrese, V., Mitochondrial dysfunction, free radical generation and cellular stress response in neurodegenerative disorders (2007) Front. Biosci., 12, pp. 1107-1123
Gerich, F.J., Funke, F., Hildebrandt, B., Faßhauer, M., Müller, M., H2O2-mediated modulation of cytosolic signaling and organelle function in rat hippocampus (2009) Pflugers Arch., 458, pp. 937-952
Huddleston, A.T., Tang, W., Takeshima, H., Hamilton, S.L., Klann, E., Superoxide-induced potentiation in the hippocampus requires activation of ryanodine receptor type 3 and ERK (2008) J. Neurophysiol., 99, pp. 1565-1571
Gopalakrishna, R., Gundimeda, U., Schiffman, J.E., McNeill, T.H., A direct redox regulation of protein kinase C isoenzymes mediates oxidant-induced neuritogenesis in PC12 cells (2008) J. Biol. Chem., 283, pp. 14430-14444
Terada, L.S., Specificity in reactive oxidant signaling: think globally, act locally (2006) J. Cell Biol., 174, pp. 615-623
Mattson, M.P., Goodman, Y., Luo, H., Fu, W., Furukawa, K., Activation of NF-kappaB protects hippocampal neurons against oxidative stress-induced apoptosis: evidence for induction of manganese superoxide dismutase and suppression of peroxynitrite production and protein tyrosine nitration (1997) J. Neurosci. Res., 49, pp. 681-697
Bruce-Keller, A.J., Geddes, J.W., Knapp, P.E., McFall, R.W., Keller, J.N., Holtsberg, F.W., Parthasarathy, S., Mattson, M.P., Anti-death properties of TNF against metabolic poisoning: mitochondrial stabilization by MnSOD (1999) J. Neuroimmunol., 93, pp. 53-71
Ekdahl, C.T., Kokaia, Z., Lindvall, O., Brain inflammation and adult neurogenesis: the dual role of microglia (2009) Neuroscience, 158, pp. 1021-1029
Jiang, F., Zhang, Z.G., Katakowski, M., Robin, A.M., Faber, M., Zhang, F., Chopp, M., Angiogenesis induced by photodynamic therapy in normal rat brains (2004) Photochem. Photobiol., 79, pp. 494-498
Halliwell, B., Gutteridge, J.M.C., (2007) Free Radicals in Biology and Medicine, , Oxford University Press
Talalay, P., Chemoprotection against cancer by induction of phase 2 enzymes (2000) Biofactors, 12, pp. 5-11
Gao, X., Dinkova-Kostova, A.T., Talalay, P., Powerful and prolonged protection of human retinal pigment epithelial cells, keratinocytes, and mouse leukemia cells against oxidative damage: the indirect antioxidant effects of sulforaphane (2001) Proc. Natl. Acad. Sci. U. S. A., 98, pp. 15221-15226
Rushmore, T.H., Pickett, C.B., Transcriptional regulation of the rat glutathione S-transferase Ya subunit gene. Characterization of a xenobiotic-responsive element controlling inducible expression by phenolic antioxidants (1990) J. Biol. Chem., 265, pp. 14648-14653
Friling, R.S., Bensimon, A., Tichauer, Y., Daniel, V., Xenobiotic-inducible expression of murine glutathione S-transferase Ya subunit gene is controlled by an electrophile-responsive element (1990) Proc. Natl. Acad. Sci. U. S. A., 87, pp. 6258-6262
Rushmore, T.H., Morton, M.R., Pickett, C.B., The antioxidant responsive element. Activation by oxidative stress and identification of the DNA consensus sequence required for functional activity (1991) J. Biol. Chem., 266, pp. 11632-11639
Nioi, P., McMahon, M., Itoh, K., Yamamoto, M., Hayes, J.D., Identification of a novel Nrf2-regulated antioxidant response element (ARE) in the mouse NAD(P)H:quinone oxidoreductase 1 gene: reassessment of the ARE consensus sequence (2003) Biochem. J., 374, pp. 337-348
Nguyen, T., Nioi, P., Pickett, C.B., The nrf2-antioxidant response element signaling pathway and its activation by oxidative stress (2009) J. Biol. Chem., 284, pp. 13291-13295
Itoh, K., Chiba, T., Takahashi, S., Ishii, T., Igarashi, K., Katoh, Y., Oyake, T., Nabeshima, Y., An Nrf2/small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements (1997) Biochem. Biophys. Res. Commun., 236, pp. 313-322
Motohashi, H., O'Connor, T., Katsuoka, F., Engel, J.D., Yamamoto, M., Integration and diversity of the regulatory network composed of Maf and CNC families of transcription factors (2002) Gene, 294, pp. 1-12
Itoh, K., Wakabayashi, N., Katoh, Y., Ishii, T., Igarashi, K., Engel, J.D., Yamamoto, M., Keap1 represses nuclear activation of antioxidant responsive elements by Nrf2 through binding to the amino-terminal Neh2 domain (1999) Genes Dev., 13, pp. 76-86
Cullinan, S.B., Gordan, J.D., Jin, J., Harper, J.W., Diehl, J.A., The Keap1-BTB protein is an adaptor that bridges Nrf2 to a Cul3-based E3 ligase: oxidative stress sensing by a Cul3-Keap1 ligase (2004) Mol. Cell. Biol., 24, pp. 8477-8486
Kobayashi, A., Kang, M.I., Okawa, H., Ohtsuji, M., Zenke, Y., Chiba, T., Igarashi, K., Yamamoto, M., Oxidative stress sensor Keap1 functions as an adaptor for Cul3-based E3 ligase to regulate proteasomal degradation of Nrf2 (2004) Mol. Cell. Biol., 24, pp. 7130-7139
Zhang, D.D., Lo, S.C., Cross, J.V., Templeton, D.J., Hannink, M., Keap1 is a redox-regulated substrate adaptor protein for a Cul3-dependent ubiquitin ligase complex (2004) Mol. Cell. Biol., 24, pp. 10941-10953
Furukawa, M., Xiong, Y., BTB protein Keap1 targets antioxidant transcription factor Nrf2 for ubiquitination by the Cullin 3-Roc1 ligase (2005) Mol. Cell. Biol., 25, pp. 162-171
Talalay, P., De Long, M.J., Prochaska, H.J., Identification of a common chemical signal regulating the induction of enzymes that protect against chemical carcinogenesis (1988) Proc. Natl. Acad. Sci. U. S. A., 85, pp. 8261-8265
Spencer, S.R., Xue, L.A., Klenz, E.M., Talalay, P., The potency of inducers of NAD(P)H:(quinone-acceptor) oxidoreductase parallels their efficiency as substrates for glutathione transferases. Structural and electronic correlations (1991) Biochem. J., 273, pp. 711-717
Prestera, T., Zhang, Y., Spencer, S.R., Wilczak, C.A., Talalay, P., The electrophile counterattack response: protection against neoplasia and toxicity (1993) Adv. Enzyme Regul., 33, pp. 281-296
Kensler, T.W., Wakabayashi, N., Biswal, S., Cell survival responses to environmental stresses via the Keap1-Nrf2-ARE pathway (2007) Annu. Rev. Pharmacol. Toxicol., 47, pp. 89-116
Baird, L., Dinkova-Kostova, A.T., The cytoprotective role of the Keap1-Nrf2 pathway (2011) Arch. Toxicol., 85, pp. 241-272
Dixon, R.A., Natural products and plant disease resistance (2001) Nature, 411, pp. 843-847
Halkier, B.A., Gershenzon, J., Biology and biochemistry of glucosinolates (2006) Annu. Rev. Plant Biol., 7, pp. 303-333
Weber, H., Chételat, A., Reymond, P., Farmer, E.E., Selective and powerful stress gene expression in Arabidopsis in response to malondialdehyde (2004) Plant J., 37, pp. 877-888
Satoh, T., Lipton, S.A., Redox regulation of neuronal survival mediated by electrophilic compounds (2007) Trends Neurosci., 30, pp. 37-45
Satoh, T., Saitoh, S., Hosaka, M., Kosaka, K., Simple ortho- and para-hydroquinones as compounds neuroprotective against oxidative stress in a manner associated with specific transcriptional activation (2009) Biochem. Biophys. Res. Commun., 379, pp. 537-541
Bensasson, R.V., Zoete, V., Dinkova-Kostova, A.T., Talalay, P., Two-step mechanism of induction of the gene expression of a prototypic cancer-protective enzyme by diphenols (2008) Chem. Res. Toxicol., 21, pp. 805-812
Wang, X.J., Hayes, J.D., Higgins, L.G., Wolf, C.R., Dinkova-Kostova, A.T., Activation of the NRF2 signaling pathway by copper-mediated redox cycling of para- and ortho-hydroquinones (2010) Chem. Biol., 17, pp. 75-85
Lipton, S.A., Pathologically activated therapeutics for neuroprotection (2007) Nat. Rev. Neurosci., 8, pp. 803-808
Kosaka, K., Yokoi, T., Carnosic acid, a component of rosemary (Rosmarinus officinalis L.), promotes synthesis of nerve growth factor in T98G human glioblastoma cells (2003) Biol. Pharm. Bull., 26, pp. 1620-1622
Doolaege, E.H., Raes, K., De Vos, F., Verhé, R., De Smet, S., Absorption, distribution and elimination of carnosic acid, a natural antioxidant from Rosmarinus officinalis, in rats (2011) Plant Foods Hum. Nutr., 66, pp. 196-202
Satoh, T., Kosaka, K., Itoh, K., Kobayashi, A., Yamamoto, M., Shimojo, Y., Kitajima, C., Lipton, S.A., Carnosic acid, a catechol-type electrophilic compound, protects neurons both in vitro and in vivo through activation of the Keap1/Nrf2 pathway via S-alkylation of targeted cysteines on Keap1 (2008) J. Neurochem., 104, pp. 1116-1131
Tamaki, Y., Tabuchi, T., Takahashi, T., Kosaka, K., Satoh, T., Activated glutathione metabolism participates in protective effects of carnosic acid against oxidative stress in neuronal HT22 cells (2010) Planta Med., 76, pp. 683-688
Kosaka, K., Mimura, J., Itoh, K., Satoh, T., Shimojo, Y., Kitajima, C., Maruyama, A., Shirasawa, T., Role of Nrf2 and p62/ZIP in the neurite outgrowth by carnosic acid in PC12h cells (2010) J. Biochem., 147, pp. 73-81
Mimura, J., Kosaka, K., Maruyama, A., Satoh, T., Harada, N., Yoshida, H., Satoh, K., Itoh, K., Nrf2 regulates NGF mRNA induction by carnosic acid in T98G glioblastoma cells and normal human astrocytes (2011) J. Biochem., 150, pp. 209-217
Vaka, S.R., Murthy, S.N., Repka, M.A., Nagy, T., Upregulation of endogenous neurotrophin levels in the brain by intranasal administration of carnosic acid (2011) J. Pharm. Sci., 100, pp. 3139-3145
Luft, R., Ikkos, D., Palmieri, G., Ernster, L., Afzelius, A., A case of severe hypermetabolism of nonthyroid origin with a defect in the maintenance of mitochondrial respiratory control: a correlated clinical, biochemical and morphological study (1962) J. Clin. Invest., 41, pp. 1776-1804
Zhang, Y., Talalay, P., Cho, C.G., Posner, G.H., A major inducer of anticarcinogenic protective enzymes from broccoli: isolation and elucidation of structure (1992) Proc. Natl. Acad. Sci. U. S. A., 89, pp. 2399-2403
Kraft, A.D., Johnson, D.A., Johnson, J.A., Nuclear factor E2-related factor 2-dependent antioxidant response element activation by tert-butylhydroquinone and sulforaphane occurring preferentially in astrocytes conditions neurons against oxidative insult (2004) J. Neurosci., 24, pp. 1101-1112
Danilov, C.A., Chandrasekaran, K., Racz, J., Soane, L., Zielke, C., Fiskum, G., Sulforaphane protects astrocytes against oxidative stress and delayed death caused by oxygen and glucose deprivation (2009) Glia, 57, pp. 645-656
Bergström, P., Andersson, H.C., Gao, Y., Karlsson, J.O., Nodin, C., Anderson, M.F., Nilsson, M., Hammarsten, O., Repeated transient sulforaphane stimulation in astrocytes leads to prolonged Nrf2-mediated gene expression and protection from superoxide-induced damage (2011) Neuropharmacology, 60, pp. 343-353
Vincent, A.M., Kato, K., McLean, L.L., Soules, M.E., Feldman, E.L., Sensory neurons and schwann cells respond to oxidative stress by increasing antioxidant defense mechanisms (2009) Antioxid. Redox Signal., 11, pp. 425-438
Siebert, A., Desai, V., Chandrasekaran, K., Fiskum, G., Jafri, M.S., Nrf2 activators provide neuroprotection against 6-hydroxydopamine toxicity in rat organotypic nigrostriatal cocultures (2009) J. Neurosci. Res., 87, pp. 1659-1669
Vauzour, D., Buonfiglio, M., Corona, G., Chirafisi, J., Vafeiadou, K., Angeloni, C., Hrelia, S., Spencer, S.P., Sulforaphane protects cortical neurons against 5-S-cysteinyl-dopamine-induced toxicity through the activation of ERK1/2, Nrf-2 and the upregulation of detoxification enzymes (2010) Mol. Nutr. Food Res., 54, pp. 532-542
Soane, L., Li Dai, W., Fiskum, G., Bambrick, L.L., Sulforaphane protects immature hippocampal neurons against death caused by exposure to hemin or to oxygen and glucose deprivation (2010) J. Neurosci. Res., 88, pp. 1355-1363
Chang, G., Guo, Y., Jia, Y., Duan, W., Li, B., Yu, J., Li, C., Protective effect of combination of sulforaphane and riluzole on glutamate-mediated excitotoxicity (2010) Biol. Pharm. Bull., 33, pp. 1477-1483
Rojo, A.I., Rada, P., Egea, J., Rosa, A.O., López, M.G., Cuadrado, A., Functional interference between glycogen synthase kinase-3 beta and the transcription factor Nrf2 in protection against kainate-induced hippocampal cell death (2008) Mol. Cell. Neurosci., 39, pp. 125-132
Greco, T., Fiskum, G., Brain mitochondria from rats treated with sulforaphane are resistant to redox-regulated permeability transition (2010) J. Bioenerg. Biomembr., 42, pp. 491-497
Zhao, X., Song, S., Sun, G., Strong, R., Zhang, J., Grotta, J.C., Aronowski, J., Neuroprotective role of haptoglobin after intracerebral hemorrhage (2009) J. Neurosci., 29, pp. 15819-15827
Chen, G., Fang, Q., Zhang, J., Zhou, D., Wang, Z., Role of the Nrf2-ARE pathway in early brain injury after experimental subarachnoid hemorrhage (2011) J. Neurosci. Res., 89, pp. 515-523
Hong, Y., Yan, W., Chen, S., Sun, C.R., Zhang, J.M., The role of Nrf2 signaling in the regulation of antioxidants and detoxifying enzymes after traumatic brain injury in rats and mice (2010) Acta Pharmacol. Sin., 31, pp. 1421-1430
Dash, P.K., Zhao, J., Orsi, S.A., Zhang, M., Moore, A.N., Sulforaphane improves cognitive function administered following traumatic brain injury (2009) Neurosci. Lett., 460, pp. 103-107
Ping, Z., Liu, W., Kang, Z., Cai, J., Wang, Q., Cheng, N., Wang, S., Sun, X., Sulforaphane protects brains against hypoxic-ischemic injury through induction of Nrf2-dependent phase 2 enzyme (2010) Brain Res., 1343, pp. 178-185
Wierinckx, A., Brevé, J., Mercier, D., Schultzberg, M., Drukarch, B., Van Dam, A.M., Detoxication enzyme inducers modify cytokine production in rat mixed glial cells (2005) J. Neuroimmunol., 166, pp. 132-143
Innamorato, N.G., Rojo, A.I., Garcìa-Yagüe, A.J., Yamamoto, M., de Ceballos, M.L., Cuadrado, A., The transcription factor Nrf2 is a therapeutic target against brain inflammation (2008) J. Immunol., 181, pp. 680-689
Rojo, A.I., Innamorato, N.G., Martín-Moreno, A.M., De Ceballos, M.L., Yamamoto, M., Cuadrado, A., Nrf2 regulates microglial dynamics and neuroinflammation in experimental Parkinson's disease (2010) Glia, 58, pp. 588-598
Innamorato, N.G., Jazwa, A., Rojo, A.I., García, C., Fernández-Ruiz, J., Grochot-Przeczek, A., Stachurska, A., Cuadrado, A., Different susceptibility to the Parkinson's toxin MPTP in mice lacking the redox master regulator Nrf2 or its target gene heme oxygenase-1 (2010) PLoS One, 5, p. 11838
Kim, D., You, B., Jo, E.K., Han, S.K., Simon, M.I., Lee, S.J., NADPH oxidase 2-derived reactive oxygen species in spinal cord microglia contribute to peripheral nerve injury-induced neuropathic pain (2010) Proc. Natl. Acad. Sci. U. S. A., 107, pp. 14851-14856
Mao, L., Wang, H., Wang, X., Liao, H., Zhao, X., Transcription factor nrf2 protects the spinal cord from inflammation produced by spinal cord injury (2011) J. Surg. Res., 170, pp. 105-115
Wang, X., De Rivero Vaccari, J.P., Wang, H., Diaz, P., German, R., Marcillo, A., Keane, R.W., Activation of the nuclear factor E2-related factor 2/antioxidant response element pathway is neuroprotective following spinal cord injury, J. Neurotrauma (Sep 21, 2011, Electronic publication ahead of print)Toyama, T., Shinkai, Y., Yasutake, A., Uchida, K., Yamamoto, M., Kumagai, Y., Isothiocyanates reduce mercury accumulation via an Nrf2-dependent mechanism during exposure of mice to methylmercury (2011) Environ. Health Perspect., 119, pp. 1117-1122
Begleiter, A., Sivananthan, K., Curphey, T.J., Bird, R.P., Induction of NAD(P)H quinone: oxidoreductase1 inhibits carcinogen-induced aberrant crypt foci in colons of Sprague-Dawley rats (2003) Cancer Epidemiol. Biomarkers Prev., 12, pp. 566-572
Schilling, S., Goelz, S., Linker, R., Luehder, F., Gold, R., Fumaric acid esters are effective in chronic experimental autoimmune encephalomyelitis and suppress macrophage infiltration (2006) Clin. Exp. Immunol., 145, pp. 101-107
Ellrichmann, G., Petrasch-Parwez, E., Lee, D.H., Reick, C., Arning, L., Saft, C., Gold, R., Linker, R.A., Efficacy of fumaric acid esters in the R6/2 and YAC128 models of Huntington's disease (2011) PLoS One, 6, p. 16172
Linker, R.A., Lee, D.H., Ryan, S., van Dam, A.M., Conrad, R., Bista, P., Zeng, W., Gold, R., Fumaric acid esters exert neuroprotective effects in neuroinflammation via activation of the Nrf2 antioxidant pathway (2011) Brain, 134, pp. 678-692
Nieboer, C., de Hoop, D., Langendijk, P.N., van Loenen, A.C., Gubbels, J., Fumaric acid therapy in psoriasis: a double-blind comparison between fumaric acid compound therapy and monotherapy with dimethylfumaric acid ester (1990) Dermatologica, 181, pp. 33-37
Altmeyer, P.J., Matthes, U., Pawlak, F., Hoffmann, K., Frosch, P.J., Ruppert, P., Wassilew, S.W., Lutz, G., Antipsoriatic effect of fumaric acid derivatives. Results of a multicenter double-blind study in 100 patients (1994) J. Am. Acad. Dermatol., 30, pp. 977-981
Zlotkin, S., A new approach to control of anemia in "at risk" infants and children around the world, Ryley-Jeffs memorial lecture (2004) Can. J. Diet. Pract. Res., 65, pp. 136-138
Schimrigk, S., Brune, N., Hellwig, K., Lukas, C., Bellenberg, B., Rieks, M., Hoffmann, V., Przuntek, H., Oral fumaric acid esters for the treatment of active multiple sclerosis: an open-label, baseline-controlled pilot study (2006) Eur. J. Neurol., 13, pp. 604-610
Kappos, L., Gold, R., Miller, D.H., Macmanus, D.G., Havrdova, E., Limmroth, V., Polman, C.H., O'Neill, G.N., BG-12 phase IIb study investigators. Efficacy and safety of oral fumarate in patients with relapsing-remitting multiple sclerosis: a multicentre, randomised, double-blind, placebo-controlled phase IIb study (2008) Lancet, 372, pp. 1463-1472
Trial watch: phase III success for Biogen's oral multiple sclerosis therapy (2011) Nat. Rev. Drug Discov., 10, p. 404
Jang, M., Cai, L., Udeani, G.O., Slowing, K.V., Thomas, C.F., Beecher, C.W., Fong, H.H., Pezzuto, J.M., Cancer chemopreventive activity of resveratrol, a natural product derived from grapes (1997) Science, 275, pp. 218-220
Soleas, G.J., Diamandis, E.P., Goldberg, D.M., Resveratrol: a molecule whose time has come? And gone? (1997) Clin. Biochem., 30, pp. 91-113
Pezzuto, J.M., The phenomenon of resveratrol: redefining the virtues of promiscuity (2011) Ann. N. Y. Acad. Sci., 1215, pp. 123-130
Jang, J.H., Surh, Y.J., Protective effects of resveratrol on hydrogen peroxide-induced apoptosis in rat pheochromocytoma (PC12) cells (2001) Mutat. Res., 496, pp. 181-190
Conte, A., Pellegrini, S., Tagliazucchi, D., Effect of resveratrol and catechin on PC12 tyrosine kinase activities and their synergistic protection from beta-amyloid toxicity (2003) Drugs Exp. Clin. Res., 29, pp. 243-255
Sun, A.Y., Chen, Y.M., James-Kracke, M., Wixom, P., Cheng, Y., Ethanol-induced cell death by lipid peroxidation in PC12 cells (1997) Neurochem. Res., 22, pp. 1187-1192
Draczynska-Lusiak, B., Chen, Y.M., Sun, A.Y., Oxidized lipoproteins activate NF-kappaB binding activity and apoptosis in PC12 cells (1998) Neuroreport, 9, pp. 527-532
Siddiqui, M.A., Kashyap, M.P., Kumar, V., Al-Khedhairy, A.A., Musarrat, J., Pant, A.B., Protective potential of trans-resveratrol against 4-hydroxynonenal induced damage in PC12 cells (2010) Toxicol. In Vitro, 24, pp. 1592-1598
Agrawal, M., Kumar, V., Kashyap, M.P., Khanna, V.K., Randhawa, G.S., Pant, A.B., Ischemic insult induced apoptotic changes in PC12 cells: protection by trans resveratrol (2011) Eur. J. Pharmacol., 666, pp. 5-11
Chanvitayapongs, S., Draczynska-Lusiak, B., Sun, A.Y., Amelioration of oxidative stress by antioxidants and resveratrol in PC12 cells (1997) Neuroreport, 8, pp. 1499-1502
Wu, Y., Li, X., Zhu, J.X., Xie, W., Le, W., Fan, Z., Jankovic, J., Pan, T., (2011), 19, pp. 163-174. , Resveratrol-activated AMPK/SIRT1/autophagy in cellular models of Parkinson's disease, NeurosignalsRivière, C., Richard, T., Quentin, L., Krisa, S., Mérillon, J.M., Monti, J.P., Inhibitory activity of stilbenes on Alzheimer's beta-amyloid fibrils in vitro (2007) Bioorg. Med. Chem., 15, pp. 1160-1167
dos Santos, A.Q., Nardin, P., Funchal, C., de Almeida, L.M., Jacques-Silva, M.C., Wofchuk, S.T., Gonçalves, C.A., Gottfried, C., Resveratrol increases glutamate uptake and glutamine synthetase activity in C6 glioma cells (2006) Arch. Biochem. Biophys., 453, pp. 161-167
de Almeida, L.M., Piñeiro, C.C., Leite, M.C., Brolese, G., Tramontina, F., Feoli, A.M., Gottfried, C., Gonçalves, C.A., Resveratrol increases glutamate uptake, glutathione content, and S100B secretion in cortical astrocyte cultures (2007) Cell. Mol. Neurobiol., 27, pp. 661-668
de Almeida, L.M., Leite, M.C., Thomazi, A.P., Battu, C., Nardin, P., Tortorelli, L.S., Zanotto, C., Gottfried, C., Resveratrol protects against oxidative injury induced by H2O2 in acute hippocampal slice preparations from Wistar rats (2008) Arch. Biochem. Biophys., 480, pp. 27-32
Maher, P., Dargusch, R., Bodai, L., Gerard, P.E., Purcell, J.M., Marsh, J.L., ERK activation by the polyphenols fisetin and resveratrol provides neuroprotection in multiple models of Huntington's disease (2011) Hum. Mol. Genet., 20, pp. 261-270
Pallos, J., Bodai, L., Lukacsovich, T., Purcell, J.M., Steffan, J.S., Thompson, L.M., Marsh, J.L., Inhibition of specific HDACs and sirtuins suppresses pathogenesis in a Drosophila model of Huntington's disease (2008) Hum. Mol. Genet., 17, pp. 3767-3775
Albani, D., Polito, L., Signorini, A., Forloni, G., Neuroprotective properties of resveratrol in different neurodegenerative disorders (2010) Biofactors, 36, pp. 370-376
Liu, C., Shi, Z., Fan, L., Zhang, C., Wang, K., Wang, B., Resveratrol improves neuron protection and functional recovery in rat model of spinal cord injury (2011) Brain Res., 1374, pp. 100-109
Yang, Y.B., Piao, Y.J., Effects of resveratrol on secondary damages after acute spinal cord injury in rats (2003) Acta Pharmacol. Sin., 24, pp. 703-710
Kiziltepe, U., Turan, N.N., Han, U., Ulus, A.T., Akar, F., Resveratrol, a red wine polyphenol, protects spinal cord from ischemia-reperfusion injury (2004) J. Vasc. Surg., 40, pp. 138-145
Kaplan, S., Bisleri, G., Morgan, J.A., Cheema, F.H., Oz, M.C., Resveratrol, a natural red wine polyphenol, reduces ischemia-reperfusion-induced spinal cord injury (2005) Ann. Thorac. Surg., 80, pp. 2242-2249
Ates, O., Cayli, S., Altinoz, E., Gurses, I., Yucel, N., Kocak, A., Yologlu, S., Turkoz, Y., Effects of resveratrol and methylprednisolone on biochemical, neurobehavioral and histopathological recovery after experimental spinal cord injury (2006) Acta Pharmacol. Sin., 27, pp. 1317-1325
Huang, S.S., Tsai, M.C., Chih, C.L., Hung, L.M., Tsai, S.K., Resveratrol reduction of infarct size in Long-Evans rats subjected to focal cerebral ischemia (2001) Life Sci., 69, pp. 1057-1065
Tsai, S.K., Hung, L.M., Fu, Y.T., Cheng, H., Nien, M.W., Liu, H.Y., Zhang, F.B., Huang, S.S., Resveratrol neuroprotective effects during focal cerebral ischemia injury via nitric oxide mechanism in rats (2007) J. Vasc. Surg., 46, pp. 346-353
Ren, J., Fan, C., Chen, N., Huang, J., Yang, Q., (2011), 36, pp. 2352-2362. , Resveratrol pretreatment attenuates cerebral ischemic injury by upregulating expression of transcription factor Nrf2 and HO-1 in rats, Neurochem. ResKumar, A., Singh, C.K., Lavoie, H., Dipette, D., Singh, U., Resveratrol restores Nrf2 level and prevents ethanol-induced toxic effects in the cerebellum of a rodent model of Fetal Alcohol Spectrum Disorders (2011) Mol. Pharmacol., 80, pp. 446-457
Nakagawa, H., Kiyozuka, Y., Uemura, Y., Senzaki, H., Shikata, N., Hioki, K., Tsubura, A., Resveratrol inhibits human breast cancer cell growth and may mitigate the effect of linoleic acid, a potent breast cancer cell stimulator (2001) J. Cancer Res. Clin. Oncol., 127, pp. 258-264
Basly, J.P., Marre-Fournier, F., Le Bail, J.C., Habrioux, G., Chulia, A.J., Estrogenic/antiestrogenic and scavenging properties of (E)- and (Z)-resveratrol (1999) Life Sci., 66, pp. 769-777
Schmitt, E., Lehmann, L., Metzler, M., Stopper, H., Hormonal and genotoxic activity of resveratrol (2002) Toxicol. Lett., 136, pp. 133-142
Liu, R., Serrero, G., Resveratrol, a natural product derived from grape, exhibits antiestrogenic activity and inhibits the growth of human breast cancer cells (1999) J. Cell. Physiol., 179, pp. 297-304
Gehm, B.D., Mcandrews, J.M., Chien, P.Y., Jameson, J.L., Resveratrol, a polyphenolic compound found in grapes and wine, is an agonist for the estrogen receptor (1997) Proc. Natl. Acad. Sci. U. S. A., 94, pp. 14138-14143
Pozo-Guisado, E., Lorenzo-Benayas, M.J., Fernandez-Salguero, P.M., Resveratrol modulates the phosphoinositide 3-kinase pathway through an estrogen receptor a-dependent mechanism: relevance in cell proliferation (2004) Int. J. Cancer, 109, pp. 167-173
Li, Y., Liu, J., Liu, X., Xing, K., Wang, Y., Li, F., Yao, L., Resveratrol-induced cell inhibition of growth and apoptosis in MCF7 human breast cancer cells are associated with modulation of phosphorylated Akt and caspase-9 (2006) Appl. Biochem. Biotechnol., 135, pp. 181-192
Vyas, S., Asmerom, Y., De Leon, D.D., Resveratrol regulates insulin-like growth factor-II in breast cancer cells (2005) Endocrinology, 146, pp. 4224-4233
Hsieh, T.C., Wu, J.M., Differential effects on growth, cell cycle arrest, and induction of apoptosis by resveratrol in human prostate cancer cell lines (1999) Exp. Cell Res., 249, pp. 109-115
Kuwajerwala, N., Cifuentes, E., Gautam, S., Menon, M., Barrack, E.R., Veer Reddy, G.P., Resveratrol induces prostate cancer cell entry into S phase and inhibits DNA synthesis (2002) Cancer Res., 62, pp. 2488-2492
Benitez, D.A., Pozo-Guisado, E., Alvarez-Barrientos, A., Fernandez-Salguero, P.M., Castellón, E.A., Mechanisms involved in resveratrol-induced apoptosis and cell cycle arrest in prostate cancer-derived cell lines (2007) J. Androl., 28, pp. 282-293
Wang, T.T., Hudson, T.S., Wang, T.C., Remsberg, C.M., Davies, N.M., Takahashi, Y., Kim, Y.S., Hursting, S.D., Differential effects of resveratrol on androgen-responsive LNCaP human prostate cancer cells in vitro and in vivo (2008) Carcinogenesis, 29, pp. 2001-2010
Lee, S.K., Zhang, W., Sanderson, B.J.S., Selective growth inhibition of human leukemia and human lymphoblastoid cells by resveratrol via cell cycle arrest and apoptosis induction (2008) J. Agric. Food Chem., 56, pp. 7572-7577
Bernhard, D., Schwaiger, W., Crazzolara, R., Tinhofer, I., Kofler, R., Csordas, A., Enhanced MTT-reducing activity under growth inhibition by resveratrol in CEM-C7H2 lymphocytic leukemia cells (2003) Cancer Lett., 195, pp. 193-199
Szende, B., Tyihak, E., Kiraly-Veghely, Z., Dose-dependent effect of resveratrol on proliferation and apoptosis in endothelial and tumor cell cultures (2000) Exp. Mol. Med., 32, pp. 88-92
Hope, C., Planutis, K., Planutiene, M., Moyer, M.P., Johal, K.S., Woo, J., Santoso, C., Holcombe, R.F., Low concentrations of resveratrol inhibit Wnt signal throughput in colon-derived cells: implications for colon cancer prevention (2008) Mol. Nutr. Food Res., 52, pp. S52-S61
Sexton, E., Van Themsche, C., Leblanc, K., Parent, S., Lemoine, P., Asselin, E., Resveratrol interferes with AKT activity and triggers apoptosis in human uterine cancer cells (2006) Mol. Cancer, 5, pp. 45-58
Kimura, Y., Okuda, H., Resveratrol isolated from Polygonum cuspidatum root prevents tumor growth and metastasis to lung and tumor-induced neovascularization in Lewis lung carcinoma-bearing mice (2001) J. Nutr., 131, pp. 1844-1849
Gu, J., Wang, C.Q., Fan, H.H., Ding, H.Y., Xie, X.L., Xu, Y.M., Wang, B.Y., Huang, D.J., Effects of resveratrol on endothelial progenitor cells and their contributions to reendothelialization in intima-injured rats (2006) J. Cardiovasc. Pharmacol., 47, pp. 711-721
Xia, L., Wang, X.X., Hu, X.S., Guo, X., Shang, Y.P., Chen, H.J., Zeng, C.L., Chen, J.Z., Resveratrol reduces endothelial progenitor cells senescence through augmentation of telomerase activity by Akt-dependent mechanisms (2008) Br. J. Pharmacol., 155, pp. 387-394
In, K., Park, J., Park, H., Resveratrol at high doses acts as an apoptotic inducer in endothelial cells (2006) Cancer Res. Treat., 38, pp. 48-53
Subbaranmaiah, K., Chung, W.J., Michaluart, P., Telang, N., Tanabe, T., Inoue, H., Jang, M., Dannenberg, A.J., Resveratrol inhibits cyclo-oxigenase-2 transcription and activity in phorbol ester-treated human mammary epithelial cells (1998) J. Biol. Chem., 273, pp. 21875-21882
Martinez, J., Moreno, J.J., Effect of resveratrol, a natural polyphenolic compound, on reactive oxygen species and prostaglandin production (2000) Biochem. Pharmacol., 59, pp. 865-870
Falchetti, R., Fuggetta, M.P., Lanzilli, G., Tricarico, M., Ravagnan, G., Effects of resveratrol on human immune cell function (2001) Life Sci., 70, pp. 81-96
Gao, X., Xu, Y.X., Janakiraman, N., Chapman, R.A., Gautam, S.C., Immunomodulatory activity of resveratrol: suppression of lymphocyte proliferation, development of cell-mediated cytotoxicity, and cytokine production (2001) Biochem. Pharmacol., 62, pp. 1299-1308
Gao, X., Deeb, D., Media, J., Divine, G., Jiang, H., Chapman, R.A., Gautam, S.C., Immunomodulatory activity of resveratrol: discrepant in vitro and in vivo immunological effects (2003) Biochem. Pharmacol., 66, pp. 2427-2435
Juan, S.H., Cheng, T.H., Lin, H.C., Chu, Y.L., Lee, W.S., Mechanism of concentration-dependent induction of heme oxygenase-1 by resveratrol in human aortic smooth muscle cells (2005) Biochem. Pharmacol., 69, pp. 41-48
Dudley, J., Das, S., Mukherjee, S., Das, D.K., Resveratrol, a unique phytoalexin present in red wine, delivers either survival signal or death signal to the ischemic myocardium depending on dose (2009) J. Nutr. Biochem., 20, pp. 443-452
Dai, Z., Li, Y., Quarles, L.D., Song, T., Pan, W., Zhou, H., Xiao, Z., Resveratrol enhances proliferation and osteoblastic differentiation in human mesenchymal stem cells via ER-dependent ERK1/2 activation (2007) Phytomedicine, 14, pp. 806-814
Dey, A., Guha, P., Chattopadhyay, S., Bandyopadhyay, S.K., Biphasic activity of resveratrol on indomethacin-induced gastric ulcers (2009) Biochem. Biophys. Res. Commun., 381, pp. 90-95
Alarcón de la Lastra, C., Commentary on 'resveratrol commonly displays hormesis: occurrence and biomedical significance' by Calabrese et al (2010) Hum. Exp. Toxicol., 29, pp. 1021-1023
Kedzierski, L., Curtis, J.M., Kaminska, M., Jodynis-Liebert, J., Murias, M., In vitro antileishmanial activity of resveratrol and its hydroxylated analogues against Leishmania major promastigotes and amastigotes (2007) Parasitol. Res., 102, pp. 91-97
Ozkoc, S., Tuncay, S., Delibas, S.B., Akisu, C., In vitro effects of resveratrol on Trichinella spiralis (2009) Parasitol. Res., 105, pp. 1139-1143
Lindsay, D.G., Commentary on 'resveratrol commonly displays hormesis: occurrence and biomedical significance' (2010) Hum. Exp. Toxicol., 29, pp. 1024-1025
Hagen, T.M., Liu, J.K., Lykkesfeldt, J., Wehr, C.M., Ingersoll, R.T., Vinarsky, V., Bartholomew, J.C., Ames, B.N., Feeding acetyl-L-carnitine and lipoic acid to old rats significantly improves metabolic function while decreasing oxidative stress (2002) Proc. Natl. Acad. Sci. U. S. A., 99, pp. 1870-1875
Hagen, T.M., Moreau, R., Suh, J.H., Visioli, F., Mitochondrial decay in the aging rat heart: evidence for improvement by dietary supplementation with acetyl-L-carnitine and/or lipoic acid (2002) Ann. N. Y. Acad. Sci., 959, pp. 491-507
Krajcovicova-Kudlackova, M., Simonic, R., Bederova, A., Babinska, K., Béder, I., Correlation of carnitine levels to methionine and lysine intake (2000) Physiol. Res., 49, pp. 399-402
Hoppel, C., The role of carnitine in normal and alterated fatty acid metabolism (2003) Am. J. Kidney Dis., 41, pp. S4-S12
Steiber, A., Kerner, J., Hoppel, C.L., Carnitine: a nutritional, biosynthetic and functional perspective (2004) Mol. Aspects Med., 25, pp. 455-473
Schinetti, M.L., Rossini, D., Greco, R., Bertelli, A., Protective action of acetylcarnitine on NADPH induced lipid peroxidation of
Cellular stress responses, hormetic phytochemicals and vitagenes in aging and longevity
Modulation of endogenous cellular defense mechanisms represents an innovative approach to therapeutic intervention in diseases causing chronic tissue damage, such as in neurodegeneration. This paper introduces the emerging role of exogenous molecules in hormetic-based neuroprotection and the mitochondrial redox signaling concept of hormesis and its applications to the field of neuroprotection and longevity. Maintenance of optimal long-term health conditions is accomplished by a complex network of longevity assurance processes that are controlled by vitagenes, a group of genes involved in preserving cellular homeostasis during stressful conditions. Vitagenes encode for heat shock proteins (Hsp) Hsp32, Hsp70, the thioredoxin and the sirtuin protein systems. Dietary antioxidants, such as polyphenols and L-carnitine/acetyl-L-carnitine, have recently been demonstrated to be neuroprotective through the activation of hormetic pathways, including vitagenes. Hormesis provides the central underpinning of neuroprotective responses, providing a framework for explaining the common quantitative features of their dose response relationships, their mechanistic foundations, their relationship to the concept of biological plasticity as well as providing a key insight for improving the accuracy of the therapeutic dose of pharmaceutical agents within the highly heterogeneous human population. This paper describes in mechanistic detail how hormetic dose responses are mediated for endogenous cellular defense pathways including sirtuin, Nrfs and related pathways that integrate adaptive stress responses in the prevention of neurodegenerative diseases. This article is part of a Special Issue entitled: Antioxidants and Antioxidant Treatment in Disease. Copyright A 2011 Elsevier B.V. All rights reserved.
Cellular stress responses, hormetic phytochemicals and vitagenes in aging and longevity
Ciccarelli M, Sorriento D, Coscioni E, Iaccarino G, Santulli G * Adrenergic Receptors(262 views) Endocrinol Of The Heart In Health And Dis (ISSN: 9780-1280311249780128031117), 2016; N/D: 285-315. Impact Factor:0 ViewExport to BibTeXExport to EndNote