A novel arsenate reductase from the bacterium Thermus thermophilus HB27: Its role in arsenic detoxification(418 views) Del Giudice I, Limauro D, Pedone E, Bartolucci S, Fiorentino G
Department of Biology, University of Naples Federico II, Edificio 7, via Cinthia, 80126 Naples, Italy
Institute of Biostructures and Bioimaging, CNR, via Mezzocannone 16, 80134 Naples, Italy
References: Reyes, C., Lloyd, R., Saltikov, C.W., Geomicrobiology of iron and arsenic in anoxic sediments (2008) Satinder Ahuja, Arsenic Contamination of Groundwater: Mechanism, Analysis, and Remediation, pp. 123-146. , John Wiley & Sons Inc. New Jerse
Oremland, R.S., Stolz, J.F., Arsenic, microbes and contaminated aquifers (2005) Trends in Microbiology, 13 (2), pp. 45-49. , DOI 10.1016/j.tim.2004.12.002, PII S0966842X04002689
Murphy, J.N., Saltikov, C.W., The ArsR repressor mediates arsenite-dependent regulation of arsenate respiration and detoxification operons of Shewanella sp. Strain ANA-3 (2009) J. Bacteriol., 191, pp. 6722-6731
Cervantes, C., Ji, G., Ramirez, J.L., Silver, S., Resistance to arsenic compounds in microorganisms (1994) FEMS Microbiol. Rev., 15, pp. 355-367
Murota, C., Matsumoto, H., Fujiwara, S., Hiruta, Y., Miyashita, S., Shimoya, M., Kobayashi, I., Sato, N., Arsenic tolerance in a Chlamydomonas photosynthetic mutant is due to reduced arsenic uptake even in light conditions (2012) Planta, 236, pp. 1395-1403
Turpeinen, R., Pantsar-Kallio, M., Haggblom, M., Kairesalo, T., Influence of microbes on the mobilization, toxicity and biomethylation of arsenic in soil (1999) Science of the Total Environment, 236 (1-3), pp. 173-180. , DOI 10.1016/S0048-9697(99)00269-7, PII S0048969799002697
Qin, J., Rosen, B.P., Zhang, Y., Wang, G., Franke, S., Rensing, C., Arsenic detoxification and evolution of trimethylarsine gas by a microbial arsenite S-adenosylmethionine methyltransferase (2006) Proceedings of the National Academy of Sciences of the United States of America, 103 (7), pp. 2075-2080. , DOI 10.1073/pnas.0506836103
Say, R., Yilmaz, N., Denizli, A., Biosorption of cadmium, lead, mercury, and arsenic ions by the fungus Penicillium purpurogenum (2003) Separation Science and Technology, 38 (9), pp. 2039-2053. , DOI 10.1081/SS-120020133
Andreoni, V., Zanchi, R., Cavalca, L., Corsini, A., Romagnoli, C., Canzi, E., Arsenite oxidation in Ancylobacter dichloromethanicus As3-1b strain: Detection of genes involved in arsenite oxidation and CO2 fixation (2012) Curr. Microbiol., 65, pp. 212-218
Rauschenbach, I., Bini, E., Häggblom, M.M., Yee, N., Physiological response of Desulfurispirillum indicum S5 to arsenate and nitrate as terminal electron acceptors (2012) FEMS Microbiol. Ecol., 81, pp. 156-162
Bartolucci, S., Contursi, P., Fiorentino, G., Limauro, D., Pedone, E., Responding to toxic compounds: A genomic and functional overview of Archaea (2013) Front. Biosci., 18, pp. 165-189
Saltikov, C.W., Olson, B.H., Homology of Escherichia coli R773 arsA, arsB, and arsC genes in arsenic-resistant bacteria isolated from raw sewage and arsenic-enriched creek waters (2002) Applied and Environmental Microbiology, 68 (1), pp. 280-288. , DOI 10.1128/AEM.68.1.280-288.2002
Ji, G., Silver, S.J., Regulation and expression of the arsenic resistance operon from Staphylococcus aureus plasmid pI258 (1992) J. Bacteriol., 174, pp. 3684-3694
Sato, T., Kobayashi, Y., The ars operon in the skin element of Bacillus subtilis confers resistance to arsenate and arsenite (1998) Journal of Bacteriology, 180 (7), pp. 1655-1661
Patel, P.C., Goulhen, F., Boothman, C., Gault, A.G., Charnock, J.M., Kalia, K., Lloyd, J.R., Arsenate detoxification in a Pseudomonad hypertolerant to arsenic (2007) Archives of Microbiology, 187 (3), pp. 171-183. , DOI 10.1007/s00203-006-0182-9
Gatti, D., Mitra, B., Rosen, B.P., Escherichia coli soft metal ion-translocating ATPases (2000) J. Biol. Chem., 275, pp. 34009-34012
Lin, Y.-F., Walmsley, A.R., Rosen, B.P., An arsenic metallochaperone for an arsenic detoxification pump (2006) Proceedings of the National Academy of Sciences of the United States of America, 103 (42), pp. 15617-15622. , DOI 10.1073/pnas.0603974103
Achour-Rokbani, A., Cordi, A., Poupin, P., Bauda, P., Billard, P., Characterization of the ars gene cluster from extremely arsenic-resistant Microbacterium sp. Strain A33 (2010) Appl. Environ. Microbiol., 76, pp. 948-955
Páez-Espino, D., Tamames, J., De Lorenzo, V., Cánovas, D., Microbial responses to environmental arsenic (2009) Biometals, 22, pp. 117-130
Messens, J., Silver, S., Arsenate reduction: Thiol cascade chemistry with convergent evolution (2006) J. Mol. Biol., 362, pp. 1-17
Villadangos, A.F., Van Belle, K., Wahni, K., Dufe, V.T., Freitas, S., Nur, H., De Galan, S., Messens, J., Corynebacterium glutamicum survives arsenic stress with arsenate reductases coupled to two distinct redox mechanisms (2011) Mol. Microbiol., 82, pp. 998-1014
Li, Y., Hu, Y., Zhang, X., Xu, H., Lescop, E., Xia, B., Jin, C., Conformational fluctuations coupled to the thiol-disulfide transfer between thioredoxin and arsenate reductase in Bacillus subtilis (2007) Journal of Biological Chemistry, 282 (15), pp. 11078-11083. , http://www.jbc.org/cgi/reprint/282/15/11078, DOI 10.1074/jbc.M700970200
Zegers, I., Martins, J.C., Willem, R., Wyns, L., Messens, J., Arsenate reductase from S. Aureus plasmid pI258 is a phosphatase drafted for redox duty (2001) Nature Structural Biology, 8 (10), pp. 843-847. , DOI 10.1038/nsb1001-843
Gladysheva, T.B., Oden, K.L., Rosen, B.P., Properties of the arsenate reductase of plasmid R773 (1994) Biochemistry, 33 (23), pp. 7288-7293. , DOI 10.1021/bi00189a033
Mukhopadhyay, R., Bisacchi, D., Zhou, Y., Armirotti, A., Bordo, D., Structural characterization of the As/Sb reductase LmACR2 from Leishmania major (2009) J. Mol. Biol., 386, pp. 1229-1239
Mukhopadhyay, R., Zhou, Y., Rosen, B.P., Directed Evolution of a Yeast Arsenate Reductase into a Protein-tyrosine Phosphatase (2003) Journal of Biological Chemistry, 278 (27), pp. 24476-24480. , DOI 10.1074/jbc.M302610200
Ordóñez, E., Van Belle, K., Roos, G., De Galan, S., Letek, M., Gil, J.A., Wyns, L., Messens, J., Arsenate reductase, mycothiol, and mycoredoxin concert thiol/disulfide exchange (2009) J. Biol. Chem., 284, pp. 15107-15116
Cuebas, M., Sannino, D., Bini, E., Isolation and characterization of arsenic resistant Geobacillus kaustophilus strain from geothermal soils (2011) J. Basic Microbiol., 51, pp. 364-371
Dopson, M., Lindstrom, E.B., Hallberg, K.B., Chromosomally encoded arsenical resistance of the moderately thermophilic acidophile Acidithiobacillus caldus (2001) Extremophiles, 5 (4), pp. 247-255. , DOI 10.1007/s007920100196
Gihring, T.M., Banfield, J.F., Arsenite oxidation and arsenate respiration by a new Thermus isolate (2001) FEMS Microbiology Letters, 204 (2), pp. 335-340. , DOI 10.1016/S0378-1097(01)00421-9, PII S0378109701004219
Gihring, T.M., Druschel, G.K., Mccleskey, R.B., Hamers, R.J., Banfield, J.F., Rapid arsenite oxidation by Thermus aquaticus and Thermus thermophilus: Field and laboratory investigations (2001) Environmental Science and Technology, 35 (19), pp. 3857-3862. , DOI 10.1021/es010816f
Miller, J., (1972) Experiments in Molecular Genetics, , Cold Spring Harbor Laboratory Cold Spring Harbor, N.Y
Fiorentino, G., Ronca, R., Cannio, R., Rossi, M., Bartolucci, S., MarR-like transcriptional regulator involved in detoxification of aromatic compounds in Sulfolobus solfataricus (2007) Journal of Bacteriology, 189 (20), pp. 7351-7360. , DOI 10.1128/JB.00885-07
Henne, A., Bruggemann, H., Raasch, C., Wiezer, A., Hartsch, T., Liesegang, H., Johann, A., Fritz, H.-J., The genome sequence of the extreme thermophile Thermus thermophilus (2004) Nature Biotechnology, 22 (5), pp. 547-553. , DOI 10.1038/nbt956
Pfaffl, M., A new mathematical model for relative quantification in real-time RT-PCR (2001) Nucleic Acids Res., 29, pp. 2002-2007
Limauro, D., Saviano, M., Galdi, I., Rossi, M., Bartolucci, S., Pedone, E., Sulfolobus solfataricus protein disulphide oxidoreductase: Insight into the roles of its redox sites (2009) Protein Eng. Des. Sel., 22, pp. 19-26
Pedone, E., Saviano, M., Rossi, M., Bartolucci, S., A single point mutation (Glu85Arg) increases the stability of the thioredoxin from Escherichia coli (2001) Protein Engineering, 14 (4), pp. 255-260
Pedone, E., Limauro, D., D'Alterio, R., Rossi, M., Bartolucci, S., Characterization of a multifunctional protein disulfide oxidoreductase from Sulfolobus solfataricus (2006) FEBS Journal, 273 (23), pp. 5407-5420. , DOI 10.1111/j.1742-4658.2006.05533.x
Messens, J., Martins, J.C., Brosens, E., Van Belle, K., Jacobs, D.M., Willem, R., Wyns, L., Kinetics and active site dynamics of Staphylococcus aureus arsenate reductase (2002) Journal of Biological Inorganic Chemistry, 7 (1-2), pp. 146-156. , DOI 10.1007/s007750100282
Whitmore, L., Wallace, B.A., (2008) Biopolymers, 89, pp. 392-400
Passalacqua, K.D., Varadarajan, A., Ondov, B.D., Okou, D.T., Zwick, M.E., Bergman, N.H., Structure and complexity of a bacterial transcriptome (2009) J. Bacteriol., 191, pp. 3203-3211
Ruocco, M.R., Ruggiero, A., Masullo, L., Arcari, P., Masullo, M., A 35 kDa NAD(P)H oxidase previously isolated from the archaeon Sulfolobus solfataricus is instead a thioredoxin reductase (2004) Biochimie, 86, pp. 883-892
Elias, M., Wellner, A., Goldin-Azulay, K., Chabriere, E., Vorholt, J.A., Erb, T.J., Tawfik, D.S., The molecular basis of phosphate discrimination in arsenate-rich environments (2012) Nature, 491, pp. 134-137
Wang, L., Jeon, B., Sahin, O., Zhang, Q., Identification of an arsenic resistance and arsenic-sensing system in Campylobacter jejuni (2009) Appl. Environ. Microbiol., 75, pp. 5064-5073
Bennett, M.S., Guan, Z., Laurberg, M., Su, X.-D., Bacillus subtilis arsenate reductase is structurally and functionally similar to low molecular weight protein tyrosine phosphatases (2001) Proceedings of the National Academy of Sciences of the United States of America, 98 (24), pp. 13577-13582. , DOI 10.1073/pnas.241397198
Mukhopadhyay, R., Rosen, B.P., Arsenate reductases in prokaryotes and eukaryotes (2002) Environmental Health Perspectives, 110 (SUPPL. 5), pp. 745-748
Butcher, B.G., Deane, S.M., Rawlings, D.E., The chromosomal arsenic resistance genes of Thiobacillus ferrooxidans have an unusual arrangement and confer increased arsenic and antimony resistance to Escherichia coli (2000) Applied and Environmental Microbiology, 66 (5), pp. 1826-1833. , DOI 10.1128/AEM.66.5.1826-1833.2000
Fiorentino, G., Cannio, R., Rossi, M., Bartolucci, S., Decreasing the stability and changing the substrate specificity of the Bacillus stearothermophilus alcohol dehydrogenase by single amino acid replacements (1998) Protein Engineering, 11 (10), pp. 925-930
Fiorentino, G., Del Giudice, I., Bartolucci, S., Durante, L., Martino, L., Del Vecchio, P., Identification and physicochemical characterization of BldR2 from Sulfolobus solfataricus, a novel archaeal member of the MarR transcription factor family (2011) Biochemistry, 50, pp. 6607-6621
Oremland, R. S., Stolz, J. F., Arsenic, microbes and contaminated aquifers (2005) Trends in Microbiology, 13 (2), pp. 45-49. , DOI 10. 1016/j. tim. 2004. 12. 002, PII S0966842X04002689
Murphy, J. N., Saltikov, C. W., The ArsR repressor mediates arsenite-dependent regulation of arsenate respiration and detoxification operons of Shewanella sp. Strain ANA-3 (2009) J. Bacteriol., 191, pp. 6722-6731
Qin, J., Rosen, B. P., Zhang, Y., Wang, G., Franke, S., Rensing, C., Arsenic detoxification and evolution of trimethylarsine gas by a microbial arsenite S-adenosylmethionine methyltransferase (2006) Proceedings of the National Academy of Sciences of the United States of America, 103 (7), pp. 2075-2080. , DOI 10. 1073/pnas. 0506836103
Saltikov, C. W., Olson, B. H., Homology of Escherichia coli R773 arsA, arsB, and arsC genes in arsenic-resistant bacteria isolated from raw sewage and arsenic-enriched creek waters (2002) Applied and Environmental Microbiology, 68 (1), pp. 280-288. , DOI 10. 1128/AEM. 68. 1. 280-288. 2002
Ji, G., Silver, S. J., Regulation and expression of the arsenic resistance operon from Staphylococcus aureus plasmid pI258 (1992) J. Bacteriol., 174, pp. 3684-3694
Patel, P. C., Goulhen, F., Boothman, C., Gault, A. G., Charnock, J. M., Kalia, K., Lloyd, J. R., Arsenate detoxification in a Pseudomonad hypertolerant to arsenic (2007) Archives of Microbiology, 187 (3), pp. 171-183. , DOI 10. 1007/s00203-006-0182-9
Lin, Y. -F., Walmsley, A. R., Rosen, B. P., An arsenic metallochaperone for an arsenic detoxification pump (2006) Proceedings of the National Academy of Sciences of the United States of America, 103 (42), pp. 15617-15622. , DOI 10. 1073/pnas. 0603974103
P ez-Espino, D., Tamames, J., De Lorenzo, V., C novas, D., Microbial responses to environmental arsenic (2009) Biometals, 22, pp. 117-130
Villadangos, A. F., Van Belle, K., Wahni, K., Dufe, V. T., Freitas, S., Nur, H., De Galan, S., Messens, J., Corynebacterium glutamicum survives arsenic stress with arsenate reductases coupled to two distinct redox mechanisms (2011) Mol. Microbiol., 82, pp. 998-1014
Gladysheva, T. B., Oden, K. L., Rosen, B. P., Properties of the arsenate reductase of plasmid R773 (1994) Biochemistry, 33 (23), pp. 7288-7293. , DOI 10. 1021/bi00189a033
Ord ez, E., Van Belle, K., Roos, G., De Galan, S., Letek, M., Gil, J. A., Wyns, L., Messens, J., Arsenate reductase, mycothiol, and mycoredoxin concert thiol/disulfide exchange (2009) J. Biol. Chem., 284, pp. 15107-15116
Gihring, T. M., Banfield, J. F., Arsenite oxidation and arsenate respiration by a new Thermus isolate (2001) FEMS Microbiology Letters, 204 (2), pp. 335-340. , DOI 10. 1016/S0378-1097 (01) 00421-9, PII S0378109701004219
Gihring, T. M., Druschel, G. K., Mccleskey, R. B., Hamers, R. J., Banfield, J. F., Rapid arsenite oxidation by Thermus aquaticus and Thermus thermophilus: Field and laboratory investigations (2001) Environmental Science and Technology, 35 (19), pp. 3857-3862. , DOI 10. 1021/es010816f
Passalacqua, K. D., Varadarajan, A., Ondov, B. D., Okou, D. T., Zwick, M. E., Bergman, N. H., Structure and complexity of a bacterial transcriptome (2009) J. Bacteriol., 191, pp. 3203-3211
Ruocco, M. R., Ruggiero, A., Masullo, L., Arcari, P., Masullo, M., A 35 kDa NAD (P) H oxidase previously isolated from the archaeon Sulfolobus solfataricus is instead a thioredoxin reductase (2004) Biochimie, 86, pp. 883-892
Bennett, M. S., Guan, Z., Laurberg, M., Su, X. -D., Bacillus subtilis arsenate reductase is structurally and functionally similar to low molecular weight protein tyrosine phosphatases (2001) Proceedings of the National Academy of Sciences of the United States of America, 98 (24), pp. 13577-13582. , DOI 10. 1073/pnas. 241397198
Butcher, B. G., Deane, S. M., Rawlings, D. E., The chromosomal arsenic resistance genes of Thiobacillus ferrooxidans have an unusual arrangement and confer increased arsenic and antimony resistance to Escherichia coli (2000) Applied and Environmental Microbiology, 66 (5), pp. 1826-1833. , DOI 10. 1128/AEM. 66. 5. 1826-1833. 2000
A novel arsenate reductase from the bacterium Thermus thermophilus HB27: Its role in arsenic detoxification
Microorganisms living in arsenic-rich geothermal environments act on arsenic with different biochemical strategies, but the molecular mechanisms responsible for the resistance to the harmful effects of the metalloid have only partially been examined. In this study, we investigated the mechanisms of arsenic resistance in the thermophilic bacterium Thermus thermophilus HB27. This strain, originally isolated from a Japanese hot spring, exhibited tolerance to concentrations of arsenate and arsenite up to 20 mM and 15 mM, respectively; it owns in its genome a putative chromosomal arsenate reductase (TtarsC) gene encoding a protein homologous to the one well characterized from the plasmid pI258 of the Gram + bacterium Staphylococcus aureus. Differently from the majority of microorganisms, TtarsC is part of an operon including genes not related to arsenic resistance; qRT-PCR showed that its expression was four-fold increased when arsenate was added to the growth medium. The gene cloning and expression in Escherichia coli, followed by purification of the recombinant protein, proved that TtArsC was indeed a thioredoxin-coupled arsenate reductase with a k(cat)/K-M value of 1.2 x 10(4) M-1 s(-1). It also exhibited weak phosphatase activity with a k(cat)/K-M value of 2.7 x 10(-4) M-1 s(-1). The catalytic role of the first cysteine (Cys7) was ascertained by site-directed mutagenesis. These results identify TtArsC as an important component in the arsenic resistance in T. thermophilus giving the first structural-functional characterization of a thermophilic arsenate reductase. (C) 2013 Elsevier B.V. All rights reserved.
A novel arsenate reductase from the bacterium Thermus thermophilus HB27: Its role in arsenic detoxification
No results.
A novel arsenate reductase from the bacterium Thermus thermophilus HB27: Its role in arsenic detoxification