Structure-Activity Relations of Myxinidin, an Antibacterial Peptide Derived from the Epidermal Mucus of Hagfish(599 views) Cantisani M, Leone M, Mignogna E, Kampanaraki K, Falanga A, Morelli G, Galdiero M, Galdiero S
Department of Pharmacy, CIRPEB and DFM, University of Naples Federico II, Naples, Italy
Istituto di Biostrutture e Bioimmagini, CNR, Naples, Italy
Center for Advanced Materials for Health Care IIT CRIB, Istituto Italiano di Tecnologia, Naples, Italy
Department of Experimental Medicine, II University of Naples, Naples, Italy
References: Livermore, D.M., Has the era of untreatable infections arrived? (2009) J. Antimicrob. Chemother., 64 (SUPPL. 1), pp. i29-i36. , doi:10.1093/jac/dkp25
Hawkey, P.M., The growing burden of antimicrobial resistance (2008) J. Antimicrob. Chemother., 62 (SUPPL. 1), pp. i1-i9. , doi:10.1093/jac/dkn241
Choi, K.Y., Chow, L.N., Mookherjee, N., Cationic host defence peptides: Multifaceted role in immune modulation and inflammation (2012) J. Innate Immun., 4, pp. 361-370
Bowdish, D.M., Davidson, D.J., Hancock, R.E., A re-evaluation of the role of host defence peptides in mammalian immunity (2005) Curr. Protein Pept. Sci., 6, pp. 35-51
Wiesner, J., Vilcinskas, A., Antimicrobial peptides: The ancient arm of the human immune system (2010) Virulence, 1, pp. 440-464
Zasloff, M., Antimicrobial peptides of multicellular organisms (2002) Nature, 415, pp. 389-395
Easton, D.M., Nijnik, A., Mayer, M.L., Hancock, R.E., Potential of immunomodulatory host defense peptides as novel anti-infectives (2009) Trends Biotechnol, 27, pp. 582-590
Perron, G.G., Zasloff, M., Bell, G., Experimental evolution of resistance to an antimicrobial peptide (2006) Proc. Biol. Sci., 273, pp. 251-256
Radzishevsky, I.S., Rotem, S., Bourdetsky, D., Navon-Venezia, S., Carmeli, Y., Mor, A., Improved antimicrobial peptides based on acyl-lysine oligomers (2007) Nat. Biotechnol., 25, pp. 657-659
Rotem, S., Mor, A., Antimicrobial peptide mimics for improved therapeutic properties (2009) Biochim. Biophys. Acta, 1788, pp. 1582-1592
Gordon, Y.J., Romanowski, E.G., McDermott, A.M., A review of antimicrobial peptides and their therapeutic potential as anti-infective drugs (2005) Curr. Eye Res., 30, pp. 505-515
Yedery, R.D., Reddy, K.V., Antimicrobial peptides as microbicidal contraceptives: Prophecies for prophylactics-A mini review (2005) Eur. J. Contracept. Reprod. Health Care, 10, pp. 32-42
Kim, Y.C., Ludovice, P.J., Prausnitz, M.R., Transdermal delivery enhanced by antimicrobial peptides (2010) J. Biomed. Nanotechnol., 6, pp. 612-620
Clara, A., Manjramkar, D.D., Reddy, V.K., Preclinical evaluation of magainin-A as a contraceptive antimicrobial agent (2004) Fertil. Steril., 81, pp. 1357-1365
Matsuzaki, K., Control of cell selectivity of antimicrobial peptides (2009) Biochim. Biophys. Acta, 1788, pp. 1687-1692
Norberg, S., O'Connor, P.M., Stanton, C., Ross, R.P., Hill, C., Fitzgerald, G.F., Cotter, P.D., Extensive manipulation of caseicins A and B highlights the tolerance of these antimicrobial peptides to change (2012) Appl. Environ. Microbiol., 78, pp. 2353-2358
Field, D., Begley, M., O'Connor, P.M., Daly, K.M., Hugenholtz, F., Cotter, P.D., Hill, C., Ross, R.P., Bioengineered nisin A derivatives with enhanced activity against both Gram positive and Gram negative pathogens (2012) PLoS One, 7, pp. e46884. , doi:10.1371/journal.pone.0046884
Hancock, R.E., Lehrer, R., Cationic peptides: A new source of antibiotics (1998) Trends Biotechnol., 16, pp. 82-88
Subramanian, S., Ross, N.W., Mackinnon, S.L., Comparison of the biochemical composition of normal epidermal mucus and extruded slime of hagfish (Myxine glutinosa L.) (2008) Fish Shellfish Immunol, 25, pp. 625-632
Ellis, A.E., Innate host defense mechanisms of fish against viruses and bacteria (2001) Dev. Comp. Immunol., 25, pp. 827-839
Galdiero, S., Falanga, A., Vitiello, M., Browne, H., Pedone, C., Galdiero, M., Fusogenic domains in herpes simplex virus type 1 glycoprotein H (2005) J. Biol. Chem., 280, pp. 28632-28643
Dalvit, C., Efficient multiple-solvent suppression for the study of the interactions of organic solvents with biomolecules (1998) J. Biomol. NMR, 11, pp. 437-444
Wüthrich, K., (1986) NMR of Proteins and Nucleic Acids, , John Wiley & Sons, New York, NY
Griesinger, C., Otting, G., Wuethrich, K., Ernst, R.R., Clean TOCSY for proton spin system identification in macromolecules (1988) J. Am. Chem. Soc., 110, pp. 7870-7872
Kumar, A., Ernst, R.R., Wüthrich, K., A two-dimensional nuclear Overhauser enhancement (2D NOE) experiment for the elucidation of complete proton-proton cross-relaxation networks in biological macromolecules (1980) Biochem. Biophys. Res. Commun., 95, pp. 1-6
Piantini, U., Sorensen, O.W., Ernst, R.R., Multiple quantum filters for elucidating NMR coupling networks (1982) J. Am. Chem. Soc., 104, pp. 6800-6801
Bartels, C., Xia, T.H., Billeter, M., Guntert, P., Wüthrich, K., The program XEASY for computer-supported NMR spectral analysis of biological macromolecules (1995) J. Biomol. NMR, 6, pp. 1-10
Herrmann, T., Guntert, P., Wüthrich, K., Protein NMR structure determination with automated NOE assignment using the new software CANDID and the torsion angle dynamics algorithm DYANA (2002) J. Mol. Biol., 319, pp. 209-227
Koradi, R., Billeter, M., Wüthrich, K., MOLMOL: A program for display and analysis of macromolecular structures (1996) J. Mol. Graph., 14, pp. 51-55
Doreleijers, J.F., Sousa Da Silva, A.W., Krieger, E., Nabuurs, S.B., Spronk, C.A., Stevens, T.J., Vranken, W.F., Vuister, G.W., CING: An integrated residue-based structure validation program suite (2012) J. Biomol. NMR, 54, pp. 267-283
Mosmann, T., Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays (1983) J. Immunol. Methods, 65, pp. 55-63
Buck, M., Trifluoroethanol and colleagues: Cosolvents come of age. Recent studies with peptides and proteins (1998) Q. Rev. Biophys., 31, pp. 297-355
Wishart, D.S., Sykes, B.D., Richards, F.M., Relationship between nuclear magnetic resonance chemical shift and protein secondary structure (1991) J. Mol. Biol., 222, pp. 311-333
Tossi, A., Sandri, L., Giangaspero, A., Amphipathic, alpha-helical antimicrobial peptides (2000) Biopolymers, 55, pp. 4-30
Giangaspero, A., Sandri, L., Tossi, A., Amphipathic alpha helical antimicrobial peptides (2001) Eur. J. Biochem., 268, pp. 5589-5600
Dempsey, C.E., Hawrani, A., Howe, R.A., Walsh, T.R., Amphipathic antimicrobial peptides-from biophysics to therapeutics? Protein Pept (2010) Lett., 17, pp. 1334-1344
Li, J., Garg, M., Shah, D., Rajagopalan, R., Solubilization of aromatic and hydrophobic moieties by arginine in aqueous solutions (2010) J. Chem. Phys., 133, p. 054902. , doi:10.1063/1.3469790
Su, Y., Waring, A.J., Ruchala, P., Hong, M., Membrane-bound dynamic structure of an arginine-rich cell-penetrating peptide, the protein transduction domain of HIV TAT, from solid-state NMR (2010) Biochemistry, 49, pp. 6009-6020
Schmidt, N., Mishra, A., Lai, G.H., Wong, G.C., Arginine-rich cellpenetrating peptides (2010) FEBS Lett., 584, pp. 1806-1813
Pellegrini, A., Von Fellenberg, R., Design of synthetic bactericidal peptides derived from the bactericidal domain P(18-39) of aprotinin (1999) Biochim. Biophys. Acta, 1433, pp. 122-131
Ma, Q.Q., Dong, N., Shan, A.S., Lv, Y.F., Li, Y.Z., Chen, Z.H., Cheng, B.J., Li, Z.Y., Biochemical property and membrane-peptide interactions of de novo antimicrobial peptides designed by helix-forming units (2012) Amino Acids, 43, pp. 2527-2536
Bi, X., Wang, C., Ma, L., Sun, Y., Shang, D., Investigation of the role of tryptophan residues in cationic antimicrobial peptides to determine the mechanism of antimicrobial action (2013) J. Appl. Microbiol., 115, pp. 663-672
Galdiero, S., Russo, L., Falanga, A., Cantisani, M., Vitiello, M., Fattorusso, R., Malgieri, G., Isernia, C., Structure and orientation of the gH625-644 membrane interacting region of herpes simplex virus type 1 in a membrane mimetic system (2012) Biochemistry, 51, pp. 3121-3128
Falanga, A., Tarallo, R., Vitiello, G., Vitiello, M., Perillo, E., Cantisani, M., D'Errico, G., Galdiero, S., Biophysical characterization and membrane interaction of the two fusion loops of glycoprotein B from herpes simplex type i virus (2012) PLoS One, 7, pp. e32186. , doi:10.1371/journal.pone.0032186
Pasupuleti, M., Walse, B., Svensson, B., Malmsten, M., Schmidtchen, A., Rational design of antimicrobial C3a analogues with enhanced effects against staphylococci using an integrated structure and functionbased approach (2008) Biochemistry, 47, pp. 9057-9070
Scudiero, O., Galdiero, S., Nigro, E., Del Vecchio, L., Di Noto, R., Cantisani, M., Colavita, I., Salvatore, F., Chimeric beta-defensin analogs, including the novel 3NI analog, display salt-resistant antimicrobial activity and lack toxicity in human epithelial cell lines (2013) Antimicrob. Agents Chemother., 57, pp. 1701-1708
Harder, J., Bartels, J., Christophers, E., Schroder, J.M., Isolation and characterization of human beta-defensin-3, a novel human inducible peptide antibiotic (2001) J. Biol. Chem., 276, pp. 5707-5713
Livermore, D. M., Has the era of untreatable infections arrived? (2009) J. Antimicrob. Chemother., 64 (SUPPL. 1), pp. i29-i36. , doi: 10. 1093/jac/dkp25
Hawkey, P. M., The growing burden of antimicrobial resistance (2008) J. Antimicrob. Chemother., 62 (SUPPL. 1), pp. i1-i9. , doi: 10. 1093/jac/dkn241
Choi, K. Y., Chow, L. N., Mookherjee, N., Cationic host defence peptides: Multifaceted role in immune modulation and inflammation (2012) J. Innate Immun., 4, pp. 361-370
Bowdish, D. M., Davidson, D. J., Hancock, R. E., A re-evaluation of the role of host defence peptides in mammalian immunity (2005) Curr. Protein Pept. Sci., 6, pp. 35-51
Easton, D. M., Nijnik, A., Mayer, M. L., Hancock, R. E., Potential of immunomodulatory host defense peptides as novel anti-infectives (2009) Trends Biotechnol, 27, pp. 582-590
Perron, G. G., Zasloff, M., Bell, G., Experimental evolution of resistance to an antimicrobial peptide (2006) Proc. Biol. Sci., 273, pp. 251-256
Radzishevsky, I. S., Rotem, S., Bourdetsky, D., Navon-Venezia, S., Carmeli, Y., Mor, A., Improved antimicrobial peptides based on acyl-lysine oligomers (2007) Nat. Biotechnol., 25, pp. 657-659
Gordon, Y. J., Romanowski, E. G., McDermott, A. M., A review of antimicrobial peptides and their therapeutic potential as anti-infective drugs (2005) Curr. Eye Res., 30, pp. 505-515
Yedery, R. D., Reddy, K. V., Antimicrobial peptides as microbicidal contraceptives: Prophecies for prophylactics-A mini review (2005) Eur. J. Contracept. Reprod. Health Care, 10, pp. 32-42
Kim, Y. C., Ludovice, P. J., Prausnitz, M. R., Transdermal delivery enhanced by antimicrobial peptides (2010) J. Biomed. Nanotechnol., 6, pp. 612-620
Hancock, R. E., Lehrer, R., Cationic peptides: A new source of antibiotics (1998) Trends Biotechnol., 16, pp. 82-88
Ellis, A. E., Innate host defense mechanisms of fish against viruses and bacteria (2001) Dev. Comp. Immunol., 25, pp. 827-839
W thrich, K., (1986) NMR of Proteins and Nucleic Acids, , John Wiley & Sons, New York, NY
Doreleijers, J. F., Sousa Da Silva, A. W., Krieger, E., Nabuurs, S. B., Spronk, C. A., Stevens, T. J., Vranken, W. F., Vuister, G. W., CING: An integrated residue-based structure validation program suite (2012) J. Biomol. NMR, 54, pp. 267-283
Wishart, D. S., Sykes, B. D., Richards, F. M., Relationship between nuclear magnetic resonance chemical shift and protein secondary structure (1991) J. Mol. Biol., 222, pp. 311-333
Dempsey, C. E., Hawrani, A., Howe, R. A., Walsh, T. R., Amphipathic antimicrobial peptides-from biophysics to therapeutics? Protein Pept (2010) Lett., 17, pp. 1334-1344
Su, Y., Waring, A. J., Ruchala, P., Hong, M., Membrane-bound dynamic structure of an arginine-rich cell-penetrating peptide, the protein transduction domain of HIV TAT, from solid-state NMR (2010) Biochemistry, 49, pp. 6009-6020
Ma, Q. Q., Dong, N., Shan, A. S., Lv, Y. F., Li, Y. Z., Chen, Z. H., Cheng, B. J., Li, Z. Y., Biochemical property and membrane-peptide interactions of de novo antimicrobial peptides designed by helix-forming units (2012) Amino Acids, 43, pp. 2527-2536
Structure-Activity Relations of Myxinidin, an Antibacterial Peptide Derived from the Epidermal Mucus of Hagfish
The structure-activity relations of myxinidin, a peptide derived from epidermal mucus of hagfish, Myxine glutinosa L., were investigated. Analysis of key residues allowed us to design new peptides with increased efficiency. Antimicrobial activity of native and modified peptides demonstrated the key role of uncharged residues in the sequence; the loss of these residues reduces almost entirely myxinidin antimicrobial activity, while insertion of arginine at charged and uncharged position increases antimicrobial activity compared with that of native myxinidin. Particularly, we designed a peptide capable of achieving a high inhibitory effect on bacterial growth. Experiments were conducted using both Gram-negative and Gram-positive bacteria. Nuclear magnetic resonance (NMR) studies showed that myxinidin is able to form an amphipathic alpha-helical structure at the N terminus and a random coil region at the C terminus.
Structure-Activity Relations of Myxinidin, an Antibacterial Peptide Derived from the Epidermal Mucus of Hagfish
No results.
Structure-Activity Relations of Myxinidin, an Antibacterial Peptide Derived from the Epidermal Mucus of Hagfish
Petraglia F, Singh AA, Carafa V, Nebbioso A, Conte M, Scisciola L, Valente S, Baldi A, Mandoli A, Petrizzi VB, Ingenito C, De Falco S, Cicatiello V, Apicella I, Janssen-megens EM, Kim B, Yi G, Logie C, Heath S, Ruvo M, Wierenga ATJ, Flicek P, Yaspo ML, Della Valle V, Bernard O, Tomassi S, Novellino E, Feoli A, Sbardella G, Gut I, Vellenga E, Stunnenberg HG, Mai A, Martens JHA, Altucci L * Combined HAT/EZH2 modulation leads to cancer-selective cell death(284 views) Oncotarget (ISSN: 1949-2553electronic, 1949-2553linking), 2018 May 22; 9(39): 25630-25646. Impact Factor:5.008 ViewExport to BibTeXExport to EndNote
Santulli G, Cipolletta E, Sorriento D, Del Giudice C, Anastasio A, Monaco S, Maione AS, Condorelli G, Puca A, Trimarco B, Illario M, Iaccarino G * CaMK4 gene deletion induces hypertension(349 views) J Am Heart Assoc Journal Of The American Heart Association (ISSN: 2047-9980), 2012; 1(4): N/D-N/D. Impact Factor:2.882 ViewExport to BibTeXExport to EndNote
Aloj L, Aurilio M, Rinaldi V, D'Ambrosio L, Tesauro D, Peitl PK, Maina T, Mansi R, Von Guggenberg E, Joosten L, Sosabowski JK, Breeman WA, De Blois E, Koelewijn S, Melis M, Waser B, Beetschen K, Reubi JC, De Jong M * The EEE project(449 views) Proc Int Cosm Ray Conf Icrc Universidad Nacional Autonoma De Mexico, 2007; 5(HEPART2): 977-980. Impact Factor:0 ViewExport to BibTeXExport to EndNote