A novel arsenate reductase from the bacterium Thermus thermophilus HB27: Its role in arsenic detoxification(665 views) Del Giudice I, Limauro D, Pedone E, Bartolucci S, Fiorentino G
Department of Biology, University of Naples Federico II, Edificio 7, via Cinthia, 80126 Naples, Italy
Institute of Biostructures and Bioimaging, CNR, via Mezzocannone 16, 80134 Naples, Italy
References: Not available.
A novel arsenate reductase from the bacterium Thermus thermophilus HB27: Its role in arsenic detoxification
Microorganisms living in arsenic-rich geothermal environments act on arsenic with different biochemical strategies, but the molecular mechanisms responsible for the resistance to the harmful effects of the metalloid have only partially been examined. In this study, we investigated the mechanisms of arsenic resistance in the thermophilic bacterium Thermus thermophilus HB27. This strain, originally isolated from a Japanese hot spring, exhibited tolerance to concentrations of arsenate and arsenite up to 20 mM and 15 mM, respectively; it owns in its genome a putative chromosomal arsenate reductase (TtarsC) gene encoding a protein homologous to the one well characterized from the plasmid pI258 of the Gram + bacterium Staphylococcus aureus. Differently from the majority of microorganisms, TtarsC is part of an operon including genes not related to arsenic resistance; qRT-PCR showed that its expression was four-fold increased when arsenate was added to the growth medium. The gene cloning and expression in Escherichia coli, followed by purification of the recombinant protein, proved that TtArsC was indeed a thioredoxin-coupled arsenate reductase with a k(cat)/K-M value of 1.2 x 10(4) M-1 s(-1). It also exhibited weak phosphatase activity with a k(cat)/K-M value of 2.7 x 10(-4) M-1 s(-1). The catalytic role of the first cysteine (Cys7) was ascertained by site-directed mutagenesis. These results identify TtArsC as an important component in the arsenic resistance in T. thermophilus giving the first structural-functional characterization of a thermophilic arsenate reductase. (C) 2013 Elsevier B.V. All rights reserved.
A novel arsenate reductase from the bacterium Thermus thermophilus HB27: Its role in arsenic detoxification
No results.
A novel arsenate reductase from the bacterium Thermus thermophilus HB27: Its role in arsenic detoxification