Dipartimento di Biologia Strutturale e Funzionale, Universita degli Studi di Napoli Federico II, Complesso Universitario Monte S. Angelo, Via Cinthia, Napoli, Italy
Istituto di Biostrutture e Bioimmagini, CNR, Via Mezzocannone 16, I-80134 Napoli, Italy
References: Bini, E., Archaeal transformation of metals in the environment (2010) FEMS MicrobiolEcol, 73, pp. 1-1
Rieger, P.G., Meier, H.M., Gerle, M., Vogt, U., Groth, T., Knackmuss, H.J., Xenobiotics in the environment: Present and future strategies to obviate the problem of biological persistence (2002) J Biotech, 94, pp. 101-123
Roldán, M.D., Pérez-Reinado, E., Castillo, F., Moreno- Vivián, C., Reduction of polynitroaromatic compounds: The bacterial nitroreductases (2008) FEMS Microbiol Rev, 32, pp. 474-500
Wright, G.D., Q&A: Antibiotic resistance: Where does it come from and what can we do about it? (2010) BMC Biology, 8, pp. 123-129
Nikaido, H., Multidrug Resistance in Bacteria (2009) Annu Rev Biochem, 78, pp. 119-146
Van Hamme, J.D., Fedorak, P.M., Foght, J.M., Gray, M.R., Dettman, H.D., Use of a novel fluorinated organosulfur compound to isolate bacteria capable of carbon-sulfur bond cleavage (2004) Appl Environ Microbiol, 70, pp. 1487-1493
Martinez, J.L., Sánchez, M.B., Martínez-Solano, L., Hernandez, A., Garmendia, L., Fajardo, A., Alvarez-Ortega, C., Functional role of bacterial multidrug efflux pumps in microbial natural ecosystems (2009) FEMS Microbiol Rev, 33, pp. 430-449
Shingler, V., Integrated regulation in response to aromatic compounds: From signal sensing to attractive behaviour (2003) Environ Microbiol, 5, pp. 1226-1241
Pedone, E., Bartolucci, S., Fiorentino, G., Sensing and adapting to environmental stress: The archaeal tactic (2004) Front Biosci, 9, pp. 2909-2926
Brochier-Armanet, C., Forterre, P., Gribaldo, S., Phylogeny and evolution of the Archaea: One hundred genomes later (2011) Curr Opin Microbiol, 14, pp. 274-281
Sato, T., Atomi, H., Novel metabolic pathways in Archaea (2011) Curr Opin Microbiol, 14, pp. 307-314
Tor, J.M., Lovley, D.R., Anaerobic degradation of aromatic compounds coupled to Fe(III) reduction by Ferroglobus placidus (2001) Environ Microbiol, 3, pp. 281-287
Izzo, V., Notomista, E., Picardi, A., Pennacchio, F., Di Donato, A., The thermophilic archaeon Sulfolobus solfataricus is able to grow on phenol (2005) Res Microbiol, 156, pp. 677-689
Christen, P., Davidson, S., Combet-Blanc, Y., RAuria: Phenol biodegradation by the thermoacidophilic archaeon Sulfolobus solfataricus 98/2 in a fed-batch bioreactor (2011) Biodegradation, 22, pp. 475-484
Broderick, J.B., Catechol dioxygenases (1999) Essays Biochem, 34, pp. 173-189
Chae, J.C., Kim, E., Bini, E., Zylstra, G.J., Comparative analysis of the catechol 2,3-dioxygenase gene locus in thermoacidophilic archaeon Sulfolobus solfataricus strain 98/2 (2007) Biochem Biophys Res Commun, 357, pp. 815-819
Kanehisa, M., Goto, S., Furumichi, M., Tanabe, M., Hirakawa, M., KEGG for representation and analysis of molecular networks involving diseases and drugs (2010) Nucleic Acids Res, 38, pp. D355-D360
Le Borgne, S., Paniagua, D., Vazquez-Duhalt, R., Biodegradation of organic pollutants by halophilic bacteria and archaea (2008) J Mol Microb Biotech, 15, pp. 74-92
Emerson, D., Chauhan, S., Oriel, P., Breznak, J.A., Haloferax sp. D 1227, a halophilicarchaeon capable of growth on aromatic compounds (1994) Arch Microbiol, 161, pp. 445-452
Fu, W., Oriel, P., Gentisate 1,2-dioxygenase from Haloferax sp. D1227 (1998) Extremophiles, 4, pp. 439-446
Fairley, D.J., Boyd, D.R., Sharma, N.D., Allen, C.C., Morgan, P., Larkin, M.J., Aerobic metabolism of 4-hydroxybenzoic acid in Archaea via an unusual pathway involving an intramolecular migration (NIH shift) (2002) Appl Environ Microbiol, 68, pp. 6246-6255
Fairley, D.J., Wang, G., Rensing, C., Pepper, I.L., Larkin, M.J., Expression of gentisate 1,2-dioxygenase (gdoA) genes involved in aromatic degradation in two haloarchaeal genera (2006) Appl Microbiol Biotechnol, 73, pp. 691-695
Bonfá, M.R., Grossman, M.J., Mellado, E., Durrant, L.R., Biodegradation of aromatic hydrocarbons by Haloarchaea and their use for the reduction of the chemical oxygen demand of hypersaline petroleum produced water (2011) Chemosphere, 84, pp. 1671-1676
Ding, J.Y., Lai, M.C., The biotechnological potential of the extreme halophilic archaea Haloterrigena sp. H13 in xenobiotic metabolism using a comparative genomics approach (2010) Environ Technol, 31, pp. 905-914
Grbić-Galić, D., Vogel, T.M., Transformation of tolueneand benzene by mixed methanogenic cultures (1987) Appl Environ Microbiol, 53, pp. 254-260
Chang, W., Um, Y., Holoman, T.R., Polycyclic aromatic hydrocarbon (PAH) degradation coupled to methanogenesis (2006) Biotech Lett, 28, pp. 425-430
Qiu, Y.L., Hanada, S., Ohashi, A., Harada, H., Kamagata, Y., Sekiguchi, Y., Syntrophorhabdus aromaticivorans gen. Nov., sp. Nov., the first cultured anaerobe capable of degrading phenol to acetate in obligate syntrophic associations with a hydrogenotrophic methanogen (2008) Appl Environ Microbiol, 74, pp. 2051-2058
Chong, P.K., Burja, A.M., Radianingtyas, H., Fazeli, A., Wright, P.C., Proteome and transcriptional analysis of ethanol-grown Sulfolobus solfataricus P2 reveals ADH2, a potential alcohol dehydrogenase (2007) J Proteome Res, 6, pp. 3985-3994
Bidle, K.A., Kirkland, P.A., Nannen, J.L., Maupin-Furlow, J.A., Proteomic analysis of Haloferax volcanii reveals salinity-mediated regulation of the stress response protein PspA (2008) Microbiology, 154, pp. 1436-1443
Li, L., Li, Q., Rohlin, L., Kim, U., Salmon, K., Rejtar, T., Gunsalus, R.P., Ferry, J.G., Quantitative proteomic and microarray analysis of the archaeon Methanosarcina acetivorans grown with acetate versus methanol (2007) J Proteome Res, 6, pp. 759-771
Lapaglia, C., Hartzell, P.L., Stress-induced production of biofilm in the hyperthermophile Archaeoglobus fulgidus (1997) Appl Environ Microbiol, 63, pp. 3158-3163
Koerdt, A., Orell, A., Pham, T.K., Mukherjee, J., Wlodkowski, A., Karunakaran, E., Biggs, C.A., Albers, S.V., Macromolecular fingerprinting of Sulfolobus species in biofilm: A transcriptomic and proteomic approach combined with spectroscopic analysis (2011) J Proteome Res, 10, pp. 4105-4119
Mc Keegan, K., The structure and function of drug pumps: An update (2003) Trends Microbiol, 11, pp. 21-29
Lubelski, J., Konings, W.N., Driessen, A.J., Distribution and physiology of ABC-type transporters contributing to multidrug resistance in Bacteria (2007) Microbiol and MolBiol Rev, 71, pp. 463-476
Putman, M., Van Veen, H.W., Konings, W.N., Molecular properties of bacterial multidrug transporters (2000) Microbiol and MolecBiol Rev, 64, pp. 672-693
Yen, M.R., Chen, J.S., Marquez, J.L., Sun, E.I., Saier, M.H., Multidrug resistance: Phylogenetic characterization of superfamilies of secondary carriers that include drug exporters (2010) Meth Mol Biol, 637, pp. 47-64
Saier Jr., M.H., Paulsen, I.T., Phylogeny of multidrug transporters (2001) Seminars in Cell & Develop Biol, 12, pp. 205-213
Nikaido, H., Takatsuka, Y., Mechanisms of RND multidrug efflux pumps (2009) Biochim Biophys Acta, 1794, pp. 769-781
Lewis, K., Multidrug resistance: Versatile drug sensors of bacterial cells (1999) Curr Biol, 9, pp. 403-407
Piddock, L.J., Multidrug-resistance efflux pumps - not just for resistance (2006) Nat Rev Microbiol, 4, pp. 629-636
Schneider, K.L., Pollard, K.S., Baertsch, R., Pohl, A., Lowe, T.M., The UCSC Archaeal Genome Browser (2006) Nucleic Acid Res, 34, pp. D407-D410
Albers, S.V., Koning, S.M., Konings, W.N., Driessen, A.J., Insights into ABC transport in archaea (2004) Bioenerg Biomembr, 36, pp. 5-15
Biemans-Oldehinke, E., Doeven, M.K., Poolman, B., ABC transporter architecture and regulatory roles of accessory domains (2006) FEBS Lett, 580, pp. 1023-1035
Oldham, M.L., Davidson, A.L., Chen, J., Structural insights into ABC transporter mechanism (2008) Curr Opin Struct Biol, 18, pp. 726-733
Chung, Y.J., Saier Jr., M.H., SMR-type multidrug resistance pumps (2001) Curr Opin Drug Disc Dev, 4, pp. 237-245
Lee, S.J., Böhm, A., Krug, M., Boos, W., The ABC of binding-protein-dependent transport in Archaea (2007) Trends Microbiol, 15, pp. 389-397
Hollenstein, K.R., Dawson, J.P., Locher, K.P., Structure and mechanism of ABC transporter proteins (2007) Curr Opin Struct Biol, 17, pp. 412-418
Oliveira, A.S., Baptista, A.M., Soares, C.M., Insights into the molecular mechanism of an ABC transporter: Conformational changes in the NBD dimer of MJ0796 (2010) J Phys Chem B, 114, pp. 5486-5496
Mulligan, C., Fischer, M., Thomas, G.H., Tripartite ATP-independent periplasmic (TRAP) transporters in bacteria and archaea (2011) FEMS Microbiol Rev, 35, pp. 68-86
Kaidoh, K., Miyauchi, S., Abe, A., Tanabu, S., Nara, T., Kamo, N., Rhodamine 123 efflux transporter in Haloferaxvolcanii is induced when cultured under 'metabolic stress' by amino acids: The efflux system resembles that in a doxorubicin-resistant mutant (1996) Biochem J, 314, pp. 355-359
Borges-Walmsley, M.I., McKeegan, K.S., Walmsley, A.R., Structure and function of efflux pumps that confer resistance to drugs (2003) Biochem J, 376, pp. 313-338
Paulsen, I.T., Multidrug efflux pumps and resistance: Regulation and evolution (2003) Curr Opin Microbiol, 6, pp. 446-451
Li, X.Z., Nikaido, H., Efflux-Mediated Drug Resistance in Bacteria (2004) Drugs, 64, pp. 159-204
Walmsley, A.R., Rosen, B.P., Mayers, D.L., Transport mechanism of resistance to drugs and toxic metals (2009) Antimicrobial Drug Resistance, 1. , Mechanisms of Drug Resistance. Eds: D L Mayers
Omote, H., Hiasa, M., Matsumoto, T., Otsuka, M., Moriyama, Y., The MATE proteins as fundamental transporters of metabolic and xenobiotic organic cations (2006) Trends Pharmacol Sci, 27, pp. 587-593
Jack, D.L., Yang, N.M., Saier Jr., M.H., The drug/metabolite transporter superfamily (2001) Eur J Biochem, 268, pp. 3620-3639
Paulsen, I.T., Brown, M.H., Skurray, R.A., Proton-dependent multidrug efflux systems (1996) Microbiol Rev, 60, pp. 575-608
Bay, D.C., Rommens, K.L., Turner, R.J., Small multidrug resistance proteins: A multidrug transporter family that continues to grow (2008) Biochim Biophys Acta, 1778, pp. 1814-1838
Poulsen, B.E., Rath, A., Deber, C.M., The Assembly Motif of a Bacterial Small Multidrug Resistance Protein (2009) J Biol Chem, 284, pp. 9870-9875
Bay, D.C., Turner, R.J., Diversity and evolution of the small multidrug resistance protein family (2009) BMC Evol Biol, 9, p. 140
Ninio, S., Schuldiner, S., Characterization of an archaeal multidrug transporter with a unique amino acid composition (2003) J Biol Chem, 278, pp. 12000-12005
Rath, A., Melnyk, R.A., Deber, C.M., Evidence for Assembly of Small Multidrug Resistance Proteins by a "Two-faced"Transmembrane Helix (2006) J Biol Chem, 281, pp. 15546-15553
Pao, S., Paulsen, S.I.T., Saier Jr., M.H., Major facilitator superfamily (1998) Microbiol Mol Biol, 62, pp. 1-34
Chang, A.B., Lin, R., Studley, W.K., Tran, C.V., Saier Jr., M.H., Phylogeny as a guide to structure and function of membrane transport proteins (2004) Mol Membr Biol, 2, pp. 171-181
Ren, Q., Paulsen, I.T., Comparative Analyses of Fundamental Differences in Membrane Transport Capabilities in Prokaryotes and Eukaryotes (2005) PLoS Comput Biol, 1, pp. e27
Law, C.J., Maloney, P.C., Wang, D.N., Ins and outs of major facilitator superfamily antiporters (2008) Annu Rev Microbiol, 62, pp. 289-305
Vardy, E., Steiner-Mordoch, S., Schuldiner, S., Characterization of bacterial drug antiporters homologous to mammalian neurotransmitter transporters (2005) J Bacteriol, 187, pp. 7518-7525
Murakami, S., Yamaguchi, A., Multidrug-exporting secondary transporters (2003) Curr Opin Struct Biol, 13, pp. 443-452
Tseng, T.T., Gratwick, K.S., Kollman, J., Park, D., Nies, D.H., Goffeau, A., Saier Jr., M.H., The RND permease superfamily: An ancient, ubiquitous and diverse family that includes human disease and development proteins (1999) J Mol Microbiol Biotechnol, 1, pp. 107-125
Kim, E., Nies, H.D.H., McEvoy, M.M., Rensing, C., Switch or funnel: How RND-type transport systems control periplasmic metal homeostasis (2011) J Bacteriol, 193, pp. 2381-2387
Perera, I.C., Grove, A., Molecular mechanisms of ligand-mediated attenuation of DNA binding by MarR family transcriptional regulators (2010) J Mol Cell Biol, 2, pp. 243-254
Miyazono, K., Tsujimura, M., Kawarabayasi, Y., Tanokura, M., Crystal structure of an archaeal homologue of multidrug resistance repressor protein, EmrR, from hyperthermophilic archaea Sulfolobus tokodaii strain 7 (2007) Proteins, 67, pp. 1138-1146
Kumarevel, T., Tanaka, T., Nishio, M., Gopinath, S.C., Takio, K., Shinkai, A., Kumar, P.K., Yokoyama, S., Crystal structure of the MarR family regulatory protein, ST1710, from Sulfolobus tokodaii strain 7 (2008) J Struct Biol, 161, pp. 9-17
Saridakis, V., Shahinas, D., Xu, X., Christendat, D., Structural insight on the mechanism of regulation of the MarR family of proteins: High-resolution crystal structure of a transcriptional repressor from Methanobacterium thermoautotrophicum (2008) J Mol Biol, 377, pp. 655-667
Okada, U., Sakai, N., Yao, M., Watanabe, N., Tanaka, I., Structural analysis of the transcriptional regulator homolog protein from Pyrococcus horikoshii OT3 (2006) Proteins, 63, pp. 1084-1086
Di Fiore, A., Fiorentino, G., Vitale, R.M., Ronca, R., Amodeo, P., Pedone, C., Bartolucci, S., De Simone, G., Structural analysis of BldR from Sulfolobus solfataricus provides insights into the molecular basis of transcriptional activation in archaea by MarR family proteins (2009) J Mol Biol, 388, pp. 559-569
Fiorentino, G., Cannio, R., Rossi, M., Bartolucci, S., Transcriptional regulation of the gene encoding an alcohol dehydrogenase in the archaeon Sulfolobus solfataricus involves multiple factors and control elements (2003) J Bacteriol, 185, pp. 3926-3934
Fiorentino, G., Ronca, R., Cannio, R., Rossi, M., Bartolucci, S., MarR-like transcriptional regulator involved in detoxification of aromatic compounds in Sulfolobus solfataricus (2007) J Bacteriol, 189, pp. 7351-7360
Fiorentino, G., Del Giudice, I., Bartolucci, S., Durante, L., Martino, L., Del Vecchio, P., Identification and Physicochemical Characterization of BldR2 from Sulfolobus solfataricus, a Novel Archaeal Member of the MarR Transcription Factor Family (2011) Biochemistry, 50, pp. 6607-6621
Brown, N.L., Stoyanov, J.V., Kidd, S.P., Hobman, J.L., The MerR family of transcriptional regulators (2003) FEMS Microbiol Rev, 27, pp. 145-163
Ramos, J.L., Martínez-Bueno, M., Molina-Henares, A.J., Terán, W., Watanabe, K., Zhang, X., Gallegos, M.T., Tobes, R., The TetR family of transcriptional repressors (2005) Microbiol Mol Biol Rev, 69, pp. 326-356
Gallegos, M.T., Schleif, R., Bairoch, A., Hofmann, K., Ramos, J.L., AraC/XylS Family of Transcriptional Regulators (1997) Microbiol Mol Biol Rev, 61, pp. 393-410
Yang, J., Tauschek, M., Robins-Browne, R.M., Control of bacterial virulence by AraC-like regulators that respond to chemical signals (2011) Trends Microbiol, 19, pp. 128-135
Baliga, N.S., Kennedy, S.P., Ng, W.V., Hood, L., Das Sarma, S., Genomic and genetic dissection of an archaeal regulon (2001) Proc Natl Acad Sci U S A, 98, pp. 2521-2525
Cvetkovic, A., Menon, A.L., Thorgersen, M.P., Scott, J.W., Poole II, F.L., Jenney Jr., F.E., Lancaster, W.A., Adams, M.W., Microbial metalloproteomes are largely uncharacterized (2010) Nature, 466, pp. 779-782
Orell, A., Navarro, C.A., Arancibia, R., Mobarec, J.C., Jerez, C.A., Life in blue: Copper resistance mechanisms of bacteria and archaea used in industrial biomining of minerals (2010) Biotechnol Adv, 28, pp. 839-848
Bun-ya, M., Shikata, K., Nakade, S., Yompakdee, C., Harashima, S., Oshima, Y., Two new genes, PHO86 and PHO87, involved in inorganic phosphate uptake in Saccharomyces cerevisiae (1996) Curr Genet, 29, pp. 344-351
Zheng, M., Doan, B., Schneider, T.D., Storz, G., OxyR and SoxRS regulation of fur (1999) J Bacteriol, 181, pp. 4639-4643
Schmid, A.K., Pan, M., Sharma, K., Baliga, N.S., Two transcription factors are necessary for iron homeostasis in a salt-dwelling archaeon (2010) Nucleic Acids Res, 39, pp. 2519-2533
Imlay, J.A., Pathways of oxidative damage (2003) Annu Rev Microbiol, 57, pp. 395-418
Andrews, S.C., Robinson, A.K., Rodríguez-Quiñones, F., Bacterial iron homeostasis (2003) FEMS Microbiol Rev, 27, pp. 215-237
Haikarainen, T., Papageorgiou, A.C., Dps-like proteins: Structural and functional insights into a versatile protein family (2010) Cell Mol Life Sci, 67, pp. 341-351
Peña, M.M., Bullerjahn, G.S., The DpsA protein of Synechococcus sp. Strain PCC7942 is a DNA-binding hemoprotein. Linkage of the Dps and bacterioferritin protein families (1995) J Biol Chem, 270, pp. 22478-22482
Almirón, M., Link, A.J., Furlong, D., Kolter, R., A novel DNA-binding protein with regulatory and protective roles in starved Escherichia coli (1992) Genes Dev, 6, pp. 2646-2654
Wiedenheft, B., Mosolf, J., Willits, D., Yeager, M., Dryden, K.A., Young, M., Douglas, T., An archaeal antioxidant: Characterization of a Dps-like protein from Sulfolobus solfataricus (2005) Proc Natl Acad Sci U S a, 102, pp. 10551-10556
Ramsay, B., Wiedenheft, B., Allen, M., Gauss, G.H., Lawrence, C.M., Young, M., Douglas, T., Dps-like protein from the hyperthermophilic archaeon Pyrococcus furiosus (2006) J Inorg Biochem, 100, pp. 1061-1068
Reindel, S., Schmidt, C.L., Anemüller, S., Matzanke, B.F., Characterization of a non-haem ferritin of the Archaeon Halobacterium salinarum, homologous to Dps (starvation-induced DNA-binding protein) (2002) Biochem Soc Trans, 30, pp. 713-715
Gauss, G.H., Benas, P., Wiedenheft, B., Young, M., Douglas, T., Lawrence, C.M., Structure of the DPS-like protein from Sulfolobus solfataricus reveals a bacterioferritin-like dimetal binding site within a DPS-like dodecameric assembly (2006) Biochemistry, 45, pp. 10815-10827
Limauro, D., Pedone, E., Galdi, I., Bartolucci, S., Peroxiredoxins as cellular guardians in Sulfolobus solfataricus: Characterization of Bcp1, Bcp3 and Bcp4 (2008) FEBS J, 275, pp. 2067-2077
How the Thermoacidophilic Archaeon Sulfolobus solfataricus Responds to Oxidative Stress (2009) PLoS One, 4, pp. e6964
Dopson, M., Baker-Austin, C., Hind, A., Bowman, J.P., Bond, P.L., Characterization of Ferroplasma isolates and Ferroplasma acidarmanus sp. Nov., extreme acidophiles from acid mine drainage and industrial bioleaching environments (2004) Appl Environ Microbiol, 70, pp. 2079-2088
Potrykus, J., Jonna, V.R., Dopson, M., Iron homeostasis and responses to iron limitation in extreme acidophiles from the Ferroplasma genus (2011) Proteomics, 11, pp. 52-63
Hubmacher, D., Matzanke, B.F., Anemüller, S., Iron-uptake in the Euryarchaeon Halobacterium salinarum (2007) Biometals, 20, pp. 539-547
Schröder, I., Johnson, E., De Vries, S., Microbial ferric iron reductases (2003) FEMS Microbiol Rev, 27, pp. 427-447
Chiu, H.J., Johnson, E., Schröder, I., Rees, D.C., Crystal structures of a novel ferric reductase from the hyperthermophilic archaeon Archaeoglobus fulgidus and its complex with NADP+ (2001) Structure, 9, pp. 311-319
Vadas, A., Monbouquette, H.G., Johnson, E., Schröder, I., Identification and characterization of a novel ferric reductase from the hyperthermophilic archaeon Archaeoglobus fulgidus (1999) J Biol Chem, 274, pp. 36715-36721
Mulrooney, S.B., Hausinger, R.P., Nickel uptake and utilization by microorganisms (2003) FEMS Microbiol Rev, 27, pp. 239-261
Macomber, L., Hausinger, R.P., Mechanisms of nickel toxicity in microorganisms (2011) Metallomics, 3, pp. 1153-1162
Majtan, T., Frerman, F.E., Kraus, J.P., Effect of cobalt on Escherichia coli metabolism and metalloporphyrin formation (2011) Biometals, 24, pp. 335-347
Eitinger, T., Rodionov, D.A., Grote, M., Schneider, E., Canonical and ECF-type ATP-binding cassette importers in prokaryotes: Diversity in modular organization and cellular functions (2011) FEMS Microbiol Rev, 35, pp. 3-67
Zhang, Y., Rodionov, D.A., Gelfand, M.S., Gladyshev, V.N., Comparative genomic analyses of nickel, cobalt and vitamin B12 utilization (2009) BMC Genomics, 10, p. 78
Rodionov, D.A., Hebbeln, P., Gelfand, M.S., Eitinger, T., Comparative and functional genomic analysis of prokaryotic nickel and cobalt uptake transporters: Evidence for a novel group of ATP-binding cassette transporters (2006) J Bacteriol, 188, pp. 317-327
Siche, S., Neubauer, O., Hebbeln, P., Eitinger, T., A bipartite S unit of an ECF-type cobalt transporter (2010) Res Microbiol, 161, pp. 824-829
Overbeek, R., Begley, T., Butler, R.M., Choudhuri, J.V., Chuang, H.Y., Cohoon, M., De Crécy-Lagard, V., Vonstein, V., The subsystems approach to genome annotation and its use in the project to annotate 1000 genomes (2005) Nucleic Acids Res, 33, pp. 5691-5702
Phillips, C.M., Schreiter, E.R., Guo, Y., Wang, S.C., Zamble, D.B., Drennan, C.L., Structural basis of the metal specificity for nickel regulatory protein NikR (2008) Biochemistry, 47, pp. 1938-1946
Chivers, P.T., Tahirov, T.H., Structure of Pyrococcus horikoshii NikR: Nickel sensing and implications for the regulation of DNA recognition (2005) J Mol Biol, 348, pp. 597-607
Sindhikar, D.J., Roitberg, A.E., Merz Jr., K.M., Apo and nickel-bound forms of the Pyrococcus horikoshii species of the metalloregulatory protein: NikR characterized by molecular dynamics simulations (2009) Biochemistry, 48, pp. 12024-12033
Argüello, J.M., Eren, E., González-Guerrero, M., The structure and function of heavy metal transport P1B-ATPases (2007) Biometals, 20, pp. 233-248
Lloyd, D.R., Phillips, D.H., Oxidative DNA damage mediated by copper-II/, iron-II/ and nickel-II/ Fenton reactions: Evidence for site-specific mechanisms in the formation of double-strand breaks,8- hydroxydeoxyguanosine and putative intrastrand crosslinks (1999) Mut Res, 424, pp. 23-36
Imlay, J.A., Cellular defenses against superoxide and hydrogen peroxide (2008) Annu Rev Biochem, 77, pp. 755-776
Baker-Austin, C., Dopson, M., Wexler, M., Sawers, R.G., Bond, P.L., Molecular insight into extreme copper resistance in the extremophilic archaeon 'Ferroplasma acidarmanus' Fer1 (2005) Microbiology, 151, pp. 2637-2646
Camakaris, J., Voskoboinik, I., Mercer, J.F., Molecular mechanisms of copper homeostasis (1999) Biochem Biophys Res Commun, 261, pp. 225-232
Macomber, L., Imlay, J.A., The iron-sulfur clusters of dehydratases are primary intracellular targets of copper toxicity (2009) Proc Natl Acad Sci U S a, 106, pp. 8344-8349
Remonsellez, F., Orell, A., Jerez, C.A., Copper tolerance of the thermoacidophilic archaeon Sulfolobus metallicus: Possible role of polyphosphate metabolism (2006) Microbiology, 152, pp. 59-66
Mana-Capelli, S., Mandal, A.K., Argüello, J.M., Archaeoglobus fulgidus CopB is a thermophilic Cu2+ ATPase: Functional role of its histidine-rich-N-terminal metal binding domain (2003) J Biol Chem, 278, pp. 40534-40541
Agarwal, S., Hong, D., Desai, N.K., Sazinsky, M.H., Argüello, J.M., Rosenzweig, A.C., Structure and interactions of the C-terminal metal binding domain of Archaeoglobus fulgidus CopA (2010) Proteins, 78, pp. 2450-2458
Yang, Y., Mandal, A.K., Bredeston, L.M., González-Flecha, F.L., Argüello, J.M., Activation of Archaeoglobus fulgidus Cu(+)-ATPase CopA by cysteine (2007) Biochim Biophys Acta, 1768, pp. 495-501
Wu, C.C., Rice, W.J., Stokes, D.L., Structure of a copper pump suggests a regulatory role for its metal-binding domain (2008) Structure, 16, pp. 976-985
Rice, W.J., Kovalishin, A., Stokes, D.L., Rice, W.J., Kovalishin, A., Stokes, D.L., Role of metal-binding domains of the copper pump from Archaeoglobus fulgidus (2006) Biochem Biophys Res Commun, 348, pp. 124-131
Castielli, O., De La Cerda, B., Navarro, J.A., Hervás, M., De La Rosa, M.A., Proteomic analyses of the response of cyanobacteria to different stress conditions (2009) FEBS Lett, 583, pp. 1753-1758
Cavet, J.S., Borrelly, G.P., Robinson, N.J., Zn, Cu and Co in cyanobacteria: Selective control of metal availability (2003) FEMS Microbiol Rev, 27, pp. 165-181
Rensing, C., Grass, G., Escherichia coli mechanisms of copper homeostasis in a changing environment (2003) FEMS Microbiol Rev, 27, pp. 197-213
Solioz, M., Abicht, H.K., Mermod, M., Mancini, S.J., Response of gram-positive bacteria to copper stress (2010) Biol Inorg Chem, 15, pp. 3-14
Solioz, M., Stoyanov, J.V., Copper homeostasis in Enterococcus hirae (2003) FEMS Microbiol Rev, 27, pp. 183-195
Strausak, D., Solioz, M., CopY is a copper-inducible repressor of the Enterococcus hirae copper ATPases (1997) J Biol Chem, 272, pp. 8932-8936
Magnani, D., Solioz, M., Copper chaperone cycling and degradation in the regulation of the cop operon of Enterococcus hirae (2005) Biometals, 18, pp. 407-412
Deigweiher, K., Drell IV, T.L., Prutsch, A., Scheidig, A.J., Lübben, M., Expression, isolation, and crystallization of the catalytic domain of CopB, a putative copper transporting ATPase from the thermoacidophilic archaeon Sulfolobus solfataricus (2004) J Bioenerg Biomembr, 36, pp. 151-159
Ettema, T.J., Brinkman, A.B., Lamers, P.P., Kornet, N.G., De Vos, W.M., Van Der Oost, J., Molecular characterization of a conserved archaeal copper resistance (cop) gene cluster and its copper-responsive regulator in Sulfolobus solfataricus P2 (2006) Microbiology, 152, pp. 1969-1979
Ettema, T.J., Huynen, M.A., De Vos, W.M., Van Der Oost, J., TRASH: A novel metal-binding domain predicted to be involved in heavy-metal sensing, trafficking and resistance (2003) Trends Biochem Sc, 28, pp. 170-173
Villafane, A.A., Voskoboynik, Y., Cuebas, M., Ruhl, I., Bini, E., Response to excess copper in the hyperthermophile Sulfolobus solfataricus strain 98/2 (2009) Biochem Biophys Res Commun, 385, pp. 67-71
Akiyama, M., Crooke, E., Kornberg, A., The polyphosphate kinase gene of Escherichia coli. Isolation and sequence of the ppk gene and membrane location of the protein (1992) J Biol Chem, 267, pp. 22556-22561
Scherer, P.A., Bochem, H.P., Ultrastructural investigation of 12 Methanosarcinae and related species grown on methanol for occurrence of polyphosphatelike inclusions (1983) Canadian J Microbiol, 29, pp. 1190-1199
Skórko, R., Osipiuk, J., Stetter, K.O., Glycogen-boundpolyphosphate kinase from the archaebacterium Sulfolobus acidocaldarius (1989) J Bacteriol, 171, pp. 5162-5164
Cardona, S.T., Chávez, F.P., Jerez, C.A., The exopolyphosphatasegene from Sulfolobus solfataricus: Characterization of the first gene found to be involved in polyphosphate metabolism in Archaea (2002) Appl Environ Microbiol, 68, pp. 4812-4819
Persson, B.L., Lagerstedt, J.O., Pratt, J.R., Pattison-Granberg, J., Lundh, K., Shokrollahzadeh, S., Lundh, F., Regulation of phosphate acquisition in Saccharomyces cerevisiae (2003) Curr Genet, 43, pp. 225-244
Mukhopadhyay, R., Rosen, B.P., Phung, L.T., Silver, S., Microbial arsenic: From geocycles to genes and enzymes (2002) FEMS Microbiol Rev, 26, pp. 311-325
Lebrun, E., Brugna, M., Baymann, F., Muller, D., Lièvremont, D., Lett, M.C., Nitschke, W., Arsenite oxidase, an ancient bioenergetic enzyme (2003) Mol Biol Evol, 20, pp. 686-693
Silver, S., Phung, L.T., Genes and enzymes involved in bacterial oxidation and reduction of inorganic arsenic (2005) Appl Environ Microbiol, 71, pp. 599-608
Sehlin, M., Börje Lindström, E., Oxidation and reduction of arsenic by Sulfolobus acidocaldarius strain BC H (1992) FEMS Microbiol Lett, 93, pp. 87-92
Duval, S., Ducluzeau, A.L., Nitschke, W., Schoepp-Cothenet, B., Enzyme phylogenies as markers for the oxidation state of the environment: The case of respiratory arsenate reductase and related enzymes (2008) BMC Evol Biol, 8, p. 206
Cozen, A.E., Weirauch, M.T., Pollard, K.S., Bernick, D.L., Stuart, J.M., Lowe, T.M., Transcriptional map of respiratory versatility in the hyperthermophilic crenarchaeon Pyrobaculum aerophilum (2009) J Bacteriol, 191, pp. 782-794
Messens, J., Silver, S., Arsenate reduction: Thiol cascade chemistry with convergent evolution (2006) J Mol Biol, 362, pp. 1-17
Jackson, C.R., Dugas, S.L., Phylogenetic analysis of bacterial and archaeal arsC gene sequences suggests an ancient, common origin for arsenate reductase (2003) BMC Evol Biol, 3, p. 18
Cullen, W.R., Reimer, K.J., Arsenic speciation in the environment (1989) Chem Rev, 89, pp. 713-764
Ferguson, J.F., Gavis, J., A review of the arsenic cycle in natural waters (1972) Water Res, 6, pp. 1259-1274
Wu, J., Rosen, B.P., The ArsR protein is a trans-acting regulatory protein (1991) Mol Microbiol, 5, pp. 1331-1336
Cervantes, C., Ji, G., Ramirezc, J., Silver, S., Resistance to arsenic compounds in microorganisms (1994) FEMS Microbiol Rev, 15, pp. 355-367
Ji, G., Silver, S., Garber, E.A.E., Ohtake, H., Cervantes, C., Corbisier, P., Bacterial molecular genetics and enzymatic transformations of arsenate, arsenite and chromate (1993) Biohydrometallurgical Technologies, 2, pp. 529-539. , The Minerals, Metals, & Materials Society Eds: Warrendale, Pa. AE Torma, ML Apel, CL Brierley
Bose, M., Slick, D., Sarto, M.J., Murphy, P., Roberts, D., Roberts, J., Barber, R.D., Identification of SmtB/ArsR cis elements and proteins in archaea using the Prokaryotic InterGenic Exploration Database (PIGED) (2006) Archaea, 2, pp. 39-49
Busenlehner, L.S., Pennella, M.A., Giedroc, D.P., The SmtB/ArsR family of metalloregulatory transcriptional repressors: Structural insights into prokaryotic metal resistance (2003) FEMS Microbiol Rev, 27, pp. 131-143
Itou, H., Yao, M., Watanabe, N., Tanaka, I., Crystal structure of the PH1932 protein, a unique archaeal ArsR type winged-HTH transcription factor from Pyrococcus horikoshii OT3 (2008) Proteins, 70, pp. 1631-1634
Roos, G., Buts, L., Van Belle, K., Brosens, E., Geerlings, P., Loris, R., Wyns, L., Messens, J., Interplay between ion binding and catalysis in the thioredoxin-coupled arsenate reductase family (2006) J Mol Biol, 360, pp. 826-838
Shi, J., Vlamis-Gardikas, A., Aslund, F., Holmgren, A., Rosen, B.P., Reactivity of glutaredoxins 1, 2, and 3 from Escherichia coli shows that glutaredoxin 2 is the primary hydrogen donor to ArsC-catalyzed arsenate reduction (1999) J Biol Chem, 274, pp. 36039-36042
Pedone, E., Limauro, D., D'Ambrosio, K., De Simone, G., Bartolucci, S., Multiple catalytically active thioredoxin folds: A winning strategy for many functions (2010) Cell Mol Life Sci, 67, pp. 3797-3814
Kinch, L.N., Baker, D., Grishin, N.V., Deciphering a novel thioredoxin-like fold family (2003) Proteins, 52, pp. 323-331
Martin, P., De Mel, S., Shi, J., Gladysheva, T., Gatti, D.L., Rosen, B.P., Edwards, B.F., Insights into the structure, solvation, and mechanism of ArsC arsenate reductase, a novel arsenic detoxification enzyme (2001) Structure, 9, pp. 1071-1081
Rosen, B.P., Families of arsenic transporters (1999) Trends Microbiol, 7, pp. 207-212
Zhou, T., Radaev, S., Rosen, B.P., Gatti, D.L., Structure of the ArsA ATPase: The catalytic subunit of a heavy metal resistance pump (2000) The EMBO Journal, 19, pp. 4838-4845
Rosen, B.P., Biochemistry of arsenic detoxification (2002) FEBS Lett, 529, pp. 86-92
Chen, C.M., Misra, T.K., Silver, S., Rosen, B.P., Nucleotide sequence of the structural genes for an anion pump. The plasmid-encoded arsenical resistance operon (1986) J Biol Chem, 261, pp. 15030-15115
Rensing, C., Ghosh, M., Rosen, B.P., Families of Soft-Metal-Ion-Transporting ATPases (1999) J Bacteriol, 181, pp. 5891-5897
Yang, J., Rawat, S., Stemmler, T.L., Rosen, B.P., Arsenic Binding and Transfer by the ArsD As(III) Metallochaperone (2010) Biochemistry, 49, pp. 3658-3666
Neyt, C.N., Iriarte, M., Thi, V.H., Cornelis, G.R., Virulence and arsenic resistance in Yersiniae (1997) J Bacteriol, 179, pp. 612-619
Gihring, T.M., Bond, P.L., Peters, S.C., Banfield, J.F., Arsenic resistance in the archaeon " Ferroplasma acidarmanus": New insights into the structure and evolution of the ars genes (2003) Extremophiles, 7, pp. 123-130
Qin, J., Rosen, B.P., Zhang, Y., Wang, G., Franke, S., Rensing, C., Arsenic detoxification and evolution of trimethylarsine gas by a microbial arsenite S-adenosylmethionine methyltransferase (2006) Proc Natl Acad Sci U S A, 103, pp. 2075-2080
McBride, B.C., Wolfe, R.S., Biosynthesis of dimethylarsine by Methanobacterium (1971) Biochemistry, 10, pp. 4312-4317
Michalke, K., Wickenheiser, E.B., Mehring, M., Hirner, A.V., Hensel, R., Production of volatile derivatives of metal(loid)s by microflora involved in anaerobic digestion of sewage sludge (2000) Appl Environ Microbiol, 66, pp. 2791-2796
Wang, G., Kennedy, S.P., Fasiludeen, S., Rensing, C., Das Sarma, S., Arsenic Resistance in Halobacterium sp. Strain NRC-1 Examined by Using an Improved Gene Knockout System (2004) J Bacteriol, 186, pp. 3187-3194
Schelert, J., Dixit, V., Hoang, V., Simbahan, J., Drozda, M., Blum, P., Occurrence and Characterization of Mercury Resistance in the Hyperthermophilic Archaeon Sulfolobus solfataricus by Use of Gene Disruption (2004) J Bacteriol, 186, pp. 427-437
Yamaguchi, A., Tamang, D.G., Saier Jr., M.H., Mercury Transport in Bacteria (2007) Water Air Soil Pollut, 182, pp. 219-234
Wilson, J.R., Leang, C., Morby, A.P., Hobman, J.L., Brown, N.L., MerF is a mercury transport protein: Different structures but a common mechanism for mercuric ion transporters? (2000) FEBS Lett, 472, pp. 78-82
Serre, L., Rossy, E., Pebay-Peyroula, E., Cohen-Addad, C., Covès, J., Crystal structure of the oxidized form of the periplasmic mercury-binding protein MerP from Ralstonia metallidurans CH34 (2004) J Mol Biol, 339, pp. 161-171
Howell, S.C., Mesleh, M.F., Opella, S.J., NMR Structure Determination of a Membrane Protein with Two Transmembrane Helices in Micelles: MerF of the Bacterial Mercury Detoxification System (2005) Biochemistry, 44, pp. 5196-5206
Di Lello, P., Benison, G.C., Valafar, H., Pitts, K.E., Summers, A.O., Legault, P., Omichinski, J.G., NMR structural studies reveal a novel protein fold for MerB, the organomercurial lyase involved in the bacterial mercury resistance system (2004) Biochemistry, 43, pp. 8322-8332
Pullikuth, A.K., Gill, S.S., Primary structure of an invertebrate dihydrolipoamide dehydrogenase with phylogenetic relationship to vertebrate and bacterial disulfide oxidoreductases (1997) Gene, 200, pp. 163-172
Engst, S., Miller, S.M., Alternative routes for entry of HgX2 into the active site of mercuric ion reductase depend on the nature of the X ligands (1999) Biochemistry, 38, pp. 3519-3529
Barkay, T., Kritee, K., Boyd, E., Geesey, G., A thermophilic bacterial origin and subsequent constraints by redox, light and salinity on the evolution of the microbial mercuric reductase (2010) Environ Microbio L, 12, pp. 2904-2917
Champier, L., Duarte, V., Michaud-Soret, I., Covès, J., Characterization of the MerD protein from Ralstonia metallidurans CH34: A possible role in bacterial mercury resistance by switching off the induction of the mer operon (2004) Mol Microbiol, 52, pp. 1475-1485
Ansari, A.Z., Chael, M.L., O'Halloran, T.V., Allosteric underwinding of DNA is a critical step in positive control of transcription by Hg-MerR (1992) Nature, 355, pp. 87-89
Ansari, A.Z., Bradner, J.E., O'Halloran, T.V., DNA-bend modulation in a repressor-to-activator switching mechanism (1995) Nature, 374, pp. 371-375
Dixit, V., Bini, E., Drozda, M., Blum, P., Mercury inactivates transcription and the generalized transcription factor TFB in the archaeon Sulfolobus solfataricus (2004) Antimicrob Agents Chemother, 48, pp. 1993-1999
Schelert, J., Drozda, M., Dixit, V., Dillman, A., Blum, P., Regulation of Mercury Resistance in the Crenarchaeote Sulfolobus solfataricus (2006) J Bacteriol, 188, pp. 7141-7150
Aravind, L., Anantharaman, V., Balaji, S., Babu, M.M., Iyer, L.M., The many faces of the helix-turn-helix domain: Transcription regulation and beyond (2005) FEMS Microbiol Rev, 29, pp. 231-262
King, J.K., Kostka, J.E., Frischer, M.E., Saunders, F.M., Sulfate-Reducing Bacteria Methylate Mercury at Variable Rates in Pure Culture and in Marine Sediments (2000) Appl Environ Microbiol, 66, pp. 2430-2437
Pak, K.R., Bartha, R., Mercury Methylation by Interspecies Hydrogen and Acetate Transfer between Sulfidogens and Methanogens (1998) Appl Environ Microbiol, 64, pp. 1987-1990
Rieger, P. G., Meier, H. M., Gerle, M., Vogt, U., Groth, T., Knackmuss, H. J., Xenobiotics in the environment: Present and future strategies to obviate the problem of biological persistence (2002) J Biotech, 94, pp. 101-123
Rold n, M. D., P rez-Reinado, E., Castillo, F., Moreno- Vivi n, C., Reduction of polynitroaromatic compounds: The bacterial nitroreductases (2008) FEMS Microbiol Rev, 32, pp. 474-500
Wright, G. D., Q&A: Antibiotic resistance: Where does it come from and what can we do about it? (2010) BMC Biology, 8, pp. 123-129
Van Hamme, J. D., Fedorak, P. M., Foght, J. M., Gray, M. R., Dettman, H. D., Use of a novel fluorinated organosulfur compound to isolate bacteria capable of carbon-sulfur bond cleavage (2004) Appl Environ Microbiol, 70, pp. 1487-1493
Martinez, J. L., S nchez, M. B., Mart nez-Solano, L., Hernandez, A., Garmendia, L., Fajardo, A., Alvarez-Ortega, C., Functional role of bacterial multidrug efflux pumps in microbial natural ecosystems (2009) FEMS Microbiol Rev, 33, pp. 430-449
Tor, J. M., Lovley, D. R., Anaerobic degradation of aromatic compounds coupled to Fe (III) reduction by Ferroglobus placidus (2001) Environ Microbiol, 3, pp. 281-287
Broderick, J. B., Catechol dioxygenases (1999) Essays Biochem, 34, pp. 173-189
Chae, J. C., Kim, E., Bini, E., Zylstra, G. J., Comparative analysis of the catechol 2, 3-dioxygenase gene locus in thermoacidophilic archaeon Sulfolobus solfataricus strain 98/2 (2007) Biochem Biophys Res Commun, 357, pp. 815-819
Fairley, D. J., Boyd, D. R., Sharma, N. D., Allen, C. C., Morgan, P., Larkin, M. J., Aerobic metabolism of 4-hydroxybenzoic acid in Archaea via an unusual pathway involving an intramolecular migration (NIH shift) (2002) Appl Environ Microbiol, 68, pp. 6246-6255
Fairley, D. J., Wang, G., Rensing, C., Pepper, I. L., Larkin, M. J., Expression of gentisate 1, 2-dioxygenase (gdoA) genes involved in aromatic degradation in two haloarchaeal genera (2006) Appl Microbiol Biotechnol, 73, pp. 691-695
Bonf, M. R., Grossman, M. J., Mellado, E., Durrant, L. R., Biodegradation of aromatic hydrocarbons by Haloarchaea and their use for the reduction of the chemical oxygen demand of hypersaline petroleum produced water (2011) Chemosphere, 84, pp. 1671-1676
Ding, J. Y., Lai, M. C., The biotechnological potential of the extreme halophilic archaea Haloterrigena sp. H13 in xenobiotic metabolism using a comparative genomics approach (2010) Environ Technol, 31, pp. 905-914
Grbi -Gali, D., Vogel, T. M., Transformation of tolueneand benzene by mixed methanogenic cultures (1987) Appl Environ Microbiol, 53, pp. 254-260
Qiu, Y. L., Hanada, S., Ohashi, A., Harada, H., Kamagata, Y., Sekiguchi, Y., Syntrophorhabdus aromaticivorans gen. Nov., sp. Nov., the first cultured anaerobe capable of degrading phenol to acetate in obligate syntrophic associations with a hydrogenotrophic methanogen (2008) Appl Environ Microbiol, 74, pp. 2051-2058
Chong, P. K., Burja, A. M., Radianingtyas, H., Fazeli, A., Wright, P. C., Proteome and transcriptional analysis of ethanol-grown Sulfolobus solfataricus P2 reveals ADH2, a potential alcohol dehydrogenase (2007) J Proteome Res, 6, pp. 3985-3994
Bidle, K. A., Kirkland, P. A., Nannen, J. L., Maupin-Furlow, J. A., Proteomic analysis of Haloferax volcanii reveals salinity-mediated regulation of the stress response protein PspA (2008) Microbiology, 154, pp. 1436-1443
Yen, M. R., Chen, J. S., Marquez, J. L., Sun, E. I., Saier, M. H., Multidrug resistance: Phylogenetic characterization of superfamilies of secondary carriers that include drug exporters (2010) Meth Mol Biol, 637, pp. 47-64
Saier Jr., M. H., Paulsen, I. T., Phylogeny of multidrug transporters (2001) Seminars in Cell & Develop Biol, 12, pp. 205-213
Piddock, L. J., Multidrug-resistance efflux pumps - not just for resistance (2006) Nat Rev Microbiol, 4, pp. 629-636
Schneider, K. L., Pollard, K. S., Baertsch, R., Pohl, A., Lowe, T. M., The UCSC Archaeal Genome Browser (2006) Nucleic Acid Res, 34, pp. D407-D410
Albers, S. V., Koning, S. M., Konings, W. N., Driessen, A. J., Insights into ABC transport in archaea (2004) Bioenerg Biomembr, 36, pp. 5-15
Oldham, M. L., Davidson, A. L., Chen, J., Structural insights into ABC transporter mechanism (2008) Curr Opin Struct Biol, 18, pp. 726-733
Chung, Y. J., Saier Jr., M. H., SMR-type multidrug resistance pumps (2001) Curr Opin Drug Disc Dev, 4, pp. 237-245
Lee, S. J., B hm, A., Krug, M., Boos, W., The ABC of binding-protein-dependent transport in Archaea (2007) Trends Microbiol, 15, pp. 389-397
Hollenstein, K. R., Dawson, J. P., Locher, K. P., Structure and mechanism of ABC transporter proteins (2007) Curr Opin Struct Biol, 17, pp. 412-418
Oliveira, A. S., Baptista, A. M., Soares, C. M., Insights into the molecular mechanism of an ABC transporter: Conformational changes in the NBD dimer of MJ0796 (2010) J Phys Chem B, 114, pp. 5486-5496
Paulsen, I. T., Multidrug efflux pumps and resistance: Regulation and evolution (2003) Curr Opin Microbiol, 6, pp. 446-451
Li, X. Z., Nikaido, H., Efflux-Mediated Drug Resistance in Bacteria (2004) Drugs, 64, pp. 159-204
Walmsley, A. R., Rosen, B. P., Mayers, D. L., Transport mechanism of resistance to drugs and toxic metals (2009) Antimicrobial Drug Resistance, 1. , Mechanisms of Drug Resistance. Eds: D L Mayers
Hvorup, R. N., Winnen, B., Chang, A. B., Jiang, Y., Zhou, X. F., Saier, M. H., The multidrug/oligosaccharidyl-lipid/ polysaccharide (MOP) exporter superfamily (2003) Eur J Biochem, 270, pp. 799-813
Jack, D. L., Yang, N. M., Saier Jr., M. H., The drug/metabolite transporter superfamily (2001) Eur J Biochem, 268, pp. 3620-3639
Paulsen, I. T., Brown, M. H., Skurray, R. A., Proton-dependent multidrug efflux systems (1996) Microbiol Rev, 60, pp. 575-608
Bay, D. C., Rommens, K. L., Turner, R. J., Small multidrug resistance proteins: A multidrug transporter family that continues to grow (2008) Biochim Biophys Acta, 1778, pp. 1814-1838
Poulsen, B. E., Rath, A., Deber, C. M., The Assembly Motif of a Bacterial Small Multidrug Resistance Protein (2009) J Biol Chem, 284, pp. 9870-9875
Bay, D. C., Turner, R. J., Diversity and evolution of the small multidrug resistance protein family (2009) BMC Evol Biol, 9, p. 140
Chang, A. B., Lin, R., Studley, W. K., Tran, C. V., Saier Jr., M. H., Phylogeny as a guide to structure and function of membrane transport proteins (2004) Mol Membr Biol, 2, pp. 171-181
Law, C. J., Maloney, P. C., Wang, D. N., Ins and outs of major facilitator superfamily antiporters (2008) Annu Rev Microbiol, 62, pp. 289-305
Tseng, T. T., Gratwick, K. S., Kollman, J., Park, D., Nies, D. H., Goffeau, A., Saier Jr., M. H., The RND permease superfamily: An ancient, ubiquitous and diverse family that includes human disease and development proteins (1999) J Mol Microbiol Biotechnol, 1, pp. 107-125
Kim, E., Nies, H. D. H., McEvoy, M. M., Rensing, C., Switch or funnel: How RND-type transport systems control periplasmic metal homeostasis (2011) J Bacteriol, 193, pp. 2381-2387
Perera, I. C., Grove, A., Molecular mechanisms of ligand-mediated attenuation of DNA binding by MarR family transcriptional regulators (2010) J Mol Cell Biol, 2, pp. 243-254
Brown, N. L., Stoyanov, J. V., Kidd, S. P., Hobman, J. L., The MerR family of transcriptional regulators (2003) FEMS Microbiol Rev, 27, pp. 145-163
Ramos, J. L., Mart nez-Bueno, M., Molina-Henares, A. J., Ter n, W., Watanabe, K., Zhang, X., Gallegos, M. T., Tobes, R., The TetR family of transcriptional repressors (2005) Microbiol Mol Biol Rev, 69, pp. 326-356
Gallegos, M. T., Schleif, R., Bairoch, A., Hofmann, K., Ramos, J. L., AraC/XylS Family of Transcriptional Regulators (1997) Microbiol Mol Biol Rev, 61, pp. 393-410
Baliga, N. S., Kennedy, S. P., Ng, W. V., Hood, L., Das Sarma, S., Genomic and genetic dissection of an archaeal regulon (2001) Proc Natl Acad Sci U S A, 98, pp. 2521-2525
Nies, D. H., Microbial heavy-metal resistance (1999) Appl Microbiol Biotechnol, 51, pp. 730-750
Schmid, A. K., Pan, M., Sharma, K., Baliga, N. S., Two transcription factors are necessary for iron homeostasis in a salt-dwelling archaeon (2010) Nucleic Acids Res, 39, pp. 2519-2533
Imlay, J. A., Pathways of oxidative damage (2003) Annu Rev Microbiol, 57, pp. 395-418
Andrews, S. C., Robinson, A. K., Rodr guez-Qui ones, F., Bacterial iron homeostasis (2003) FEMS Microbiol Rev, 27, pp. 215-237
Pe a, M. M., Bullerjahn, G. S., The DpsA protein of Synechococcus sp. Strain PCC7942 is a DNA-binding hemoprotein. Linkage of the Dps and bacterioferritin protein families (1995) J Biol Chem, 270, pp. 22478-22482
Almir n, M., Link, A. J., Furlong, D., Kolter, R., A novel DNA-binding protein with regulatory and protective roles in starved Escherichia coli (1992) Genes Dev, 6, pp. 2646-2654
Gauss, G. H., Benas, P., Wiedenheft, B., Young, M., Douglas, T., Lawrence, C. M., Structure of the DPS-like protein from Sulfolobus solfataricus reveals a bacterioferritin-like dimetal binding site within a DPS-like dodecameric assembly (2006) Biochemistry, 45, pp. 10815-10827
Schr der, I., Johnson, E., De Vries, S., Microbial ferric iron reductases (2003) FEMS Microbiol Rev, 27, pp. 427-447
Chiu, H. J., Johnson, E., Schr der, I., Rees, D. C., Crystal structures of a novel ferric reductase from the hyperthermophilic archaeon Archaeoglobus fulgidus and its complex with NADP+ (2001) Structure, 9, pp. 311-319
Mulrooney, S. B., Hausinger, R. P., Nickel uptake and utilization by microorganisms (2003) FEMS Microbiol Rev, 27, pp. 239-261
Rodionov, D. A., Hebbeln, P., Gelfand, M. S., Eitinger, T., Comparative and functional genomic analysis of prokaryotic nickel and cobalt uptake transporters: Evidence for a novel group of ATP-binding cassette transporters (2006) J Bacteriol, 188, pp. 317-327
Phillips, C. M., Schreiter, E. R., Guo, Y., Wang, S. C., Zamble, D. B., Drennan, C. L., Structural basis of the metal specificity for nickel regulatory protein NikR (2008) Biochemistry, 47, pp. 1938-1946
Chivers, P. T., Tahirov, T. H., Structure of Pyrococcus horikoshii NikR: Nickel sensing and implications for the regulation of DNA recognition (2005) J Mol Biol, 348, pp. 597-607
Sindhikar, D. J., Roitberg, A. E., Merz Jr., K. M., Apo and nickel-bound forms of the Pyrococcus horikoshii species of the metalloregulatory protein: NikR characterized by molecular dynamics simulations (2009) Biochemistry, 48, pp. 12024-12033
Arg ello, J. M., Eren, E., Gonz lez-Guerrero, M., The structure and function of heavy metal transport P1B-ATPases (2007) Biometals, 20, pp. 233-248
Lloyd, D. R., Phillips, D. H., Oxidative DNA damage mediated by copper-II/, iron-II/ and nickel-II/ Fenton reactions: Evidence for site-specific mechanisms in the formation of double-strand breaks, 8- hydroxydeoxyguanosine and putative intrastrand crosslinks (1999) Mut Res, 424, pp. 23-36
Imlay, J. A., Cellular defenses against superoxide and hydrogen peroxide (2008) Annu Rev Biochem, 77, pp. 755-776
Wu, C. C., Rice, W. J., Stokes, D. L., Structure of a copper pump suggests a regulatory role for its metal-binding domain (2008) Structure, 16, pp. 976-985
Rice, W. J., Kovalishin, A., Stokes, D. L., Rice, W. J., Kovalishin, A., Stokes, D. L., Role of metal-binding domains of the copper pump from Archaeoglobus fulgidus (2006) Biochem Biophys Res Commun, 348, pp. 124-131
Cavet, J. S., Borrelly, G. P., Robinson, N. J., Zn, Cu and Co in cyanobacteria: Selective control of metal availability (2003) FEMS Microbiol Rev, 27, pp. 165-181
Ettema, T. J., Brinkman, A. B., Lamers, P. P., Kornet, N. G., De Vos, W. M., Van Der Oost, J., Molecular characterization of a conserved archaeal copper resistance (cop) gene cluster and its copper-responsive regulator in Sulfolobus solfataricus P2 (2006) Microbiology, 152, pp. 1969-1979
Ettema, T. J., Huynen, M. A., De Vos, W. M., Van Der Oost, J., TRASH: A novel metal-binding domain predicted to be involved in heavy-metal sensing, trafficking and resistance (2003) Trends Biochem Sc, 28, pp. 170-173
Villafane, A. A., Voskoboynik, Y., Cuebas, M., Ruhl, I., Bini, E., Response to excess copper in the hyperthermophile Sulfolobus solfataricus strain 98/2 (2009) Biochem Biophys Res Commun, 385, pp. 67-71
Scherer, P. A., Bochem, H. P., Ultrastructural investigation of 12 Methanosarcinae and related species grown on methanol for occurrence of polyphosphatelike inclusions (1983) Canadian J Microbiol, 29, pp. 1190-1199
Sk rko, R., Osipiuk, J., Stetter, K. O., Glycogen-boundpolyphosphate kinase from the archaebacterium Sulfolobus acidocaldarius (1989) J Bacteriol, 171, pp. 5162-5164
Cardona, S. T., Ch vez, F. P., Jerez, C. A., The exopolyphosphatasegene from Sulfolobus solfataricus: Characterization of the first gene found to be involved in polyphosphate metabolism in Archaea (2002) Appl Environ Microbiol, 68, pp. 4812-4819
Persson, B. L., Lagerstedt, J. O., Pratt, J. R., Pattison-Granberg, J., Lundh, K., Shokrollahzadeh, S., Lundh, F., Regulation of phosphate acquisition in Saccharomyces cerevisiae (2003) Curr Genet, 43, pp. 225-244
Sehlin, M., B rje Lindstr m, E., Oxidation and reduction of arsenic by Sulfolobus acidocaldarius strain BC H (1992) FEMS Microbiol Lett, 93, pp. 87-92
Cozen, A. E., Weirauch, M. T., Pollard, K. S., Bernick, D. L., Stuart, J. M., Lowe, T. M., Transcriptional map of respiratory versatility in the hyperthermophilic crenarchaeon Pyrobaculum aerophilum (2009) J Bacteriol, 191, pp. 782-794
Jackson, C. R., Dugas, S. L., Phylogenetic analysis of bacterial and archaeal arsC gene sequences suggests an ancient, common origin for arsenate reductase (2003) BMC Evol Biol, 3, p. 18
Cullen, W. R., Reimer, K. J., Arsenic speciation in the environment (1989) Chem Rev, 89, pp. 713-764
Ferguson, J. F., Gavis, J., A review of the arsenic cycle in natural waters (1972) Water Res, 6, pp. 1259-1274
Wu, J., Rosen, B. P., The ArsR protein is a trans-acting regulatory protein (1991) Mol Microbiol, 5, pp. 1331-1336
Busenlehner, L. S., Pennella, M. A., Giedroc, D. P., The SmtB/ArsR family of metalloregulatory transcriptional repressors: Structural insights into prokaryotic metal resistance (2003) FEMS Microbiol Rev, 27, pp. 131-143
Kinch, L. N., Baker, D., Grishin, N. V., Deciphering a novel thioredoxin-like fold family (2003) Proteins, 52, pp. 323-331
Rosen, B. P., Families of arsenic transporters (1999) Trends Microbiol, 7, pp. 207-212
Rosen, B. P., Biochemistry of arsenic detoxification (2002) FEBS Lett, 529, pp. 86-92
Chen, C. M., Misra, T. K., Silver, S., Rosen, B. P., Nucleotide sequence of the structural genes for an anion pump. The plasmid-encoded arsenical resistance operon (1986) J Biol Chem, 261, pp. 15030-15115
Neyt, C. N., Iriarte, M., Thi, V. H., Cornelis, G. R., Virulence and arsenic resistance in Yersiniae (1997) J Bacteriol, 179, pp. 612-619
Gihring, T. M., Bond, P. L., Peters, S. C., Banfield, J. F., Arsenic resistance in the archaeon " Ferroplasma acidarmanus": New insights into the structure and evolution of the ars genes (2003) Extremophiles, 7, pp. 123-130
Qin, J., Rosen, B. P., Zhang, Y., Wang, G., Franke, S., Rensing, C., Arsenic detoxification and evolution of trimethylarsine gas by a microbial arsenite S-adenosylmethionine methyltransferase (2006) Proc Natl Acad Sci U S A, 103, pp. 2075-2080
McBride, B. C., Wolfe, R. S., Biosynthesis of dimethylarsine by Methanobacterium (1971) Biochemistry, 10, pp. 4312-4317
Wilson, J. R., Leang, C., Morby, A. P., Hobman, J. L., Brown, N. L., MerF is a mercury transport protein: Different structures but a common mechanism for mercuric ion transporters? (2000) FEBS Lett, 472, pp. 78-82
Howell, S. C., Mesleh, M. F., Opella, S. J., NMR Structure Determination of a Membrane Protein with Two Transmembrane Helices in Micelles: MerF of the Bacterial Mercury Detoxification System (2005) Biochemistry, 44, pp. 5196-5206
Pullikuth, A. K., Gill, S. S., Primary structure of an invertebrate dihydrolipoamide dehydrogenase with phylogenetic relationship to vertebrate and bacterial disulfide oxidoreductases (1997) Gene, 200, pp. 163-172
Ansari, A. Z., Chael, M. L., O'Halloran, T. V., Allosteric underwinding of DNA is a critical step in positive control of transcription by Hg-MerR (1992) Nature, 355, pp. 87-89
Ansari, A. Z., Bradner, J. E., O'Halloran, T. V., DNA-bend modulation in a repressor-to-activator switching mechanism (1995) Nature, 374, pp. 371-375
King, J. K., Kostka, J. E., Frischer, M. E., Saunders, F. M., Sulfate-Reducing Bacteria Methylate Mercury at Variable Rates in Pure Culture and in Marine Sediments (2000) Appl Environ Microbiol, 66, pp. 2430-2437
Pak, K. R., Bartha, R., Mercury Methylation by Interspecies Hydrogen and Acetate Transfer between Sulfidogens and Methanogens (1998) Appl Environ Microbiol, 64, pp. 1987-1990
Responding to toxic compounds: a genomic and functional overview of Archaea
Archaea occupy a considerable diversity of niches ranging from extreme of pH, salinity to temperature that cannot be tolerated by other forms of life. There is an increasing consciousness that they have a key role both on the biogeochemical cycling of elements and in the bioremediation of polluted habitat. A greater understanding of metal homeostasis and resistance to toxic compounds in this life domain is required to design new strategies for the bioremediation of contaminated sites. This review describes the strategies developed by Archaea to transform xenobiotic compounds and metal ions present in the environment. The adaptation and/or response to such chemicals and the molecular mechanisms of resistance evolved in Archaea are discussed.
Responding to toxic compounds: a genomic and functional overview of Archaea
No results.
Responding to toxic compounds: a genomic and functional overview of Archaea