Keywords: Brain Phantom, Multiple Sclerosis, Segmentation, Tissue Inhomogeneity, Histology, Image Segmentation, Resonance, Magnetic Resonance Imaging, Proton, Article, Basal Ganglion, Brain Homogenate, Nuclear Magnetic Resonance Imaging, Priority Journal, Relaxation Time, Simulation, Algorithms, Computer Simulation, Humans, Image Enhancement, Image Interpretation, Computer-Assisted, Models, Anatomic, Reproducibility Of Results, Sensitivity And Specificity, Signal Processing, Subtraction Technique, Brain Anatomy, Image Enhancement Methods, Computer-Assisted Methods, Magnetic Resonance Imaging Instrumentation Methods, Digital Phantom,
Affiliations: *** IBB - CNR ***
Biostructure and Bioimaging Institute, National Research Council, Naples, Italy
SDN Foundation, Institute of Diagnostic and Nuclear Development, Naples, Italy
Magnetic Resonance Laboratory, Center for Imaging Science, Rochester Institute of Technology, Rochester, NY, United States
Inst. for Applications of Calculation, Mauro Picone National Research Council, Naples, Italy
Department of Neurological Sciences, Second University, Naples, Italy
Department of Biomorphological and Functional Sciences, University Federico II, Naples, Italy
M. Comerci, M. Larobina, B. Alfano: Istituto di Biostrutture e Bioimmagini, CNR, Naples, ITA
References: Alfano, B., Brunetti, A., Arpaia, M., Ciarmiello, A., Covelli, E.M., Salvatore, M., Multiparametric display of spin-echo data from MR studies of brain (1995) J. Magn. Reson. Imaging, 5, pp. 217-22
Antalek, B., Hornak, J.P., Windig, W., Multivariate image analysis of magnetic resonance images with the direct exponential curve resolution algorithm (DECRA). Part 2: Application to human brain images (1998) J. Magn. Reson., 132, pp. 307-315
Aubert-Broche, B., Griffin, M., Pike, G.B., Evans, A.C., Collins, L., Twenty new digital brain phantoms for creation of validation image data bases (2006) IEEE Trans. Med. Imaging, 25, pp. 1410-1416
Bermel, R.A., Bakshi, R., The measurement and clinical relevance of brain atrophy in multiple sclerosis (2006) Lancet Neurol., 5, pp. 158-170
Betting, L.E., Mory, S.B., Lopes-Cendes, I., Li, L.M., Guerreiro, M.M., Guerreiro, C.A., Cendes, F., MRI volumetry shows increased anterior thalamic volumes in patients with absence seizures (2006) Epilepsy Behav., 8, pp. 575-580
Bezdek, J.C., Hall, L.O., Clarke, L.P., Review of MR image segmentation techniques using pattern recognition (1993) Med. Phys., 20, pp. 1033-1048
Biernacki, C., Celeux, G., Govaert, G., Langrognet, F., Model-based cluster and discriminant analysis with the MIXMOD software (2006) Comput. Stat. Data Anal., 51, pp. 587-600
Bouix, S., Martin-Fernandez, M., Ungar, L., Nakamura, M., Koo, M.S., McCarley, R.W., Shenton, M.E., On evaluating brain tissue classifiers without a ground truth (2007) NeuroImage, 36, pp. 1207-1224
Chua, S.E., Cheung, C., Cheung, V., Tsang, J.T., Chen, E.Y., Wong, J.C., Cheung, J.P., McAlonan, G.M., Cerebral grey, white matter and csf in never-medicated, first-episode schizophrenia (2007) Schizophr. Res., 89, pp. 12-21
Collins, D.L., Zijdenbos, A.P., Kollokian, V., Sled, J.G., Kabani, N.J., Holmes, C.J., Evans, A.C., Design and construction of a realistic digital brain phantom (1998) IEEE Trans. Med. Imaging, 17, pp. 463-468
de Jong, L.W., van der Hiele, K., Veer, I.M., Houwing, J.J., Westendorp, R.G., Bollen, E.L., de Bruin, P.W., van der Grond, J., Strongly reduced volumes of putamen and thalamus in Alzheimer's disease: an MRI study (2008) Brain, 131, pp. 3277-3285
Dempster, A.P., Laird, N.M., Rubin, D.B., Maximum likelihood from incomplete data via the EM algorithm (with discussion) (1977) J. Roy. Stat. Soc. B, 39, pp. 1-38
Fletcher, L.M., Barsotti, J.B., Hornak, J.P., A multispectral analysis of brain tissues (1993) Magn. Reson. Med., 29, pp. 623-630
Friston, K.J., Ashburner, J., Frith, C., Poline, J.B., Heather, J.D., Frackowiak, R.S.J., Spatial registration and normalization of images (1995) Hum. Brain Mapp., 2, pp. 165-189
Goldman, A.L., Pezawas, L., Mattay, V.S., Fischl, B., Verchinski, B.A., Zoltick, B., Weinberger, D.R., Meyer-Lindenberg, A., Heritability of brain morphology related to schizophrenia: a large-scale automated magnetic resonance imaging segmentation study (2008) Biol. Psychiatry, 63, pp. 475-483
Han, X., Fischl, B., Atlas renormalization for improved brain MR image segmentation across scanner platforms (2007) IEEE Trans. Med. Imaging, 26, pp. 479-486
Hartmann, S.L., Parks, M.H., Martin, P.R., Dawant, B.M., Automatic 3D segmentation of internal structures of the head in MR images using a combination of similarity and free-form transformations. Part II. Validation on severely atrophied brains (1999) IEEE Trans. Med. Imaging, 18, pp. 917-926
Kazemi, K., Moghaddam, H.A., Grebe, R., Gondry-Jouet, C., Wallois, F., A neonatal atlas template for spatial normalization of whole-brain magnetic resonance images of newborns: preliminary results (2007) NeuroImage, 37 (2), pp. 463-473
Kovacevic, N., Lobaugh, N.J., Bronskill, M.J., Levine, B., Feinstein, A., Black, S.E., A robust method for extraction and automatic segmentation of brain images (2002) NeuroImage, 17, pp. 1087-1100
Labadie, C., Lee, J.H., Vetek, G., Springer, C.S., Relaxographic imaging (1994) J. Magn. Reson. B, 105, pp. 99-112
Lowe, M.J., Sorenson, J.A., Spatially filtering functional magnetic resonance imaging data (1997) Magn. Reson. Med., 37, pp. 723-729
McDonald, C.R., Hagler, D.J., Ahmadi, M.E., Tecoma, E., Iragui, V., Dale, A.M., Halgren, E., Subcortical and cerebellar atrophy in mesial temporal lobe epilepsy revealed by automatic segmentation (2008) Epilepsy. Res., 79, pp. 130-138
Østby, Y., Tamnes, C.K., Fjell, A.M., Westlye, L.T., Due-Tønnessen, P., Walhovd, K.B., Heterogeneity in subcortical brain development: a structural magnetic resonance imaging study of brain maturation from 8 to 30years (2009) J. Neurosci., 29, pp. 11772-11782
Pelletier, D., Garrison, K., Henry, R., Measurement of whole-brain atrophy in multiple sclerosis (2004) J. Neuroimaging, 14, pp. 11S-19S
Péran, P., Cherubini, A., Luccichenti, G., Hagberg, G., Démonet, J.F., Rascol, O., Celsis, P., Sabatini, U., Volume and iron content in basal ganglia and thalamus (2009) Hum. Brain Mapp., 30, pp. 2667-2675
Portas, C.M., Goldstein, J.M., Shenton, M.E., Hokama, H.H., Wible, C.G., Fischer, I., Kikinis, R., McCarley, R.W., Volumetric evaluation of the thalamus in schizophrenic male patients using magnetic resonance imaging (1998) Biol. Psychiatry, 43, pp. 649-659
Rex, D.E., Shattuck, D.W., Woods, R.P., Narr, K.L., Luders, E., Rehm, K., Stoltzner, S.E., Toga, A.W., A meta-algorithm for brain extraction in MRI (2004) NeuroImage, 23, pp. 625-637
Rexilius, J., Hahn, H., Schlüter, M., Bourquain, H., Peitgen, H.O., Evaluation of accuracy in MS lesion volumetry using realistic lesion phantoms (2005) Acad. Radiol., 12, pp. 17-24
Sowell, E.R., Trauner, D.A., Gamst, A., Jernigan, T.L., Development of cortical and subcortical brain structures in childhood and adolescence: a structural MRI study (2002) Dev. Med. Child Neurol., 44, pp. 4-16
Wansapura, J.P., Holland, S.K., Dunn, R.S., Ball, W.S., NMR relaxation times in the human brain at 3.0tesla (1999) J. Magn. Reson. Imaging, 9 (4), pp. 531-538
Warfield, S.K., Zou, K.H., Wells, W.M., Validation of image segmentation by estimating rater bias and variance (2008) Philos. Trans. Roy. Soc. London Ser. A, 366, pp. 2361-2375
Wie, X., Warfield, S.K., Zou, K.H., Wu, Y., Li, X., Guimond, A., Mugler, J.P., Guttmann, C.R., Quantitative analysis of MRI signal abnormalities of brain white matter with high reproducibility and accuracy (2002) J. Magn. Reson. Imaging, 15, pp. 203-209
Windig, W., Antalek, B., Hornak, J.P., Multivariate image analysis of magnetic resonance images with the direct exponential curve resolution algorithm (DECRA). Part 1: Algorithm and model study (1998) J. Magn. Reson., 32, pp. 298-306
Bermel, R. A., Bakshi, R., The measurement and clinical relevance of brain atrophy in multiple sclerosis (2006) Lancet Neurol., 5, pp. 158-170
Betting, L. E., Mory, S. B., Lopes-Cendes, I., Li, L. M., Guerreiro, M. M., Guerreiro, C. A., Cendes, F., MRI volumetry shows increased anterior thalamic volumes in patients with absence seizures (2006) Epilepsy Behav., 8, pp. 575-580
Bezdek, J. C., Hall, L. O., Clarke, L. P., Review of MR image segmentation techniques using pattern recognition (1993) Med. Phys., 20, pp. 1033-1048
Chua, S. E., Cheung, C., Cheung, V., Tsang, J. T., Chen, E. Y., Wong, J. C., Cheung, J. P., McAlonan, G. M., Cerebral grey, white matter and csf in never-medicated, first-episode schizophrenia (2007) Schizophr. Res., 89, pp. 12-21
Collins, D. L., Zijdenbos, A. P., Kollokian, V., Sled, J. G., Kabani, N. J., Holmes, C. J., Evans, A. C., Design and construction of a realistic digital brain phantom (1998) IEEE Trans. Med. Imaging, 17, pp. 463-468
de Jong, L. W., van der Hiele, K., Veer, I. M., Houwing, J. J., Westendorp, R. G., Bollen, E. L., de Bruin, P. W., van der Grond, J., Strongly reduced volumes of putamen and thalamus in Alzheimer's disease: an MRI study (2008) Brain, 131, pp. 3277-3285
Dempster, A. P., Laird, N. M., Rubin, D. B., Maximum likelihood from incomplete data via the EM algorithm (with discussion) (1977) J. Roy. Stat. Soc. B, 39, pp. 1-38
Fletcher, L. M., Barsotti, J. B., Hornak, J. P., A multispectral analysis of brain tissues (1993) Magn. Reson. Med., 29, pp. 623-630
Friston, K. J., Ashburner, J., Frith, C., Poline, J. B., Heather, J. D., Frackowiak, R. S. J., Spatial registration and normalization of images (1995) Hum. Brain Mapp., 2, pp. 165-189
Goldman, A. L., Pezawas, L., Mattay, V. S., Fischl, B., Verchinski, B. A., Zoltick, B., Weinberger, D. R., Meyer-Lindenberg, A., Heritability of brain morphology related to schizophrenia: a large-scale automated magnetic resonance imaging segmentation study (2008) Biol. Psychiatry, 63, pp. 475-483
Hartmann, S. L., Parks, M. H., Martin, P. R., Dawant, B. M., Automatic 3D segmentation of internal structures of the head in MR images using a combination of similarity and free-form transformations. Part II. Validation on severely atrophied brains (1999) IEEE Trans. Med. Imaging, 18, pp. 917-926
Lowe, M. J., Sorenson, J. A., Spatially filtering functional magnetic resonance imaging data (1997) Magn. Reson. Med., 37, pp. 723-729
McDonald, C. R., Hagler, D. J., Ahmadi, M. E., Tecoma, E., Iragui, V., Dale, A. M., Halgren, E., Subcortical and cerebellar atrophy in mesial temporal lobe epilepsy revealed by automatic segmentation (2008) Epilepsy. Res., 79, pp. 130-138
stby, Y., Tamnes, C. K., Fjell, A. M., Westlye, L. T., Due-T nnessen, P., Walhovd, K. B., Heterogeneity in subcortical brain development: a structural magnetic resonance imaging study of brain maturation from 8 to 30years (2009) J. Neurosci., 29, pp. 11772-11782
P ran, P., Cherubini, A., Luccichenti, G., Hagberg, G., D monet, J. F., Rascol, O., Celsis, P., Sabatini, U., Volume and iron content in basal ganglia and thalamus (2009) Hum. Brain Mapp., 30, pp. 2667-2675
Portas, C. M., Goldstein, J. M., Shenton, M. E., Hokama, H. H., Wible, C. G., Fischer, I., Kikinis, R., McCarley, R. W., Volumetric evaluation of the thalamus in schizophrenic male patients using magnetic resonance imaging (1998) Biol. Psychiatry, 43, pp. 649-659
Rex, D. E., Shattuck, D. W., Woods, R. P., Narr, K. L., Luders, E., Rehm, K., Stoltzner, S. E., Toga, A. W., A meta-algorithm for brain extraction in MRI (2004) NeuroImage, 23, pp. 625-637
Sowell, E. R., Trauner, D. A., Gamst, A., Jernigan, T. L., Development of cortical and subcortical brain structures in childhood and adolescence: a structural MRI study (2002) Dev. Med. Child Neurol., 44, pp. 4-16
Udupa, J. K., LeBlanc, V. R., Ying, Z. G., Imielinska, C., Schmidt, H., Currie, L. M., Hirsch, B. E., Woodburn, J., A framework for evaluating image segmentation algorithms (2006) Comput. Med. Imaging Graph, 30, pp. 75-87
Wansapura, J. P., Holland, S. K., Dunn, R. S., Ball, W. S., NMR relaxation times in the human brain at 3. 0tesla (1999) J. Magn. Reson. Imaging, 9 (4), pp. 531-538
Warfield, S. K., Zou, K. H., Wells, W. M., Validation of image segmentation by estimating rater bias and variance (2008) Philos. Trans. Roy. Soc. London Ser. A, 366, pp. 2361-2375
An MRI digital brain phantom for validation of segmentation methods
Knowledge of the exact spatial distribution of brain tissues in images acquired by magnetic resonance imaging (MRI) is necessary to measure and compare the performance of segmentation algorithms. Currently available physical phantoms do not satisfy this requirement. State-of-the-art digital brain phantoms also fall short because they do not handle separately anatomical structures (e.g. basal ganglia) and provide relatively rough simulations of tissue fine structure and inhomogeneity. We present a software procedure for the construction of a realistic MRI digital brain phantom. The phantom consists of hydrogen nuclear magnetic resonance spin-lattice relaxation rate (R1), spin-spin relaxation rate (R2), and proton density (PD) values for a 24 x 19 x 15.5 cm volume of a "normal" head. The phantom includes 17 normal tissues, each characterized by both mean value and variations in R1, R2, and PD. In addition, an optional tissue class for multiple sclerosis (MS) lesions is simulated. The phantom was used to create realistic magnetic resonance (MR) images of the brain using simulated conventional spin-echo (CSE) and fast field-echo (FFE) sequences. Results of mono-parametric segmentation of simulations of sequences with different noise and slice thickness are presented as an example of possible applications of the phantom. The phantom data and simulated images are available online at http://lab.ibb.cnr.it/. (C) 2011 Elsevier B.V. All rights reserved.
An MRI digital brain phantom for validation of segmentation methods