Effects of dietary supplementation of carnosine on mitochondrial dysfunction, amyloid pathology, and cognitive deficits in 3xTg-AD mice(553 views) Corona C, Frazzini V, Silvestri E, Lattanzio R, La Sorda R, Piantelli M, Canzoniero LM, Ciavardelli D, Rizzarelli E, Sensi SL
Plosone (ISSN: 1932-6203, 1932-6203electronic, 1932-6203linking), 2011 Mar 15; 6(3): e17971-e17971.
Molecular Neurology Unit, Center of Excellence on Aging (Ce.S.I.), University G. d'Annunzio, Chieti-Pescara, Italy.
Department of Neuroscience and Imaging, University G. d'Annunzio, Chieti-Pescara, Italy
Department of Biological and Environmental Science, University of Sannio, Benevento, Italy
Department of Oncology and Neuroscience, University G. d'Annunzio, Chieti-Pescara, Italy
Department of Chemistry, University of Catania, Catania, Italy
References: Querfurth, H.W., LaFerla, F.M., Alzheimer's disease (2010) N Engl J Med, 362, pp. 329-34
Sensi, S.L., Paoletti, P., Bush, A.I., Sekler, I., Zinc in the physiology and pathology of the CNS (2009) Nat Rev Neurosci, 10, pp. 780-791
Crouch, P.J., Cimdins, K., Duce, J.A., Bush, A.I., Trounce, I.A., Mitochondria in aging and Alzheimer's disease (2007) Rejuvenation Res, 10, pp. 349-357
Rhein, V., Song, X., Wiesner, A., Ittner, L.M., Baysang, G., Amyloid-beta and tau synergistically impair the oxidative phosphorylation system in triple transgenic Alzheimer's disease mice (2009) Proc Natl Acad Sci U S A, 106, pp. 20057-20062
Yao, J., Irwin, R.W., Zhao, L., Nilsen, J., Hamilton, R.T., Mitochondrial bioenergetic deficit precedes Alzheimer's pathology in female mouse model of Alzheimer's disease (2009) Proc Natl Acad Sci U S A, 106, pp. 14670-14675
Bush, A.I., Pettingell, W.H., Multhaup, G., d Paradis, M., Vonsattel, J.P., Rapid induction of Alzheimer A beta amyloid formation by zinc (1994) Science, 265, pp. 1464-1467
Gazaryan, I.G., Krasinskaya, I.P., Kristal, B.S., Brown, A.M., Zinc irreversibly damages major enzymes of energy production and antioxidant defense prior to mitochondrial permeability transition (2007) J Biol Chem, 282, pp. 24373-24380
Sensi, S.L., Yin, H.Z., Carriedo, S.G., Rao, S.S., Weiss, J.H., Preferential Zn2+ influx through Ca2+-permeable AMPA/kainate channels triggers prolonged mitochondrial superoxide production (1999) Proc Natl Acad Sci U S A, 96, pp. 2414-2419
Adlard, P.A., Bush, A.I., Metals and Alzheimer's disease (2006) J Alzheimers Dis, 10, pp. 145-163
Lee, J.Y., Cole, T.B., Palmiter, R.D., Suh, S.W., Koh, J.Y., Contribution by synaptic zinc to the gender-disparate plaque formation in human Swedish mutant APP transgenic mice (2002) Proc Natl Acad Sci U S A, 99, pp. 7705-7710
Oddo, S., Caccamo, A., Shepherd, J.D., Murphy, M.P., Golde, T.E., Triple-transgenic model of Alzheimer's disease with plaques and tangles: intracellular Abeta and synaptic dysfunction (2003) Neuron, 39, pp. 409-421
Sensi, S.L., Rapposelli, I.G., Frazzini, V., Mascetra, N., Altered oxidant-mediated intraneuronal zinc mobilization in a triple transgenic mouse model of Alzheimer's disease (2008) Exp Gerontol, 43, pp. 488-492
Adlard, P.A., Cherny, R.A., Finkelstein, D.I., Gautier, E., Robb, E., Rapid restoration of cognition in Alzheimer's transgenic mice with 8-hydroxy quinoline analogs is associated with decreased interstitial Abeta (2008) Neuron, 59, pp. 43-55
Cherny, R.A., Atwood, C.S., Xilinas, M.E., Gray, D.N., Jones, W.D., Treatment with a copper-zinc chelator markedly and rapidly inhibits beta-amyloid accumulation in Alzheimer's disease transgenic mice (2001) Neuron, 30, pp. 665-676
Lannfelt, L., Blennow, K., Zetterberg, H., Batsman, S., Ames, D., Safety, efficacy, and biomarker findings of PBT2 in targeting Abeta as a modifying therapy for Alzheimer's disease: a phase IIa, double-blind, randomised, placebo-controlled trial (2008) Lancet Neurol, 7, pp. 779-786
Ritchie, C.W., Bush, A.I., Mackinnon, A., Macfarlane, S., Mastwyk, M., Metal-protein attenuation with iodochlorhydroxyquin (clioquinol) targeting Abeta amyloid deposition and toxicity in Alzheimer disease: a pilot phase 2 clinical trial (2003) Arch Neurol, 60, pp. 1685-1691
Quinn, P.J., Boldyrev, A.A., Formazuyk, V.E., Carnosine: its properties, functions and potential therapeutic applications (1992) Mol Aspects Med, 13, pp. 379-444
Horning, M.S., Blakemore, L.J., Trombley, P.Q., Endogenous mechanisms of neuroprotection: role of zinc, copper, and carnosine (2000) Brain Res, 852, pp. 56-61
Kohen, R., Yamamoto, Y., Cundy, K.C., Ames, B.N., Antioxidant activity of carnosine, homocarnosine, and anserine present in muscle and brain (1988) Proc Natl Acad Sci U S A, 85, pp. 3175-3179
Preston, J.E., Hipkiss, A.R., Himsworth, D.T., Romero, I.A., Abbott, J.N., Toxic effects of beta-amyloid(25-35) on immortalised rat brain endothelial cell: protection by carnosine, homocarnosine and beta-alanine (1998) Neurosci Lett, 242, pp. 105-108
Trombley, P.Q., Horning, M.S., Blakemore, L.J., Interactions between carnosine and zinc and copper: implications for neuromodulation and neuroprotection (2000) Biochemistry (Mosc), 65, pp. 807-816
Brownson, C., Hipkiss, A.R., Carnosine reacts with a glycated protein (2000) Free Radic Biol Med, 28, pp. 1564-1570
Hipkiss, A.R., Brownson, C., Carrier, M.J., Carnosine, the anti-ageing, anti-oxidant dipeptide, may react with protein carbonyl groups (2001) Mech Ageing Dev, 122, pp. 1431-1445
Hipkiss, A.R., Michaelis, J., Syrris, P., Non-enzymatic glycosylation of the dipeptide L-carnosine, a potential anti-protein-cross-linking agent (1995) FEBS Lett, 371, pp. 81-85
Hipkiss, A.R., Worthington, V.C., Himsworth, D.T., Herwig, W., Protective effects of carnosine against protein modification mediated by malondialdehyde and hypochlorite (1998) Biochim Biophys Acta, 1380, pp. 46-54
Balion, C.M., Benson, C., Raina, P.S., Papaioannou, A., Patterson, C., Brain type carnosinase in dementia: a pilot study (2007) BMC Neurol, 7, p. 38
Bellia, F., Calabrese, V., Guarino, F., Cavallaro, M., Cornelius, C., Carnosinase levels in aging brain: redox state induction and cellular stress response (2009) Antioxid Redox Signal, 11, pp. 2759-2775
Fonteh, A.N., Harrington, R.J., Tsai, A., Liao, P., Harrington, M.G., Free amino acid and dipeptide changes in the body fluids from Alzheimer's disease subjects (2007) Amino Acids, 32, pp. 213-224
Billings, L.M., Oddo, S., Green, K.N., McGaugh, J.L., LaFerla, F.M., Intraneuronal Abeta causes the onset of early Alzheimer's disease-related cognitive deficits in transgenic mice (2005) Neuron, 45, pp. 675-688
Baran, E.J., Metal complexes of carnosine (2000) Biochemistry (Mosc), 65, pp. 789-797
Mineo, P., Vitalini, D., la Mendola, D., Rizzarelli, E., Scamporrino, E., Electrospray mass spectrometric studies of L-carnosine (beta-alanyl-L-histidine) complexes with copper(II) or zinc ions in aqueous solution (2002) Rapid Commun Mass Spectrom, 16, pp. 722-729
Aizenman, E., Stout, A.K., Hartnett, K.A., Dineley, K.E., McLaughlin, B., Induction of neuronal apoptosis by thiol oxidation: putative role of intracellular zinc release (2000) J Neurochem, 75, pp. 1878-1888
Sensi, S.L., Ton-That, D., Sullivan, P.G., Jonas, E.A., Gee, K.R., Modulation of mitochondrial function by endogenous Zn2+ pools (2003) Proc Natl Acad Sci U S A, 100, pp. 6157-6162
Sutherland, R.J., McDonald, R.J., Hippocampus, amygdala, and memory deficits in rats (1990) Behav Brain Res, 37, pp. 57-79
Corona, C., Masciopinto, F., Silvestri, E., Del Viscovo, A., Lattanzio, R., Dietary zinc supplementation of 3xTg-AD mice increases BDNF levels and prevents cognitive deficits as well as mitochondrial dysfunction (2010) Cell Death and Dis, 1, pp. e91
Boldyrev, A.A., Carnosine and free-radical defence mechanisms (1994) Trends Neurosci, 17, p. 468
Lee, J.Y., Kim, J.H., Hong, S.H., Lee, J.Y., Cherny, R.A., Estrogen decreases zinc transporter 3 expression and synaptic vesicle zinc levels in mouse brain (2004) J Biol Chem, 279, pp. 8602-8607
Hirata-Fukae, C., Li, H.F., Hoe, H.S., Gray, A.J., Minami, S.S., Females exhibit more extensive amyloid, but not tau, pathology in an Alzheimer transgenic model (2008) Brain Res, 1216, pp. 92-103
Ittner, L.M., Gotz, J., Amyloid-beta and tau - a toxic pas de deux in Alzheimer's disease (2011) Nat Rev Neurosci, 12, pp. 65-72
Calabrese, V., Colombrita, C., Guagliano, E., Sapienza, M., Ravagna, A., Protective effect of carnosine during nitrosative stress in astroglial cell cultures (2005) Neurochem Res, 30, pp. 797-807
Atamna, H., Kumar, R., Protective role of methylene blue in Alzheimer's disease via mitochondria and cytochrome c oxidase (2010) J Alzheimers Dis, 20 (SUPPL. 2), pp. S439-S452
Brunden, K.R., Trojanowski, J.Q., Lee, V.M., Advances in tau-focused drug discovery for Alzheimer's disease and related tauopathies (2009) Nat Rev Drug Discov, 8, pp. 783-793
Clinton, L.K., Blurton-Jones, M., Myczek, K., Trojanowski, J.Q., LaFerla, F.M., Synergistic Interactions between Abeta, tau, and alpha-synuclein: acceleration of neuropathology and cognitive decline (2010) J Neurosci, 30, pp. 7281-7289
Oddo, S., Vasilevko, V., Caccamo, A., Kitazawa, M., Cribbs, D.H., Reduction of soluble Abeta and tau, but not soluble Abeta alone, ameliorates cognitive decline in transgenic mice with plaques and tangles (2006) J Biol Chem, 281, pp. 39413-39423
Stoltenberg, M., Bush, A.I., Bach, G., Smidt, K., Larsen, A., Amyloid plaques arise from zinc-enriched cortical layers in APP/PS1 transgenic mice and are paradoxically enlarged with dietary zinc deficiency (2007) Neuroscience, 150, pp. 357-369
Adlard, P.A., Parncutt, J.M., Finkelstein, D.I., Bush, A.I., Cognitive loss in zinc transporter-3 knock-out mice: a phenocopy for the synaptic and memory deficits of Alzheimer's disease? (2010) J Neurosci, 30, pp. 1631-1636
Odashima, M., Otaka, M., Jin, M., Konishi, N., Sato, T., Induction of a 72-kDa heat-shock protein in cultured rat gastric mucosal cells and rat gastric mucosa by zinc L-carnosine (2002) Dig Dis Sci, 47, pp. 2799-2804
Ueda, K., Ueyama, T., Oka, M., Ito, T., Tsuruo, Y., Polaprezinc (Zinc L-carnosine) is a potent inducer of anti-oxidative stress enzyme, heme oxygenase (HO)-1 - a new mechanism of gastric mucosal protection (2009) J Pharmacol Sci, 110, pp. 285-294
Caccamo, A., Maldonado, M.A., Bokov, A.F., Majumder, S., Oddo, S., CBP gene transfer increases BDNF levels and ameliorates learning and memory deficits in a mouse model of Alzheimer's disease (2010) Proc Natl Acad Sci U S A, 107, pp. 22687-22692
Sensi, S.L., Canzoniero, L.M., Yu, S.P., Ying, H.S., Koh, J.Y., Measurement of intracellular free zinc in living cortical neurons: routes of entry (1997) J Neurosci, 17, pp. 9554-9564
Schagger, H., Electrophoretic techniques for isolation and quantification of oxidative phosphorylation complexes from human tissues (1996) Methods Enzymol, 264, pp. 555-566
Zerbetto, E., Vergani, L., Dabbeni-Sala, F., Quantification of muscle mitochondrial oxidative phosphorylation enzymes via histochemical staining of blue native polyacrylamide gels (1997) Electrophoresis, 18, pp. 2059-2064
Effects of dietary supplementation of carnosine on mitochondrial dysfunction, amyloid pathology, and cognitive deficits in 3xTg-AD mice
BACKGROUND: The pathogenic road map leading to Alzheimer's disease (AD) is still not completely understood; however, a large body of studies in the last few years supports the idea that beside the classic hallmarks of the disease, namely the accumulation of amyloid-beta (Abeta) and neurofibrillary tangles, other factors significantly contribute to the initiation and the progression of the disease. Among them, mitochondria failure, an unbalanced neuronal redox state, and the dyshomeostasis of endogenous metals like copper, iron, and zinc have all been reported to play an important role in exacerbating AD pathology. Given these factors, the endogenous peptide carnosine may be potentially beneficial in the treatment of AD because of its free-radical scavenger and metal chelating properties.; METHODOLOGY: In this study, we explored the effect of L-carnosine supplementation in the 3xTg-AD mouse, an animal model of AD that shows both Abeta- and tau-dependent pathology.; PRINCIPAL FINDINGS: We found that carnosine supplementation in 3xTg-AD mice promotes a strong reduction in the hippocampal intraneuronal accumulation of Abeta and completely rescues AD and aging-related mitochondrial dysfunctions. No effects were found on tau pathology and we only observed a trend toward the amelioration of cognitive deficits.; CONCLUSIONS AND SIGNIFICANCE: Our data indicate that carnosine can be part of a combined therapeutic approach for the treatment of AD.
Effects of dietary supplementation of carnosine on mitochondrial dysfunction, amyloid pathology, and cognitive deficits in 3xTg-AD mice
Santulli G, Cipolletta E, Sorriento D, Del Giudice C, Anastasio A, Monaco S, Maione AS, Condorelli G, Puca A, Trimarco B, Illario M, Iaccarino G * CaMK4 gene deletion induces hypertension(349 views) J Am Heart Assoc Journal Of The American Heart Association (ISSN: 2047-9980), 2012; 1(4): N/D-N/D. Impact Factor:2.882 ViewExport to BibTeXExport to EndNote
Bruni AC, Bernardi L, Colao R, Rubino E, Smirne N, Frangipane F, Terni B, Curcio SA, Mirabelli M, Clodomiro A, Di Lorenzo R, Maletta R, Anfossi M, Gallo M, Geracitano S, Tomaino C, Muraca MG, Leotta A, Lio SG, Pinessi L, Rainero I, Sorbi S, Nee L, Milan G, Pappata S, Postiglione A, Abbamondi N, Forloni G, St George Hyslop P, Rogaeva E, Bugiani O, Giaccone G, Foncin JF, Spillantini MG, Puccio G * Worldwide distribution of PSEN1 Met146Leu mutation: A large variability for a founder mutation(819 views) Neurology (ISSN: 0028-3878, 1526-632x, 1526-632xelectronic), 2010 Mar 9; 74(10): 798-806. Impact Factor:8.017 ViewExport to BibTeXExport to EndNote
Aloj L, Aurilio M, Rinaldi V, D'Ambrosio L, Tesauro D, Peitl PK, Maina T, Mansi R, Von Guggenberg E, Joosten L, Sosabowski JK, Breeman WA, De Blois E, Koelewijn S, Melis M, Waser B, Beetschen K, Reubi JC, De Jong M * The EEE project(449 views) Proc Int Cosm Ray Conf Icrc Universidad Nacional Autonoma De Mexico, 2007; 5(HEPART2): 977-980. Impact Factor:0 ViewExport to BibTeXExport to EndNote