Keywords: Collagen, Host-Pathogen Interaction, Triple Helix, Bacterial Protein, Chaperone, Heat Shock Protein 47, Interstitial Collagenase, Osteonectin, Von Willebrand Factor, Crystal Structure, Host Pathogen Interaction, Human, Molecular Recognition, Nonhuman, Polyproline Ii Helix Motif, Protein Data Bank, Protein Protein Interaction, Protein Secondary Structure, Review, Amino Acid Motifs, Amino Acid Sequence, Animals, Molecular Sequence Data, Peptides, Protein Binding, Peptides Chemistry,
Affiliations: *** IBB - CNR ***
Istituto di Biostrutture e Bioimmagini, CNR, via Mezzocannone 16, I-80134 Napoli, Italy
References: Richardson, J.S., The anatomy and taxonomy of protein structure (1981) Adv. Prot. Chem, 34, pp. 167-33
Kabsch, W., Sander, C., Dictionary of protein secondary structure: Pattern recognition of hydrogen-bonded and geometrical features (1983) Biopolymers, 22, pp. 2577-2637
Unger, R., Sussman, J.L., The importance of short structural motifs in protein structure analysis (1993) J. Comp.-Aid. Mol. Des, 7, pp. 457-472
Brenner, S.E., Chothia, C., Hubbard, T.J., Population statistics of protein structures: Lessons from structural classifications (1997) Curr. Opin. Struct. Biol, 7, pp. 369-376
de Simone, A., Berisio, R., Zagari, A., Vitagliano, L., Limited tendency of alpha-helical residues to form disulfide bridges: A structural explanation (2006) J. Pept. Sci, 12, pp. 740-747
Adzhubei, A.A., Sternberg, M.J., Left-handed polyproline ii helices commonly occur in globular proteins (1993) J. Mol. Biol, 229, pp. 472-493
Stapley, B.J., Creamer, T.P., A survey of left-handed polyproline ii helices (1999) Prot. Sci, 8, pp. 587-595
Cubellis, M.V., Caillez, F., Blundell, T.L., Lovell, S.C., Properties of polyproline ii, a secondary structure element implicated in protein-protein interactions (2005) Proteins, 58, pp. 880-892
Berisio, R., Loguercio, S., de Simone, A., Zagari, A., Vitagliano, L., Polyproline helices in protein structures: A statistical survey (2006) Prot. Pept. Lett, 13, pp. 847-854
Barlow, D.J., Thornton, J.M., Helix geometry in proteins (1988) J. Mol. Biol, 201, pp. 601-619
Richardson, J.S., Richardson, D.C., Helix lap-joints as ion-binding sites: DNA-binding motifs and ca-binding ef hands are related by charge and sequence reversal (1988) Proteins, 4, pp. 229-239
Okuyama, K., Revisiting the molecular structure of collagen (2008) Connect. Tiss. Res, 49, pp. 299-310
Brodsky, B., Persikov, A.V., Molecular structure of the collagen triple helix (2005) Adv. Prot. Chem, 70, pp. 301-339
Shoulders, M.D., Raines, R.T., Collagen structure and stability (2009) Ann. Rev. Biochem, 78, pp. 929-958
Berisio, R., Vitagliano, L., Mazzarella, L., Zagari, A., Recent progress on collagen triple helix structure, stability and assembly (2002) Prot. Pept. Lett, 9, pp. 107-116
de Simone, A., Esposito, L., Pedone, C., Vitagliano, L., Insights into stability and toxicity of amyloid-like oligomers by replica exchange molecular dynamics analyses (2008) Biophys. J, 95, pp. 1965-1973
Esposito, L., Paladino, A., Pedone, C., Vitagliano, L., Insights into structure, stability, and toxicity of monomeric and aggregated polyglutamine models from molecular dynamics simulations (2008) Biophys. J, 94, pp. 4031-4040
de Simone, A., Dodson, G.G., Fraternali, F., Zagari, A., Water molecules as structural determinants among prions of low sequence identity (2006) FEBS Lett, 580, pp. 2488-2494
Nagai, Y., Popiel, H.A., Conformational changes and aggregation of expanded polyglutamine proteins as therapeutic targets of the polyglutamine diseases: Exposed beta-sheet hypothesis (2008) Curr. Pharmaceut. Des, 14, pp. 3267-3279
de Vega, M.J., Martin-Martinez, M., Gonzalez-Muniz, R., Modulation of protein-protein interactions by stabilizing/mimicking protein secondary structure elements (2007) Curr. Topics Med. Chem, 7, pp. 33-62
Tsai, C.J., Lin, S.L., Wolfson, H.J., Nussinov, R., Protein-protein interfaces: Architectures and interactions in protein-protein interfaces and in protein cores. Their similarities and differences (1996) Crit. Rev. Biochem. Mol. Biol, 31, pp. 127-152
Kay, B.K., Williamson, M.P., Sudol, M., The importance of being proline: The interaction of proline-rich motifs in signaling proteins with their cognate domains (2000) FASEB J, 14, pp. 231-241
Siligardi, G., Drake, A.F., The importance of extended conformations and, in particular, the pii conformation for the molecular recognition of peptides (1995) Biopolymers, 37, pp. 281-292
Macarthur, M.W., Thornton, J.M., Influence of proline residues on protein conformation (1991) J. Mol. Biol, 218, pp. 397-412
Rath, A., Davidson, A.R., Deber, C.M., The structure of unstructured regions in peptides and proteins: Role of the polyproline ii helix in protein folding and recognition (2005) Biopolymers, 80, pp. 179-185
Vitagliano, L., Berisio, R., Mastrangelo, A., Mazzarella, L., Zagari, A., Preferred proline puckerings in cis and trans peptide groups: Implications for collagen stability (2001) Prot. Sci, 10, pp. 2627-2632
Creamer, T.P., Campbell, M.N., Determinants of the polyproline ii helix from modeling studies (2002) Adv. Prot. Chem, 62, pp. 263-282
Shi, Z., Woody, R.W., Kallenbach, N.R., Is polyproline ii a major backbone conformation in unfolded proteins? (2002) Adv. Prot. Chem, 62, pp. 163-240
Shi, Z., Olson, C.A., Rose, G.D., Baldwin, R.L., Kallenbach, N.R., Polyproline ii structure in a sequence of seven alanine residues (2002) Proc. Nat. Acad. Sci. USA, 99, pp. 9190-9195
Eker, F., Cao, X., Nafie, L., Schweitzer-Stenner, R., Tripeptides adopt stable structures in water. A combined polarized visible raman, ftir, and vcd spectroscopy study (2002) J. Am. Chem. Soc, 124, pp. 14330-14341
Avbelj, F., Grdadolnik, S.G., Grdadolnik, J., Baldwin, R.L., Intrinsic backbone preferences are fully present in blocked amino acids (2006) Proc. Nat. Acad. Sci. USA, 103, pp. 1272-1277
Zagrovic, B., Lipfert, J., Sorin, E.J., Millett, I.S., van Gunsteren, W.F., Doniach, S., Pande, V.S., Unusual compactness of a polyproline type ii structure (2005) Proc. Nat. Acad. Sci. USA, 102, pp. 11698-11703
Bartlett, G.J., Choudhary, A., Raines, R.T., Woolfson, D.N., N-- >pi* interactions in proteins (2010) Nat. Chem. Biol, 6, pp. 615-620
Zafra-Ruano, A., Luque, I., Interfacial water molecules in sh3 interactions: Getting the full picture on polyproline recognition by protein-protein interaction domains (2012) FEBS Lett, 586, pp. 2619-2630
Agrawal, V., Kishan, K.V., Promiscuous binding nature of sh3 domains to their target proteins (2002) Prot. Pept. Lett, 9, pp. 185-193
Srinivasan, M., Dunker, A.K., Proline rich motifs as drug targets in immune mediated disorders (2012) Int. J. Pept, p. 634769. , 2012
Niebuhr, K., Ebel, F., Frank, R., Reinhard, M., Domann, E., Carl, U.D., Walter, U., Chakraborty, T., A novel proline-rich motif present in acta of listeria monocytogenes and cytoskeletal proteins is the ligand for the evh1 domain, a protein module present in the ena/vasp family (1997) EMBO J, 16, pp. 5433-5444
Gertler, F.B., Niebuhr, K., Reinhard, M., Wehland, J., Soriano, P., Mena, a relative of vasp and drosophila enabled, is implicated in the control of microfilament dynamics (1996) Cell, 87, pp. 227-239
Ball, L.J., Kuhne, R., Hoffmann, B., Hafner, A., Schmieder, P., Volkmer-Engert, R., Hof, M., Jarchau, T., Dual epitope recognition by the vasp evh1 domain modulates polyproline ligand specificity and binding affinity (2000) EMBO J, 19, pp. 4903-4914
Hunke, C., Hirsch, T., Eichler, J., Structure-based synthetic mimicry of discontinuous protein binding sites: Inhibitors of the interaction of mena evh1 domain with proline-rich ligands (2006) Chembiochem, 7, pp. 1258-1264
Vermeire, J., Vanbillemont, G., Witkowski, W., Verhasselt, B., The nef-infectivity enigma: Mechanisms of enhanced lentiviral infection (2011) Curr. HIV Res, 9, pp. 474-489
Kuo, L.S., Baugh, L.L., Denial, S.J., Watkins, R.L., Liu, M., Garcia, J.V., Foster, J.L., Overlapping effector interfaces define the multiple functions of the hiv-1 nef polyproline helix (2012) Retrovirology, 9, p. 47
Hale, B.G., Kerry, P.S., Jackson, D., Precious, B.L., Gray, A., Killip, M.J., Randall, R.E., Russell, R.J., Structural insights into phosphoinositide 3-kinase activation by the influenza a virus ns1 protein (2010) Proc. Nat. Acad. Sci. USA, 107, pp. 1954-1959
Shin, Y.K., Li, Y., Liu, Q., Anderson, D.H., Babiuk, L.A., Zhou, Y., Sh3 binding motif 1 in influenza a virus ns1 protein is essential for pi3k/akt signaling pathway activation (2007) J. Virol, 81, pp. 12730-12739
Larson, M.R., Rajashankar, K.R., Patel, M.H., Robinette, R.A., Crowley, P.J., Michalek, S., Brady, L.J., Deivanayagam, C., Elongated fibrillar structure of a streptococcal adhesin assembled by the high-affinity association of alpha- and ppii-helices (2010) Proc. Nat. Acad. Sci. USA, 107, pp. 5983-5988
Brady, L.J., Maddocks, S.E., Larson, M.R., Forsgren, N., Persson, K., Deivanayagam, C.C., Jenkinson, H.F., The changing faces of streptococcus antigen i/ii polypeptide family adhesins (2010) Mol. Microbiol, 77, pp. 276-286
Linke, C., Young, P.G., Kang, H.J., Bunker, R.D., Middleditch, M.J., Caradoc-Davies, T.T., Proft, T., Baker, E.N., Crystal structure of the minor pilin fctb reveals determinants of group a streptococcal pilus anchoring (2010) J. Biol. Chem, 285, pp. 20381-20389
Solovyova, A.S., Pointon, J.A., Race, P.R., Smith, W.D., Kehoe, M.A., Banfield, M.J., Solution structure of the major (spy0128) and minor (spy0125 and spy0130) pili subunits from streptococcus pyogenes (2010) Euro. Biophys. J.: EBJ, 39, pp. 469-480
Holmgren, S.K., Taylor, K.M., Bretscher, L.E., Raines, R.T., Code for collagen's stability deciphered (1998) Nature, 392, pp. 666-667
Berisio, R., Granata, V., Vitagliano, L., Zagari, A., Imino acids and collagen triple helix stability: Characterization of collagen-like polypeptides containing hyp-hyp-gly sequence repeats (2004) J. Am. Chem. Soc, 126, pp. 11402-11403
Doi, M., Nishi, Y., Uchiyama, S., Nishiuchi, Y., Nakazawa, T., Ohkubo, T., Kobayashi, Y., Characterization of collagen model peptides containing 4-fluoroproline
(4(s)-fluoroproline-pro-gly)10 forms a triple helix, but (4(r)-fluoroproline-pro-gly)10 does not (2003) J. Am. Chem. Soc, 125, pp. 9922-9923
de Simone, A., Vitagliano, L., Berisio, R., Role of hydration in collagen triple helix stabilization (2008) Biochem. Biophys. Res. Communicat, 372, pp. 121-125
Persikov, A.V., Ramshaw, J.A., Kirkpatrick, A., Brodsky, B., Triple-helix propensity of hydroxyproline and fluoroproline: Comparison of host-guest and repeating tripeptide collagen models (2003) J. Am. Chem. Soc, 125, pp. 11500-11501
Okuyama, K., Miyama, K., Mizuno, K., Bachinger, H.P., Crystal structure of (gly-pro-hyp)(9): Implications for the collagen molecular model (2012) Biopolymers, 97, pp. 607-616
Okuyama, K., Arnott, S., Takayanagi, M., Kakudo, M., Crystal and molecular structure of a collagen-like polypeptide (pro-pro-gly)10 (1981) J. Mol. Biol, 152, pp. 427-443
Okuyama, K., Xu, X., Iguchi, M., Noguchi, K., Revision of collagen molecular structure (2006) Biopolymers, 84, pp. 181-191
Bella, J., A new method for describing the helical conformation of collagen: Dependence of the triple helical twist on amino acid sequence (2010) J. Struct. Biol, 170, pp. 377-391
Fields, G.B., Synthesis and biological applications of collagenmodel triple-helical peptides (2010) Org. Biomol. Chem, 8, pp. 1237-1258
Berisio, R., de Simone, A., Ruggiero, A., Improta, R., Vitagliano, L., Role of side chains in collagen triple helix stabilization and partner recognition (2009) J. Pept. Sci, 15, pp. 131-140
Vitagliano, L., Nemethy, G., Zagari, A., Scheraga, H.A., Stabilization of the triple-helical structure of natural collagen by side-chain interactions (1993) Biochemistry, 32, pp. 7354-7359
Improta, R., Berisio, R., Vitagliano, L., Contribution of dipoledipole interactions to the stability of the collagen triple helix (2008) Prot. Sci, 17, pp. 955-961
Fallas, J.A., Lee, M.A., Jalan, A.A., Hartgerink, J.D., Rational design of single-composition abc collagen heterotrimers (2012) J. Am. Chem. Soc, 134, pp. 1430-1433
Orgel, J.P., Irving, T.C., Miller, A., Wess, T.J., Microfibrillar structure of type i collagen in situ (2006) Proc. Nat. Acad. Sci. USA, 103, pp. 9001-9005
Okuyama, K., Bachinger, H.P., Mizuno, K., Boudko, S., Engel, J., Berisio, R., Vitagliano, L., Re: Microfibrillar structure of type i collagen in situ (2009) Acta Crystallographica. Section D, Biol. Crystallograph, 65, pp. 1007-1008. , author reply 1009-1010
Bella, J., Eaton, M., Brodsky, B., Berman, H.M., Crystal and molecular structure of a collagen-like peptide at 1.9 a resolution (1994) Science, 266, pp. 75-81
Shoulders, M.D., Satyshur, K.A., Forest, K.T., Raines, R.T., Stereoelectronic and steric effects in side chains preorganize a protein main chain (2010) Proc. Nat. Acad. Sci. USA, 107, pp. 559-564
Boudko, S.P., Engel, J., Okuyama, K., Mizuno, K., Bachinger, H.P., Schumacher, M.A., Crystal structure of human type iii collagen gly991-gly1032 cystine knot-containing peptide shows both 7/2 and 10/3 triple helical symmetries (2008) J. Biol. Chem, 283, pp. 32580-32589
Kawahara, K., Nishi, Y., Nakamura, S., Uchiyama, S., Nishiuchi, Y., Nakazawa, T., Ohkubo, T., Kobayashi, Y., Effect of hydration on the stability of the collagen-like triple-helical structure of [4(r)- hydroxyprolyl-4(r)-hydroxyprolylglycine]10 (2005) Biochemistry, 44, pp. 15812-15822
Leitinger, B., Hohenester, E., Mammalian collagen receptors (2007) Mat. Biol, 26, pp. 146-155
Gronwald, W., Bomke, J., Maurer, T., Domogalla, B., Huber, F., Schumann, F., Kremer, W., Kalbitzer, H.R., Structure of the leech protein saratin and characterization of its binding to collagen (2008) J. Mol. Biol, 381, pp. 913-927
Ishikawa, Y., Vranka, J., Wirz, J., Nagata, K., Bachinger, H.P., The rough endoplasmic reticulum-resident fk506-binding protein fkbp65 is a molecular chaperone that interacts with collagens (2008) J. Biol. Chem, 283, pp. 31584-31590
Leo, J.C., Elovaara, H., Brodsky, B., Skurnik, M., Goldman, A., The yersinia adhesin yada binds to a collagenous triple-helical conformation but without sequence specificity (2008) Prot. Eng. Des. Select.,: PEDS, 21, pp. 475-484
Emsley, J., Knight, C.G., Farndale, R.W., Barnes, M.J., Liddington, R.C., Structural basis of collagen recognition by integrin alpha2beta1 (2000) Cell, 101, pp. 47-56
Zong, Y., Xu, Y., Liang, X., Keene, D.R., Hook, A., Gurusiddappa, S., Hook, M., Narayana, S.V.A., 'collagen hug' model for staphylococcus aureus cna binding to collagen (2005) EMBO J, 24, pp. 4224-4236
Hohenester, E., Sasaki, T., Giudici, C., Farndale, R.W., Bachinger, H.P., Structural basis of sequence-specific collagen recognition by sparc (2008) Proc. Nat. Acad. Sci. USA, 105, pp. 18273-18277
Carafoli, F., Bihan, D., Stathopoulos, S., Konitsiotis, A.D., Kvansakul, M., Farndale, R.W., Leitinger, B., Hohenester, E., Crystallographic insight into collagen recognition by discoidin domain receptor 2 (2009) Structure, 17, pp. 1573-1581
Gingras, A.R., Girija, U.V., Keeble, A.H., Panchal, R., Mitchell, D.A., Moody, P.C., Wallis, R., Structural basis of mannan-binding lectin recognition by its associated serine protease masp-1: Implications for complement activation (2011) Structure, 19, pp. 1635-1643
Brondijk, T.H., Bihan, D., Farndale, R.W., Huizinga, E.G., Implications for collagen i chain registry from the structure of the collagen von willebrand factor a3 domain complex (2012) Proc. Nat. Acad. Sci. USA, 109, pp. 5253-5258
Manka, S.W., Carafoli, F., Visse, R., Bihan, D., Raynal, N., Farndale, R.W., Murphy, G., Nagase, H., Structural insights into triple-helical collagen cleavage by matrix metalloproteinase 1 (2012) Proc. Nat. Acad. Sci. USA, 109, pp. 12461-12466
Widmer, C., Gebauer, J.M., Brunstein, E., Rosenbaum, S., Zaucke, F., Drogemuller, C., Leeb, T., Baumann, U., Molecular basis for the action of the collagen-specific chaperone hsp47/serpinh1 and its structure-specific client recognition (2012) Proc. Nat. Acad. Sci. USA, 109, pp. 13243-13247
Bertini, I., Fragai, M., Luchinat, C., Melikian, M., Toccafondi, M., Lauer, J.L., Fields, G.B., Structural basis for matrix metalloproteinase 1-catalyzed collagenolysis (2012) J. Am. Chem. Soc, 134, pp. 2100-2110
Liu, Q., Ponnuraj, K., Xu, Y., Ganesh, V.K., Sillanpaa, J., Murray, B.E., Narayana, S.V., Hook, M., The enterococcus faecalis mscramm ace binds its ligand by the collagen hug model (2007) J. Biol. Chem, 282, pp. 19629-19637
Visai, L., Xu, Y., Casolini, F., Rindi, S., Hook, M., Speziale, P., Monoclonal antibodies to cna, a collagen-binding microbial surface component recognizing adhesive matrix molecules, detach staphylococcus aureus from a collagen substrate (2000) J. Biol. Chem, 275, pp. 39837-39845
Elasri, M.O., Thomas, J.R., Skinner, R.A., Blevins, J.S., Beenken, K.E., Nelson, C.L., Smeltzer, M.S., Staphylococcus aureus collagen adhesin contributes to the pathogenesis of osteomyelitis (2002) Bone, 30, pp. 275-280
Hienz, S.A., Schennings, T., Heimdahl, A., Flock, J.I., Collagen binding of staphylococcus aureus is a virulence factor in experimental endocarditis (1996) J. Infect. Dis, 174, pp. 83-88
Ponnuraj, K., Bowden, M.G., Davis, S., Gurusiddappa, S., Moore, D., Choe, D., Xu, Y., Narayana, S.V., A dock, lock, and latch structural model for a staphylococcal adhesin binding to fibrinogen (2003) Cell, 115, pp. 217-228
Ganesh, V.K., Rivera, J.J., Smeds, E., Ko, Y.P., Bowden, M.G., Wann, E.R., Gurusiddappa, S., Hook, M., A structural model of the staphylococcus aureus clfa-fibrinogen interaction opens new avenues for the design of anti-staphylococcal therapeutics (2008) PLoS Pathog, 4, pp. e1000226
Symersky, J., Patti, J.M., Carson, M., House-Pompeo, K., Teale, M., Moore, D., Jin, L., Narayana, S.V., Structure of the collagen-binding domain from a staphylococcus aureus adhesin (1997) Nat. Struct. Biol, 4, pp. 833-838
Berisio, R., Ciccarelli, L., Squeglia, F., de Simone, A., Vitagliano, L., Structural and dynamic properties of incomplete immunoglobulin- like fold domains (2012) Prot. Pept. Lett, 19, pp. 1045-1053
Rich, R.L., Kreikemeyer, B., Owens, R.T., Labrenz, S., Narayana, S.V., Weinstock, G.M., Murray, B.E., Hook, M., Ace is a collagenbinding mscramm from enterococcus faecalis (1999) J. Biol. Chem, 274, pp. 26939-26945
Westerlund, B., Korhonen, T.K., Bacterial proteins binding to the mammalian extracellular matrix (1993) Mol. Microbiol, 9, pp. 687-694
Foster, T.J., McDevitt, D., Surface-associated proteins of staphylococcus aureus: Their possible roles in virulence (1994) FEMS Microbiol. Lett, 118, pp. 199-205
Mohamed, N., Teeters, M.A., Patti, J.M., Hook, M., Ross, J.M., Inhibition of Staphylococcus aureus adherence to collagen under dynamic conditions (1999) Infect. Immunit, 67, pp. 589-594
Nallapareddy, S.R., Sillanpaa, J., Ganesh, V.K., Hook, M., Murray, B.E., Inhibition of enterococcus faecium adherence to collagen by antibodies against high-affinity binding subdomains of acm (2007) Infect.immunit, 75, pp. 3192-3196
Myllyharju, J., Kivirikko, K.I., Collagens, modifying enzymes and their mutations in humans, flies and worms (2004) Trends In Genetics: TIG, 20, pp. 33-43
Humtsoe, J.O., Kim, J.K., Xu, Y., Keene, D.R., Hook, M., Lukomski, S., Wary, K.K., A streptococcal collagen-like protein interacts with the alpha2beta1 integrin and induces intracellular signaling (2005) J. Biol. Chem, 280, pp. 13848-13857
Rasmussen, M., Bjorck, L., Unique regulation of sclb - a novel collagen-like surface protein of streptococcus pyogenes (2001) Mol. Microbiol, 40, pp. 1427-1438
Caswell, C.C., Oliver-Kozup, H., Han, R., Lukomska, E., Lukomski, S., Scl1, the multifunctional adhesin of group a streptococcus, selectively binds cellular fibronectin and laminin, and mediates pathogen internalization by human cells (2010) FEMS Microbiol. Lett, 303, pp. 61-68
Chen, S.M., Tsai, Y.S., Wu, C.M., Liao, S.K., Wu, L.C., Chang, C.S., Liu, Y.H., Tsai, P.J., Streptococcal collagen-like surface protein 1 promotes adhesion to the respiratory epithelial cell (2010) BMC Microbiol, 10, p. 320
Vandersmissen, L., de Buck, E., Saels, V., Coil, D.A., Anne, J., A legionella pneumophila collagen-like protein encoded by a gene with a variable number of tandem repeats is involved in the adherence and invasion of host cells (2010) FEMS Microbiol. Lett, 306, pp. 168-176
Boydston, J.A., Chen, P., Steichen, C.T., Turnbough Jr., C.L., Orientation within the exosporium and structural stability of the collagen-like glycoprotein bcla of bacillus anthracis (2005) J Bacteriol, 187, pp. 5310-5317
Han, R., Zwiefka, A., Caswell, C.C., Xu, Y., Keene, D.R., Lukomska, E., Zhao, Z., Lukomski, S., Assessment of prokaryotic collagen-like sequences derived from streptococcal scl1 and scl2 proteins as a source of recombinant gxy polymers (2006) Appl. Microbiol. Biotechnol, 72, pp. 109-115
Yu, Z., Brodsky, B., Inouye, M., Disscting a bacterial collagen domain from Streptococcus pyogenes (2011) J. Biol. Chem, 286, pp. 18960-18968
Lukomski, S., Nakashima, K., Abdi, I., Cipriano, V.J., Ireland, R.M., Reid, S.D., Adams, G.G., Musser, J.M., Identification and characterization of the scl gene encoding a group a streptococcus extracellular protein virulence factor with similarity to human collagen (2000) Infect. Immunit, 68, pp. 6542-6553
Mohs, A., Silva, T., Yoshida, T., Amin, R., Lukomski, S., Inouye, M., Brodsky, B., Mechanism of stabilization of a bacterial collagen triple helix in the absence of hydroxyproline (2007) J. Biol. Chem, 282, pp. 29757-29765
Caswell, C.C., Barczyk, M., Keene, D.R., Lukomska, E., Gullberg, D.E., Lukomski, S., Identification of the first prokaryotic collagen sequence motif that mediates binding to human collagen receptors, integrins alpha2beta1 and alpha11beta1 (2008) J. Biol. Chem, 283, pp. 36168-36175
Caswell, C.C., Lukomska, E., Seo, N.S., Hook, M., Lukomski, S., Scl1-dependent internalization of group a streptococcus via direct interactions with the alpha2beta(1) integrin enhances pathogen survival and re-emergence (2007) Mol. Microbiol, 64, pp. 1319-1331
Gao, Y., Liang, C., Zhao, R., Lukomski, S., Han, R., The scl1 of m41-type group a streptococcus binds the high-density lipoprotein (2010) FEMS Microbiol. Lett, 309, pp. 55-61
Caswell, C.C., Han, R., Hovis, K.M., Ciborowski, P., Keene, D.R., Marconi, R.T., Lukomski, S., The scl1 protein of m6-type group a streptococcus binds the human complement regulatory protein, factor h, and inhibits the alternative pathway of complement (2008) Mol. Microbiol, 67, pp. 584-596
Reuter, M., Caswell, C.C., Lukomski, S., Zipfel, P.F., Binding of the human complement regulators cfhr1 and factor h by streptococcal collagen-like protein 1 (scl1) via their conserved c termini allows control of the complement cascade at multiple levels (2010) J. Biol. Chem, 285, pp. 38473-38485
Biedermann, F., Uzunova, V.D., Scherman, O.A., Nau, W.M., de Simone, A., Release of high-energy water as an essential driving force for the high-affinity binding of cucurbit[n]urils (2012) J. Am. Chem. Soc, 134, pp. 15318-15323
Richardson, J. S., The anatomy and taxonomy of protein structure (1981) Adv. Prot. Chem, 34, pp. 167-33
Brenner, S. E., Chothia, C., Hubbard, T. J., Population statistics of protein structures: Lessons from structural classifications (1997) Curr. Opin. Struct. Biol, 7, pp. 369-376
Adzhubei, A. A., Sternberg, M. J., Left-handed polyproline ii helices commonly occur in globular proteins (1993) J. Mol. Biol, 229, pp. 472-493
Stapley, B. J., Creamer, T. P., A survey of left-handed polyproline ii helices (1999) Prot. Sci, 8, pp. 587-595
Cubellis, M. V., Caillez, F., Blundell, T. L., Lovell, S. C., Properties of polyproline ii, a secondary structure element implicated in protein-protein interactions (2005) Proteins, 58, pp. 880-892
Barlow, D. J., Thornton, J. M., Helix geometry in proteins (1988) J. Mol. Biol, 201, pp. 601-619
Shoulders, M. D., Raines, R. T., Collagen structure and stability (2009) Ann. Rev. Biochem, 78, pp. 929-958
de Vega, M. J., Martin-Martinez, M., Gonzalez-Muniz, R., Modulation of protein-protein interactions by stabilizing/mimicking protein secondary structure elements (2007) Curr. Topics Med. Chem, 7, pp. 33-62
Tsai, C. J., Lin, S. L., Wolfson, H. J., Nussinov, R., Protein-protein interfaces: Architectures and interactions in protein-protein interfaces and in protein cores. Their similarities and differences (1996) Crit. Rev. Biochem. Mol. Biol, 31, pp. 127-152
Kay, B. K., Williamson, M. P., Sudol, M., The importance of being proline: The interaction of proline-rich motifs in signaling proteins with their cognate domains (2000) FASEB J, 14, pp. 231-241
Macarthur, M. W., Thornton, J. M., Influence of proline residues on protein conformation (1991) J. Mol. Biol, 218, pp. 397-412
Creamer, T. P., Campbell, M. N., Determinants of the polyproline ii helix from modeling studies (2002) Adv. Prot. Chem, 62, pp. 263-282
Shi, Z., Woody, R. W., Kallenbach, N. R., Is polyproline ii a major backbone conformation in unfolded proteins? (2002) Adv. Prot. Chem, 62, pp. 163-240
Shi, Z., Olson, C. A., Rose, G. D., Baldwin, R. L., Kallenbach, N. R., Polyproline ii structure in a sequence of seven alanine residues (2002) Proc. Nat. Acad. Sci. USA, 99, pp. 9190-9195
Bartlett, G. J., Choudhary, A., Raines, R. T., Woolfson, D. N., N-- >pi* interactions in proteins (2010) Nat. Chem. Biol, 6, pp. 615-620
Gertler, F. B., Niebuhr, K., Reinhard, M., Wehland, J., Soriano, P., Mena, a relative of vasp and drosophila enabled, is implicated in the control of microfilament dynamics (1996) Cell, 87, pp. 227-239
Ball, L. J., Kuhne, R., Hoffmann, B., Hafner, A., Schmieder, P., Volkmer-Engert, R., Hof, M., Jarchau, T., Dual epitope recognition by the vasp evh1 domain modulates polyproline ligand specificity and binding affinity (2000) EMBO J, 19, pp. 4903-4914
Kuo, L. S., Baugh, L. L., Denial, S. J., Watkins, R. L., Liu, M., Garcia, J. V., Foster, J. L., Overlapping effector interfaces define the multiple functions of the hiv-1 nef polyproline helix (2012) Retrovirology, 9, p. 47
Hale, B. G., Kerry, P. S., Jackson, D., Precious, B. L., Gray, A., Killip, M. J., Randall, R. E., Russell, R. J., Structural insights into phosphoinositide 3-kinase activation by the influenza a virus ns1 protein (2010) Proc. Nat. Acad. Sci. USA, 107, pp. 1954-1959
Shin, Y. K., Li, Y., Liu, Q., Anderson, D. H., Babiuk, L. A., Zhou, Y., Sh3 binding motif 1 in influenza a virus ns1 protein is essential for pi3k/akt signaling pathway activation (2007) J. Virol, 81, pp. 12730-12739
Larson, M. R., Rajashankar, K. R., Patel, M. H., Robinette, R. A., Crowley, P. J., Michalek, S., Brady, L. J., Deivanayagam, C., Elongated fibrillar structure of a streptococcal adhesin assembled by the high-affinity association of alpha- and ppii-helices (2010) Proc. Nat. Acad. Sci. USA, 107, pp. 5983-5988
Brady, L. J., Maddocks, S. E., Larson, M. R., Forsgren, N., Persson, K., Deivanayagam, C. C., Jenkinson, H. F., The changing faces of streptococcus antigen i/ii polypeptide family adhesins (2010) Mol. Microbiol, 77, pp. 276-286
Solovyova, A. S., Pointon, J. A., Race, P. R., Smith, W. D., Kehoe, M. A., Banfield, M. J., Solution structure of the major (spy0128) and minor (spy0125 and spy0130) pili subunits from streptococcus pyogenes (2010) Euro. Biophys. J.: EBJ, 39, pp. 469-480
Holmgren, S. K., Taylor, K. M., Bretscher, L. E., Raines, R. T., Code for collagen's stability deciphered (1998) Nature, 392, pp. 666-667
(4 (s) -fluoroproline-pro-gly) 10 forms a triple helix, but (4 (r) -fluoroproline-pro-gly) 10 does not (2003) J. Am. Chem. Soc, 125, pp. 9922-9923
Persikov, A. V., Ramshaw, J. A., Kirkpatrick, A., Brodsky, B., Triple-helix propensity of hydroxyproline and fluoroproline: Comparison of host-guest and repeating tripeptide collagen models (2003) J. Am. Chem. Soc, 125, pp. 11500-11501
Fields, G. B., Synthesis and biological applications of collagenmodel triple-helical peptides (2010) Org. Biomol. Chem, 8, pp. 1237-1258
Fallas, J. A., Lee, M. A., Jalan, A. A., Hartgerink, J. D., Rational design of single-composition abc collagen heterotrimers (2012) J. Am. Chem. Soc, 134, pp. 1430-1433
Orgel, J. P., Irving, T. C., Miller, A., Wess, T. J., Microfibrillar structure of type i collagen in situ (2006) Proc. Nat. Acad. Sci. USA, 103, pp. 9001-9005
Kramer, R. Z., Bella, J., Mayville, P., Brodsky, B., Berman, H. M., Sequence dependent conformational variations of collagen triplehelical structure (1999) Nat. Struct. Biol, 6, pp. 454-457
Shoulders, M. D., Satyshur, K. A., Forest, K. T., Raines, R. T., Stereoelectronic and steric effects in side chains preorganize a protein main chain (2010) Proc. Nat. Acad. Sci. USA, 107, pp. 559-564
Boudko, S. P., Engel, J., Okuyama, K., Mizuno, K., Bachinger, H. P., Schumacher, M. A., Crystal structure of human type iii collagen gly991-gly1032 cystine knot-containing peptide shows both 7/2 and 10/3 triple helical symmetries (2008) J. Biol. Chem, 283, pp. 32580-32589
Gordon, M. K., Hahn, R. A., Collagens (2010) Cell Tiss. Res, 339, pp. 247-257
Leo, J. C., Elovaara, H., Brodsky, B., Skurnik, M., Goldman, A., The yersinia adhesin yada binds to a collagenous triple-helical conformation but without sequence specificity (2008) Prot. Eng. Des. Select.,: PEDS, 21, pp. 475-484
Gingras, A. R., Girija, U. V., Keeble, A. H., Panchal, R., Mitchell, D. A., Moody, P. C., Wallis, R., Structural basis of mannan-binding lectin recognition by its associated serine protease masp-1: Implications for complement activation (2011) Structure, 19, pp. 1635-1643
Brondijk, T. H., Bihan, D., Farndale, R. W., Huizinga, E. G., Implications for collagen i chain registry from the structure of the collagen von willebrand factor a3 domain complex (2012) Proc. Nat. Acad. Sci. USA, 109, pp. 5253-5258
Manka, S. W., Carafoli, F., Visse, R., Bihan, D., Raynal, N., Farndale, R. W., Murphy, G., Nagase, H., Structural insights into triple-helical collagen cleavage by matrix metalloproteinase 1 (2012) Proc. Nat. Acad. Sci. USA, 109, pp. 12461-12466
Elasri, M. O., Thomas, J. R., Skinner, R. A., Blevins, J. S., Beenken, K. E., Nelson, C. L., Smeltzer, M. S., Staphylococcus aureus collagen adhesin contributes to the pathogenesis of osteomyelitis (2002) Bone, 30, pp. 275-280
Hienz, S. A., Schennings, T., Heimdahl, A., Flock, J. I., Collagen binding of staphylococcus aureus is a virulence factor in experimental endocarditis (1996) J. Infect. Dis, 174, pp. 83-88
Ganesh, V. K., Rivera, J. J., Smeds, E., Ko, Y. P., Bowden, M. G., Wann, E. R., Gurusiddappa, S., Hook, M., A structural model of the staphylococcus aureus clfa-fibrinogen interaction opens new avenues for the design of anti-staphylococcal therapeutics (2008) PLoS Pathog, 4, pp. e1000226
Rich, R. L., Kreikemeyer, B., Owens, R. T., Labrenz, S., Narayana, S. V., Weinstock, G. M., Murray, B. E., Hook, M., Ace is a collagenbinding mscramm from enterococcus faecalis (1999) J. Biol. Chem, 274, pp. 26939-26945
Foster, T. J., McDevitt, D., Surface-associated proteins of staphylococcus aureus: Their possible roles in virulence (1994) FEMS Microbiol. Lett, 118, pp. 199-205
Nallapareddy, S. R., Sillanpaa, J., Ganesh, V. K., Hook, M., Murray, B. E., Inhibition of enterococcus faecium adherence to collagen by antibodies against high-affinity binding subdomains of acm (2007) Infect. immunit, 75, pp. 3192-3196
Humtsoe, J. O., Kim, J. K., Xu, Y., Keene, D. R., Hook, M., Lukomski, S., Wary, K. K., A streptococcal collagen-like protein interacts with the alpha2beta1 integrin and induces intracellular signaling (2005) J. Biol. Chem, 280, pp. 13848-13857
Caswell, C. C., Oliver-Kozup, H., Han, R., Lukomska, E., Lukomski, S., Scl1, the multifunctional adhesin of group a streptococcus, selectively binds cellular fibronectin and laminin, and mediates pathogen internalization by human cells (2010) FEMS Microbiol. Lett, 303, pp. 61-68
Chen, S. M., Tsai, Y. S., Wu, C. M., Liao, S. K., Wu, L. C., Chang, C. S., Liu, Y. H., Tsai, P. J., Streptococcal collagen-like surface protein 1 promotes adhesion to the respiratory epithelial cell (2010) BMC Microbiol, 10, p. 320
Boydston, J. A., Chen, P., Steichen, C. T., Turnbough Jr., C. L., Orientation within the exosporium and structural stability of the collagen-like glycoprotein bcla of bacillus anthracis (2005) J Bacteriol, 187, pp. 5310-5317
Caswell, C. C., Barczyk, M., Keene, D. R., Lukomska, E., Gullberg, D. E., Lukomski, S., Identification of the first prokaryotic collagen sequence motif that mediates binding to human collagen receptors, integrins alpha2beta1 and alpha11beta1 (2008) J. Biol. Chem, 283, pp. 36168-36175
Caswell, C. C., Lukomska, E., Seo, N. S., Hook, M., Lukomski, S., Scl1-dependent internalization of group a streptococcus via direct interactions with the alpha2beta (1) integrin enhances pathogen survival and re-emergence (2007) Mol. Microbiol, 64, pp. 1319-1331
Caswell, C. C., Han, R., Hovis, K. M., Ciborowski, P., Keene, D. R., Marconi, R. T., Lukomski, S., The scl1 protein of m6-type group a streptococcus binds the human complement regulatory protein, factor h, and inhibits the alternative pathway of complement (2008) Mol. Microbiol, 67, pp. 584-596
Polyproline and triple helix motifs in Host-Pathogen recognition
Vitiello M, Finamore E, Falanga A, Raieta K, Cantisani M, Galdiero F, Pedone C, Galdiero M, Galdiero S * Fusion in Coq(481 views) Lecture Notes In Computer Science (ISSN: 0302-9743, 0302-974335404636319783540463634, 0302-974335402975459783540297543), 2001; 2178LNCS: 583-596. Impact Factor:0.415 ViewExport to BibTeXExport to EndNote