The effect of non-coordinating side chains on the metal binding affinities of peptides of histidine(427 views) Turi I, DSanna D, Garribba E, Pappalardo G, Sóvágó I
Polyhedron (ISSN: 0277-5387), 2013 Oct 7; 62: 7-17.
Department of Inorganic and Analytical Chemistry, University of Debrecen, P.O. Box 21, H-4010 Debrecen, Hungary
CNR Institute of Biomolecular Chemistry, Traversa La Crucca 3, 07040 Baldinca-Li Punti (Sassari), Italy
Department of Chemistry and Pharmacy, Center for Biotechnology Development and Biodiversity Research, University of Sassari, Via Vienna 2, 07100 Sassari, Italy
Lee, C., Yang, W., Parr, R.G., (1988) Phys. Rev. B., 37, p. 785
Krishnan, R., Binkley, J.S., Seeger, R., Pople, J.A., (1980) J. Chem. Phys., 72, p. 650
Micera, G., Garribba, E., (2011) J. Comp. Chem., 32, p. 2822
Marenich, A.V., Cramer, C.J., Truhlar, D.G., (2009) J. Phys. Chem. B., 113, p. 6378
Lodyga-Chruscinska, E., Micera, G., Garribba, E., (2011) Inorg. Chem., 50, p. 883
Sanna, D., Várnagy, K., Timári, S., Micera, G., Garribba, E., (2011) Inorg. Chem., 50, p. 10328
Sanna, D., Buglyó, P., Bíró, L., Micera, G., Garribba, E., (2012) Eur. J. Inorg. Chem., p. 1079
Jószai, V., Nagy, Z., Osz, K., Sanna, D., Di Natale, G., La Mendola, D., Pappalardo, G., Sóvágó, I., (2006) J. Inorg. Biochem., 100, p. 1399
Kallay, C., Turi, I., Timári, S., Nagy, Z., Sanna, D., Pappalardo, G., De Bona, P., Sóvágó, I., (2011) Monatsh. Chem., 142, p. 411
Kállay, C., Osz, K., Dávid, A., Valastyán, Z., Malandrinos, G., Hadjiliadis, N., Sóvágó, I., (2007) Dalton Trans., p. 4040
Walter, E.D., Stevens, D.J., Visconte, M.P., Millhauser, G.L., (2007) J. Am. Chem. Soc., 129, p. 15440
Camerman, N., Camerman, A., Sarkar, B., (1976) Can. J. Chem., 54, p. 1309
Farkas, E., Sóvágó, I., Gergely, A., (1983) J. Chem. Soc., Dalton Trans., p. 1545
Rabenstein, D.L., Daignault, S.A., Isab, A.A., Arnold, A.P., Shoukry, M.M., (1985) J. Am. Chem. Soc., 107, p. 6435
Timári, S., Kállay, C., Osz, K., Sóvágó, I., Várnagy, K., (2009) Dalton Trans., p. 1962
Prusiner, S. B., Groth, D. F., Cochran, S. P., Masiarz, F. R., McKinley, M. P., Martinez, H. M., (1980) Biochemistry, 19, p. 488
Prusiner, S. B., (1982) Science, 216, p. 136
Millhauser, G. L., (2004) Acc. Chem. Res., 37, p. 79
Brown, D. R., Kozlowski, H., (2004) Dalton Trans., p. 1907
Viles, J. H., (2012) Coord. Chem. Rev., 256, p. 2271
Crichton, R. R., Ward, R., (2006) Metal-based Neurodegeneration, , John Wiley and Sons Ltd., Chichester, England
Burns, C. S., Aronoff-Spencer, E., Dunham, C. M., Lario, P., Avdievich, N. I., Antholine, W. E., Olmstead, M. M., Millhauser, G. L., (2002) Biochemistry, 41, p. 3991
Jones, C. E., Abdelraheim, S. R., Brown, D. R., Viles, J. H., (2004) J. Biol. Chem., 279, p. 32018
S v g, I., Osz, K., (2006) Dalton Trans., p. 3841
S v g, I., K llay, C., V rnagy, K., (2012) Coord. Chem. Rev., 256, p. 2225
Jones, C. E., Klewpatinond, M., Abdelraheim, S. R., Brown, D. R., Viles, J. H., (2005) J. Mol. Biol., 346, p. 1393
Turi, I., K llay, C., Szikszai, D., Pappalardo, G., Di Natale, G., De Bona, P., Rizzarelli, E., S v g, I., (2010) J. Inorg. Biochem., 104, p. 885
J szai, V., Turi, I., K llay, C., Pappalardo, G., Di Natale, G., Rizzarelli, E., S v g, I., (2012) J. Inorg. Biochem., 112, p. 17
Z k ny, L., Nagyp l, I., (1985) Computational Methods for the Determination of Stability Constants, , D. J. Leggett (ed.) Plenum Press, New York
Parr, R. G., Yang, W., (1989) Density-Functional Theory of Atoms and Molecules, , Oxford University Press, Oxford
Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Fox, D. J., (2010) GAUSSIAN 09, , Revision C. 01, Gaussian, Inc., Wallingford CT
Becke, A. D., (1993) J. Chem. Phys., 98, p. 5648
Marenich, A. V., Cramer, C. J., Truhlar, D. G., (2009) J. Phys. Chem. B., 113, p. 6378
Sanna, D., V rnagy, K., Tim ri, S., Micera, G., Garribba, E., (2011) Inorg. Chem., 50, p. 10328
Sanna, D., Bugly, P., B r, L., Micera, G., Garribba, E., (2012) Eur. J. Inorg. Chem., p. 1079
J szai, V., Nagy, Z., Osz, K., Sanna, D., Di Natale, G., La Mendola, D., Pappalardo, G., S v g, I., (2006) J. Inorg. Biochem., 100, p. 1399
K llay, C., Osz, K., D vid, A., Valasty n, Z., Malandrinos, G., Hadjiliadis, N., S v g, I., (2007) Dalton Trans., p. 4040
Walter, E. D., Stevens, D. J., Visconte, M. P., Millhauser, G. L., (2007) J. Am. Chem. Soc., 129, p. 15440
Farkas, E., S v g, I., Gergely, A., (1983) J. Chem. Soc., Dalton Trans., p. 1545
Rabenstein, D. L., Daignault, S. A., Isab, A. A., Arnold, A. P., Shoukry, M. M., (1985) J. Am. Chem. Soc., 107, p. 6435
Tim ri, S., K llay, C., Osz, K., S v g, I., V rnagy, K., (2009) Dalton Trans., p. 1962
The effect of non-coordinating side chains on the metal binding affinities of peptides of histidine
Copper(II), nickel(II) and zinc(II) complexes of both N-terminally acetylated and free tetrapeptides modeling the sequences at H96 (GTHS) and H111 (MKHM) sites of prion protein have been studied by potentiometric and various spectroscopic (UV-Vis, CD, EPR and NMR) techniques. Complex formation processes of the two tetrapeptides are very similar but copper(II) ions have enhanced affinity to form complexes with the -MKHM- sequence, while the opposite trend was obtained for nickel(II). The selectivity of metal binding of peptides was supported by DFT calculations, too. Three octapeptides NH2-GTHSMKHM-NH2, NH2-MKHMGTHS-NH2 and Ac-GTHSMKHM-NH2 containing the previous tetrapeptide domains have also been synthesized and studied with the same metal ions. All octapeptides are able to bind two copper(II) or nickel(II) ions and the histidyl residues are the primary metal binding sites. In the case of the N-terminally free octapeptides the first metal ion is always bonded to the amino terminus of both peptides reflecting the outstanding thermodynamic stability of the albumin-like binding site. The presence of coordination isomers was, however, identified for the mononuclear species of Ac-GTHSMKHM-NH2 with a preference for copper(II) and nickel(II) binding at MKHM and GTHS sites, respectively. These data suggest that the specific sequences of prion fragments are responsible for the metal ion selectivity. Mixed metal copper(II)-nickel(II) complexes are also formed with all peptides showing the same preferences for metal binding as it was obtained for the binary systems. (c) 2013 Elsevier Ltd. All rights reserved.
The effect of non-coordinating side chains on the metal binding affinities of peptides of histidine
No results.
The effect of non-coordinating side chains on the metal binding affinities of peptides of histidine
Kállay C, Dávid A, Timári S, Nagy EM, Sanna D, Garribba E, Micera G, De Bona P, Pappalardo G, Rizzarelli E, Sóvágó I * Copper(II) complexes of rat amylin fragments(360 views) Dalton T (ISSN: 1477-9234, 1477-9226, 1477-9234electronic), 2011 Oct 14; 40(38): 9711-9721. Impact Factor:3.838 ViewExport to BibTeXExport to EndNote