Checking the pH-induced conformational transition of prion protein by molecular dynamics simulations: Effect of protonation of histidine residues(427 views) Langella E, Improta R, Barone V
Dipartimento di Chimica, Universitá Federico II, Complesso Monte S. Angelo, via Cintia, Naples, Italy
Ist. di Biostrutture/Bioimmagini-CNR, Via Mezzocannone 6, I-80134 Naples, Italy
References: Alonso, D.O.V., An, C., Daggett, V., Simulations of biomolecules: Characterization of the early steps in the pH-induced conformational conversion of the hamster, bovine and human forms of the prion protein (2002) Philos. Trans. R. Soc. Lond. A, 360, pp. 1165-117
Alonso, D.O.V., DeArmond, S.J., Cohen, F.E., Daggett, V., Mapping the early steps in the pH-induced conformational conversion of the prion protein (2001) Proc. Natl. Acad. Sci. USA, 98, pp. 2985-2989
Amadei, A., Chillemi, G., Ceruso, M.A., Grottesi, A., Di Nola, A., Molecular dynamics simulations with constrained roto-translational motions: Theoretical basis and statistical mechanical consistency (2000) J. Chem. Phys., 112, pp. 9-23
Apetri, A.C., Surewicz, W.K., Kinetic intermediate in the folding of human prion protein (2002) J. Biol. Chem., 277, pp. 44589-44592
Bashford, D., Gerwert, K., Electrostatic calculations of the pKa values of ionizable groups in bacteriorhodopsin (1992) J. Mol. Biol., 224, pp. 473-486
Berendsen, H.J.C., Postma, J.P.M., Van Gunsteren, W.F., Hermans, J., Interaction models for water in relation to protein hydration (1981) Intermolecular Forces, pp. 331-342. , Reidel, Dordrecht, Germany
Beroza, P., Fredkin, D.R., Okamura, M.Y., Fehler, G., Protonation of interacting residues in a protein by a Monte Carlo method: Application to lysozyme and the photosynthetic reaction center of Rhodobacter sphaeroides (1991) Proc. Natl. Acad. Sci. USA, 88, pp. 5804-5808
Billeter, M., Wüthrich, K., The prion protein globular domain and disease-related mutants studied by molecular dynamics simulations (2000) Arch. Virol., 16, pp. 251-263
Braatz, J.A., Paulsen, M.D., Omstein, R.L., 3 Nsec molecular dynamics simulation of the protein ubiquitin and comparison with x-ray crystal and solution NMR structures (1992) J. Biomol. Struct. Dyn., 9, pp. 935-949
Brown, D., Clarke, J.H.R., A comparison of constant energy, constant temperature, and constant pressure ensembles in molecular dynamics simulations of atomic liquids (1984) Mol. Phys., 51, pp. 1243-1252
Bums, C.S., Aronoff-Spencer, E., Legname, G., Prusiner, S.B., Antholine, W.E., Gerfen, G.J., Peisach, J., Millhauser, G.L., Copper coordination in the full-length, recombinant prion protein (2003) Biochemistry, 42, pp. 6794-6803
Caughey, B.W., Dong, A., Bhat, K.S., Ernst, D., Hayes, S.F., Caughey, W.S., Secondary structure analysis of the scrapie-associated protein PrP 27-30 in water by infrared spectroscopy (1991) Biochemistry, 30, pp. 7672-7680
Cereghetti, M.G., Schweiger, A., Glockshuber, R., Van Doorslaer, S., Electron paramagnetic resonance evidence for binding of Cu2+ to the C-terminal domain of the murine prion protein (2001) Biophys. J., 81, pp. 516-525
Cereghetti, G.M., Schweiger, A., Glockshuber, R., Van Doorslaer, S., Stability and Cu(II) binding of prion protein variants related to inherited human prion diseases (2003) Biophys. J., 84, pp. 1985-1997
Cervenakova, L., Buetefisch, C., Taller, I., Lee, H.-S., Stone, G., Gibbs, C.J.J., Brown, P., Goldfarb, L.G., Novel PRNP sequence variant associated with familial encephalopathy (1999) Am. J. Med. Genet., 88, pp. 653-656
Cohen, F.E., Prusiner, S.B., Pathologic conformations of prion proteins (1998) Annu. Rev. Biochem., 67, pp. 793-819
Darden, T., Perera, L., Li, L., Pedersen, L., New tricks for modelers from the crystallography toolkit: The particle mesh Ewald algorithm and its use in nucleic acid simulations (1999) Structure, 7, pp. R55-R60
Darden, T., York, D., Pedersen, L., Particle mesh Ewald: An Nxlog(N) method for Ewald sums in large systems (1993) J. Chem. Phys., 98, pp. 10089-10092
Daura, X., Jaun, B., Seebach, D., Van Gunsteren, W.F., Mark, A.E., Reversible peptide folding in solution by molecular dynamics simulation (1998) J. Mol. Biol., 280, pp. 925-932
Daura, X., Van Gunsteren, W.F., Mark, A.E., Folding-unfolding thermodynamics of a b-heptapeptide from equilibrium simulations (1999) Proteins, 34, pp. 269-280
De Groot, B.L., Hayward, S., Van Aalten, D.M.F., Amadei, A., Berendsen, H.J.C., Domain motions in bacteriophage T4 lysozyme: A comparison between molecular dynamics and crystallographic data (1998) Proteins, 31, pp. 116-127
DeMarco, M.L., Daggett, V., From conversion to aggregation: Protofibril formation of the prion protein (2004) Proc. Natl. Acad. Sci. USA, 101, pp. 2293-2298
Dima, R.I., Thirumalai, D., Exploring the propensities of helices in PrP(C) to form beta sheet using NMR structures and sequence alignments (2002) Biophys. J., 83, pp. 1268-1280
Donne, D.G., Viles, J.H., Groth, D., Mehlhom, I., James, T.L., Cohen, F.E., Prusiner, S.B., Dyson, H.J., Structure of the recombinant full-length hamster prion protein PrP(29-231): The N terminus is highly flexible (1997) Proc. Natl. Acad. Sci. USA, 94, pp. 13452-13457
Fox, T., Kollman, P.A., The application of different solvation and electrostatic models in molecular dynamics simulations of ubiquitin: How well is the x-ray structure "maintained"? (1996) Proteins, 25, pp. 315-334
Gilis, D., Rooman, M., PoPMuSic, an algorithm for predicting protein mutant stability changes. Application to prion protein (2000) Protein Eng., 13, pp. 849-856
Gorodinsky, A., Harris, D.A., Glycolipid-anchored proteins in neuroblastoma cells form detergent-resistant complexes without caveolin (1995) J. Cell Biol., 129, pp. 619-627
Griffith, J.S., Self-replication and scrapie (1967) Nature, 215, pp. 1043-1044
Grottesi, A., Ceruso, M.-A., Colosimo, A., Di Nola, A., Molecular dynamics study of a hyperthermophilic and a mesophilic rubredoxin (2002) Proteins, 46, pp. 287-294
Harre, L.F., Whyte, S.M., Vasisht, N., Gill, A.C., Verma, C., Dodson, E.J., Dodson, G.G., Bayley, P.M., The crystal structure of the globular domain of sheep prion protein (2004) J. Mol. Biol., 336, pp. 1175-1183
Harris, D.A., Biosynthesis and cellular processing of the prion protein (2001) Adv. Protein Chem., 57, pp. 203-228
Hermann, L.M., Caughey, B., The importance of the disulfide bond in prion protein conversion (1998) Neuroreport, 9, pp. 2457-2461
Hess, B., Bekker, H., Berendsen, H.J.C., Fraaije, J.G.E.M., LINCS: A linear constraint solver for molecular simulations (1997) J. Comput. Chem., 18, pp. 1463-1472
Hornemann, S., Glockshuber, R., A scrapie-like unfolding intermediate of the prion protein domain PrP(121-231) induced by acidic pH (1998) Proc. Natl. Acad. Sci. USA, 95, pp. 6010-6014
Hornshaw, M.P., McDermott, J.R., Candy, J.M., Copper binding to the N-terminal tandem repeat regions of mammalian and avian prion protein (1995) Biochem. Biophys. Res. Commun., 207, pp. 621-629
Hu, H., Elstner, M., Hermans, J., Comparison of a QM/MM force field and molecular mechanics force fields in simulations of alanine and glycine "dipeptides" (Ace-Ala-Nme and Ace-Gly-Nme) in water in relation to the problem of modeling the unfolded peptide backbone in solution (2003) Proteins, 50, pp. 451-463
Jackson, G.S., Hill, A.F., Joseph, C., Hosszu, L., Power, A., Waltho, J.P., Clarke, A.R., Collinge, J., Multiple folding pathways for heterologously expressed human prion protein (1999) Biochim. Biophys. Acta, 1431, pp. 1-13
Jackson, G.S., Murray, I., Hosszu, L.L.P., Gibbs, N., Waltho, J.P., Clarke, A.R., Collinge, J., Location and properties of metal-binding sites on the human prion protein (2001) Proc. Natl. Acad. Sci. USA, 98, pp. 8531-8535
Kabsch, W., Sander, C., Dictionary of protein secondary structure: Pattern recognition of hydrogen-bonded and geometrical features (1983) Biopolymers, pp. 2577-2637
Karlberg, Y., Gustafsson, M., Persson, B., Thyberg, J., Johanson, J., Prediction of amyloid fibril-forming proteins (2001) J. Biol. Chem., 276, pp. 12945-12950
Kelly, J.W., The environmental dependency of protein folding best explains prion and amyloid diseases (1998) Proc. Natl. Acad. Sci. USA, 95, pp. 930-932
Knaus, K.J., Morillas, M., Swietnicki, W., Malone, M., Surewicz, W., Yee, V.C., Crystal structure of the human prion protein reveals a mechanism for oligomerization (2001) Nat. Struct. Biol., 8, pp. 770-774
Koradi, R., Billeter, M., Wüthrich, K., MOLMOL: A program for display and analysis of macromolecular structures (1996) J. Mol. Graph, 14, pp. 51-55
Lee, R.J., Wang, S., Low, P.S., Measurement of endosome pH following folate receptor-mediated endocytosis (1996) Biochim. Biophys. Acta, 1312, pp. 237-242
Lopez Garcia, F., Zhan, R., Riek, R., Wüthrich, K., NMR structure of the bovine prion protein (2000) Proc. Natl. Acad. Sci. USA, 97, pp. 8334-8339
Momon, J.-P., Prat, K., Dupuis, F., Boisset, N., Collebaut, I., Structural features of prions explored by sequence analysis. II. A PrPSc model (2002) Cell. Mol. Life Sci., 59, pp. 2144-2154
Mu, Y., Kosov, D.S., Stock, G., Conformational dynamics of trialanine in water. 2. Comparison of AMBER, CHARMM, GROMOS, and OPLS force fields to NMR and infrared experiments (2003) J. Phys. Chem. B, 107, pp. 5064-5073
Muramoto, T., Scott, M., Cohen, F.E., Prusiner, S.B., Recombinant scrapie-like prion protein of 106 amino acids is soluble (1996) Proc. Natl. Acad. Sci. USA, 93, pp. 15457-15462
Okimoto, N., Yamanaka, K., Suenaga, A., Hata, M., Hoshino, T., Computational studies on prion proteins: Effect of Ala(117)Val mutation (2002) Biophys. J., 82, pp. 2746-2757
Pan, K.M., Baldwin, M., Nguyen, J., Gasset, M., Serban, A., Groth, D., Huang, Z., Prusiner, S.B., Conversion of α-helixes into β-sheets features in the formation of the scrapie prion proteins (1993) Proc. Natl. Acad. Sci. USA, 90, pp. 10962-10966
Parchment, O.G., Essex, J.W., Molecular dynamics of mouse and Syrian hamster PrP: Implications for activity (2000) Proteins, 38, pp. 327-340
Pauly, P.C., Harris, D.A., Copper stimulates endocytosis of the prion protein (1998) J. Biol. Chem., 273, pp. 33107-33110
Prusiner, S.B., Molecular biology of prion diseases (1991) Science, 252, pp. 1515-1522
Prusiner, S.B., DeArmond, S.J., Prion diseases and neurodegeneration (1994) Annu. Rev. Neurosci., 17, pp. 311-339
Prusiner, S.B., McKinley, M.P., Bowman, K.A., Bolton, D.C., Bendheim, P.E., Groth, D.F., Glenner, G.G., Scrapie prions aggregate to form amyloid-like birefringent rods (1983) Cell, 35, pp. 349-358
Riek, R., Hornemann, S., Wider, G., Billeter, M., Glockshuber, R., Wüthrich, K., NMR structure of the mouse prion protein domain PrP(121-231) (1996) Nature, 382, pp. 180-182
Safar, J., Roller, P.P., Gajdusek, D.C., Gibbs Jr., C.J., Thermal stability and conformational transitions of scrapie amyloid (prion) protein correlate with infectivity (1993) Protein Sci., 2, pp. 2206-2216
Santini, S., Derreumaux, P., Helix H1 of the prion protein is rather stable against environmental perturbations: Molecular dynamics of mutation and deletion variants of PrP(90-231). Cellular and molecular life sciences (2004) Cell. Mol. Life Sci., 61, pp. 951-960
Sekijima, M., Motono, C., Yamasaki, S., Kaneko, K., Akiyama, Y., Molecular dynamics simulation of dimeric and monomeric forms of human prion protein: Insight into dynamics and properties (2003) Biophys. J., 85, pp. 1176-1185
Somerville, R.A., Millson, G.C., Kimberlin, R.H., Sensitivity of scrapie infectivity to detergents and 2-mercaptoethanol (1980) Intervirology, 13, pp. 126-129
Stahl, N., Baldwin, M.A., Teplow, D.B., Hood, L., Gibson, B.W., Burlingame, A.L., Prusiner, S.B., Structural studies of the scrapie prion protein using mass spectrometry and amino acid sequencing (1993) Biochemistry, 32, pp. 1991-2002
Stahl, N., Prusiner, S.B., Prions and prion proteins (1991) FASEB J., 5, pp. 2799-2807
Swietnicki, W., Petersen, R., Gambetti, P., Surewicz, W.K., pH-dependent stability and conformation of the recombinant human prion protein PrP(90-231) (1997) J. Biol. Chem., 272, pp. 27517-27520
Taraboulos, A., Scott, M., Semenow, A., Avraham, D., Laszlo, L., Prusiner, S.B., Cholesterol depletion and modification of COOH-terminal targeting sequence of the prion protein inhibit formation of the scrapie isoform (1995) J. Cell Biol., 129, pp. 121-132
Turk, E., Teplow, D.B., Hood, L.E., Prusiner, S.B., Purification and properties of the cellular and scrapie hamster prion proteins (1988) Eur. J. Biochem., 176, pp. 21-30
Van Buuren, A.R., Marrink, S.J., Berendsen, H.J.C., A molecular dynamics study of the decane/water interface (1993) J. Phys. Chem., 97, pp. 9206-9212
Van Der Spoel, D., Van Buuren, A.R., Apol, E., Meulenhoff, P.J., Tieleman, D.P., Sijbers, A.L., Hess, B., Berendsen, H.J.C., (2001) GROMACS User Manual, Version 3.0, , www.gromacs.org, Nijenborgh, AG Groningen, The Netherlands
Van Doorslaer, S., Cereghetti, G.M., Glockshuber, R., Schweiger, A., Unraveling the Cu2+ Binding sites in the C-terminal domain of the murine priori protein: A pulse EPR and ENDOR study (2001) J. Phys. Chem. B, 105, pp. 1631-1639
Weissmann, C., The ninth datta lecture. Molecular biology of transmissible spongiform encephalopathies (1996) FEBS Lett., 21, pp. 482-487
Zahn, R., Liu, A., Luhrs, T., Riek, R., Von Schroetter, C., Garcia, F., Billeter, M., Wüthrich, K., NMR solution structure of the human prion protein (2000) Proc. Natl. Acad. Sci. USA, 97, pp. 145-150
Zuegg, J., Gready, J.E., Molecular dynamics simulations of human prion protein: Importance of correct treatment of electrostatic interactions (1999) Biochemistry, 38, pp. 13862-13876
Alonso, D. O. V., An, C., Daggett, V., Simulations of biomolecules: Characterization of the early steps in the pH-induced conformational conversion of the hamster, bovine and human forms of the prion protein (2002) Philos. Trans. R. Soc. Lond. A, 360, pp. 1165-117
Alonso, D. O. V., DeArmond, S. J., Cohen, F. E., Daggett, V., Mapping the early steps in the pH-induced conformational conversion of the prion protein (2001) Proc. Natl. Acad. Sci. USA, 98, pp. 2985-2989
Apetri, A. C., Surewicz, W. K., Kinetic intermediate in the folding of human prion protein (2002) J. Biol. Chem., 277, pp. 44589-44592
Berendsen, H. J. C., Postma, J. P. M., Van Gunsteren, W. F., Hermans, J., Interaction models for water in relation to protein hydration (1981) Intermolecular Forces, pp. 331-342. , Reidel, Dordrecht, Germany
Billeter, M., W thrich, K., The prion protein globular domain and disease-related mutants studied by molecular dynamics simulations (2000) Arch. Virol., 16, pp. 251-263
Braatz, J. A., Paulsen, M. D., Omstein, R. L., 3 Nsec molecular dynamics simulation of the protein ubiquitin and comparison with x-ray crystal and solution NMR structures (1992) J. Biomol. Struct. Dyn., 9, pp. 935-949
Bums, C. S., Aronoff-Spencer, E., Legname, G., Prusiner, S. B., Antholine, W. E., Gerfen, G. J., Peisach, J., Millhauser, G. L., Copper coordination in the full-length, recombinant prion protein (2003) Biochemistry, 42, pp. 6794-6803
Caughey, B. W., Dong, A., Bhat, K. S., Ernst, D., Hayes, S. F., Caughey, W. S., Secondary structure analysis of the scrapie-associated protein PrP 27-30 in water by infrared spectroscopy (1991) Biochemistry, 30, pp. 7672-7680
Cereghetti, M. G., Schweiger, A., Glockshuber, R., Van Doorslaer, S., Electron paramagnetic resonance evidence for binding of Cu2+ to the C-terminal domain of the murine prion protein (2001) Biophys. J., 81, pp. 516-525
Cereghetti, G. M., Schweiger, A., Glockshuber, R., Van Doorslaer, S., Stability and Cu (II) binding of prion protein variants related to inherited human prion diseases (2003) Biophys. J., 84, pp. 1985-1997
Cohen, F. E., Prusiner, S. B., Pathologic conformations of prion proteins (1998) Annu. Rev. Biochem., 67, pp. 793-819
De Groot, B. L., Hayward, S., Van Aalten, D. M. F., Amadei, A., Berendsen, H. J. C., Domain motions in bacteriophage T4 lysozyme: A comparison between molecular dynamics and crystallographic data (1998) Proteins, 31, pp. 116-127
DeMarco, M. L., Daggett, V., From conversion to aggregation: Protofibril formation of the prion protein (2004) Proc. Natl. Acad. Sci. USA, 101, pp. 2293-2298
Dima, R. I., Thirumalai, D., Exploring the propensities of helices in PrP (C) to form beta sheet using NMR structures and sequence alignments (2002) Biophys. J., 83, pp. 1268-1280
Donne, D. G., Viles, J. H., Groth, D., Mehlhom, I., James, T. L., Cohen, F. E., Prusiner, S. B., Dyson, H. J., Structure of the recombinant full-length hamster prion protein PrP (29-231): The N terminus is highly flexible (1997) Proc. Natl. Acad. Sci. USA, 94, pp. 13452-13457
Griffith, J. S., Self-replication and scrapie (1967) Nature, 215, pp. 1043-1044
Harre, L. F., Whyte, S. M., Vasisht, N., Gill, A. C., Verma, C., Dodson, E. J., Dodson, G. G., Bayley, P. M., The crystal structure of the globular domain of sheep prion protein (2004) J. Mol. Biol., 336, pp. 1175-1183
Harris, D. A., Biosynthesis and cellular processing of the prion protein (2001) Adv. Protein Chem., 57, pp. 203-228
Hermann, L. M., Caughey, B., The importance of the disulfide bond in prion protein conversion (1998) Neuroreport, 9, pp. 2457-2461
Hornshaw, M. P., McDermott, J. R., Candy, J. M., Copper binding to the N-terminal tandem repeat regions of mammalian and avian prion protein (1995) Biochem. Biophys. Res. Commun., 207, pp. 621-629
Jackson, G. S., Hill, A. F., Joseph, C., Hosszu, L., Power, A., Waltho, J. P., Clarke, A. R., Collinge, J., Multiple folding pathways for heterologously expressed human prion protein (1999) Biochim. Biophys. Acta, 1431, pp. 1-13
Jackson, G. S., Murray, I., Hosszu, L. L. P., Gibbs, N., Waltho, J. P., Clarke, A. R., Collinge, J., Location and properties of metal-binding sites on the human prion protein (2001) Proc. Natl. Acad. Sci. USA, 98, pp. 8531-8535
Kelly, J. W., The environmental dependency of protein folding best explains prion and amyloid diseases (1998) Proc. Natl. Acad. Sci. USA, 95, pp. 930-932
Knaus, K. J., Morillas, M., Swietnicki, W., Malone, M., Surewicz, W., Yee, V. C., Crystal structure of the human prion protein reveals a mechanism for oligomerization (2001) Nat. Struct. Biol., 8, pp. 770-774
Lee, R. J., Wang, S., Low, P. S., Measurement of endosome pH following folate receptor-mediated endocytosis (1996) Biochim. Biophys. Acta, 1312, pp. 237-242
Momon, J. -P., Prat, K., Dupuis, F., Boisset, N., Collebaut, I., Structural features of prions explored by sequence analysis. II. A PrPSc model (2002) Cell. Mol. Life Sci., 59, pp. 2144-2154
Mu, Y., Kosov, D. S., Stock, G., Conformational dynamics of trialanine in water. 2. Comparison of AMBER, CHARMM, GROMOS, and OPLS force fields to NMR and infrared experiments (2003) J. Phys. Chem. B, 107, pp. 5064-5073
Pan, K. M., Baldwin, M., Nguyen, J., Gasset, M., Serban, A., Groth, D., Huang, Z., Prusiner, S. B., Conversion of -helixes into -sheets features in the formation of the scrapie prion proteins (1993) Proc. Natl. Acad. Sci. USA, 90, pp. 10962-10966
Parchment, O. G., Essex, J. W., Molecular dynamics of mouse and Syrian hamster PrP: Implications for activity (2000) Proteins, 38, pp. 327-340
Pauly, P. C., Harris, D. A., Copper stimulates endocytosis of the prion protein (1998) J. Biol. Chem., 273, pp. 33107-33110
Prusiner, S. B., Molecular biology of prion diseases (1991) Science, 252, pp. 1515-1522
Prusiner, S. B., DeArmond, S. J., Prion diseases and neurodegeneration (1994) Annu. Rev. Neurosci., 17, pp. 311-339
Prusiner, S. B., McKinley, M. P., Bowman, K. A., Bolton, D. C., Bendheim, P. E., Groth, D. F., Glenner, G. G., Scrapie prions aggregate to form amyloid-like birefringent rods (1983) Cell, 35, pp. 349-358
Somerville, R. A., Millson, G. C., Kimberlin, R. H., Sensitivity of scrapie infectivity to detergents and 2-mercaptoethanol (1980) Intervirology, 13, pp. 126-129
Van Buuren, A. R., Marrink, S. J., Berendsen, H. J. C., A molecular dynamics study of the decane/water interface (1993) J. Phys. Chem., 97, pp. 9206-9212
Checking the pH-induced conformational transition of prion protein by molecular dynamics simulations: Effect of protonation of histidine residues
The role of acidic pH in the conversion of human prion protein to the pathogenic isoform is investigated by means of molecular dynamics simulations, focusing the attention on the effect of protonation of histidine residues on the conformational behavior of human PrPC globular domain. Our simulations reveal a significant loss of α-helix content under mildly acidic conditions, due to destructuration of the C-terminal part of HB (thus suggesting a possible involvement of HB into the conformational transition leading to the pathogenic isoform) and a transient lengthening of the native β-sheet. Protonation of His-187 and His-155 seems to be crucial for the onset of the conformational rearrangement. This finding can be related to the existence of a pathogenic mutation, H187R, which is associated with GSS syndrome. Finally, the relevance of our results for the location of a Cu 2+-binding pocket in the C-terminal part of the prion is discussed.
Checking the pH-induced conformational transition of prion protein by molecular dynamics simulations: Effect of protonation of histidine residues
No results.
Checking the pH-induced conformational transition of prion protein by molecular dynamics simulations: Effect of protonation of histidine residues