Affiliations: Department of Internal Medicine, Cardiovascular and Immunological Sciences, University Federico II, Naples, Italy.
Department of Biomorphological and Functional Sciences, University Federico II, Naples, Italy
Institute of Diagnostic and Nuclear Development, SDN Foundation, Naples, Italy
References: Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults. Executive Summary of the Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III) (2001) JAMA, 285, pp. 2486-249
Sasieni, P.D., Shelton, J., Ormiston-Smith, N., Thomson, C.S., Silcocks, P.B., What is the lifetime risk of developing cancer?: The effect of adjusting for multiple primaries (2011) Br J Cancer, 105, pp. 460-465
(1975) National Cancer Institute. SEER Cancer Statistics Review, , http://seer.cancer.gov/csr/1975_2008/results_merged/ topic_lifetime_risk_death.pdf, Accessed 27 Sep. 2012
Berry, J.D., Liu, K., Folsom, A.R., Lewis, C.E., Carr, J.J., Polak, J.F., Prevalence and progression of subclinical atherosclerosis in younger adults with low short-term but high lifetime estimated risk for cardiovascular disease: The coronary artery risk development in young adults study and multi-ethnic study of atherosclerosis (2009) Circulation, 119, pp. 382-389
Persell, S.D., Zei, C., Cameron, K.A., Zielinski, M., Lloyd-Jones, D.M., Potential use of 10-year and lifetime coronary risk information for preventive cardiology prescribing decisions: A primary care physician survey (2010) Arch Intern Med., 170, pp. 470-477
Lloyd-Jones, D.M., Wilson, P.W.F., Larson, M.G., Beiser, A., Leip, E.P., D'Agostino, R.B., Levy, D., Framingham risk score and prediction of lifetime risk for coronary heart disease (2004) American Journal of Cardiology, 94 (1), pp. 20-24. , DOI 10.1016/j.amjcard.2004.03.023, PII S0002914904004370
Farooq, V., Brugaletta, S., Vranckx, P., Serruys, P.W., A guide to interpreting and assessing the performance of prediction models (2011) EuroIntervention., 6, pp. 909-912
Steyerberg, E.W., Pencina, M.J., Lingsma, H.F., Kattan, M.W., Vickers, A.J., Van Calster, B., Assessing the incremental value of diagnostic and prognostic markers: A review and illustration (2012) Eur J Clin Invest., 42, pp. 216-228
Pencina, M.J., Agostino Sr., D.R.B., Thoroughly modern risk prediction? (2012) Sci Transl Med., 4, pp. 131fs10
Gerds, T.A., Cai, T., Schumacher, M., The performance of risk prediction models (2008) Biom J., 50, pp. 457-479
Lemeshow, S., Hosmer Jr., D.W., A review of goodness of fit statistics for use in the development of logistic regression models (1982) American Journal of Epidemiology, 115 (1), pp. 92-106
Cook, N.R., Ridker, P.M., Advances in measuring the effect of individual predictors of cardiovascular risk: The role of reclassification measures (2009) Ann Intern Med., 150, pp. 795-802
Pryor, D.B., Harrell Jr., F.E., Lee, K.L., Estimating the likelihood of significant coronary artery disease (1983) American Journal of Medicine, 75 (5), pp. 771-780
Taylor, A.J., Cerqueira, M., Hodgson, J.M., Mark, D., Min, J., O'Gara, P., ACCF/SCCT/ACR/AHA/ASE/ASNC/NASCI/SCAI/SCMR 2010 appropriate use criteria for cardiac computed tomography: A report of the American College of Cardiology Foundation Appropriate Use Criteria Task Force (2010) J Am Coll Cardiol., 56, pp. 1864-1894. , the Society of Cardiovascular Computed Tomography, the American College of Radiology, the American Heart Association, the American Society of Echocardiography, the American Society of Nuclear Cardiology, the North American Society for Cardiovascular Imaging, the Society for Cardiovascular Angiography and Interventions, and the Society for Cardiovascular Magnetic Resonance
Morise, A.P., Haddad, W.J., Beckner, D., Development and validation of a clinical score to estimate the probability of coronary artery disease in men and women presenting with suspected coronary disease (1997) American Journal of Medicine, 102 (4), pp. 350-356. , DOI 10.1016/S0002-9343(97)00086-7, PII S0002934397000867
Pryor, D.B., Shaw, L., Harrell Jr., F.E., Lee, K.L., Hlatky, M.A., Mark, D.B., Estimating the likelihood of severe coronary artery disease (1991) Am J Med., 90, pp. 553-562
Do, D., Marcus, R., Froelicher, V., Janosi, A., West, J., Atwood, J.E., Myers, J., Froning, J., Predicting severe angiographic coronary artery disease using computerization of clinical and exercise test data (1998) Chest, 114 (5), pp. 1437-1445
Pencina, M.J., D'Agostino, R.B., Larson, M.G., Massaro, J.M., Vasan, R.S., Predicting the 30-year risk of cardiovascular disease: The Framingham heart study (2009) Circulation, 119, pp. 3078-3084
Steyerberg, E.W., (2009) Clinical Prediction Models: A Practical Approach to Development, Validation, and Updating, , New York: Springer
Kannel, W.B., Dawber, T.R., Kagan, A., Revotskie, N., Stokes III, J., Factors of risk in the development of coronary heart disease - Six year follow-up experience. The Framingham study (1961) Ann Intern Med., 55, pp. 33-50
Sytkowski, P.A., Kannel, W.B., D'Agostino, R.B., Changes in risk factors and the decline in mortality from cardiovascular disease. The Framingham heart study (1990) New England Journal of Medicine, 322 (23), pp. 1635-1641
Mozaffarian, D., Wilson, P.W., Kannel, W.B., Beyond established and novel risk factors: Lifestyle risk factors for cardiovascular disease (2008) Circulation, 117, pp. 3031-3038
D'Agostino Sr., R.B., Grundy, S., Sullivan, L.M., Wilson, P., Validation of the Framingham coronary heart disease prediction scores: Results of a multiple ethnic groups investigation (2001) Journal of the American Medical Association, 286 (2), pp. 180-187
Kannel, W.B., Neaton, J.D., Wentworth, D., Overall and coronary heart disease mortality rates in relation to major risk factors in 325,348 men screened for the MRFIT (1986) American Heart Journal, 112 (4), pp. 825-836. , DOI 10.1016/0002-8703(86)90481-3
Wilson, P.W.F., D'Agostino, R.B., Levy, D., Belanger, A.M., Silbershatz, H., Kannel, W.B., Prediction of coronary heart disease using risk factor categories (1998) Circulation, 97 (18), pp. 1837-1847
Hense, H.-W., Schulte, H., Lowel, H., Assmann, G., Keil, U., Framingham risk function overestimates risk of coronary heart disease in men and women from Germany - Results from the MONICA Augsburg and the PROCAM cohorts (2003) European Heart Journal, 24 (10), pp. 937-945. , DOI 10.1016/S0195-668X(03)00081-2
Empana, J.P., Tafflet, M., Escolano, S., Vergnaux, A.C., Bineau, S., Ruidavets, J.B., Predicting CHD risk in France: A pooled analysis of the D. E. S. I. R., Three City, PRIME, and SU. VI. MAX studies (2011) Eur J Cardiovasc Prev Rehabil., 18, pp. 175-185
Assmann, G., Cullen, P., Schulte, H., Simple scoring scheme for calculating the risk of acute coronary events based on the 10-year follow-up of the Prospective Cardiovascular Münster (PROCAM) study (2002) Circulation, 105 (3), pp. 310-315. , DOI 10.1161/hc0302.102575
Assmann, G., Schulte, H., Seedorf, U., Cardiovascular risk assessment in the metabolic syndrome: Results from the Prospective Cardiovascular Munster (PROCAM) study (2008) International Journal of Obesity, 32 (SUPPL. 2), pp. S11-S16. , DOI 10.1038/ijo.2008.29, PII IJO200829
Conroy, R.M., Pyorala, K., Fitzgerald, A.P., Sans, S., Menotti, A., De Backer, G., De Bacquer, D., Graham, I.M., Estimation of ten-year risk of fatal cardiovascular disease in Europe: The SCORE project (2003) European Heart Journal, 24 (11), pp. 987-1003. , DOI 10.1016/S0195-668X(03)00114-3
Graham, I., Atar, D., Borch-Johnsen, K., Boysen, G., Burell, G., Cifkova, R., Dallongeville, J., Zamorano, J.L., European guidelines on cardiovascular disease prevention in clinical practice: Executive summary - Fourth Joint Task Force of the European Society of Cardiology and Other Societies on Cardiovascular Disease Prevention in Clinical Practice (Constituted by representatives of nine societies and by invited experts) (2007) European Heart Journal, 28 (19), pp. 2375-2414. , DOI 10.1093/eurheartj/ehm316
Keil, U., Fitzgerald, A.P., Gohlke, H., Wellmann, J., Hense, H.W., Risikostratifikation mit den neuen ESC-Risikotabellen für Deutschland (2005) Dtsch Arztebl., 102, pp. A1808-A1812
Hippisley-Cox, J., Coupland, C., Vinogradova, Y., Robson, J., Minhas, R., Sheikh, A., Brindle, P., Predicting cardiovascular risk in England and Wales: Prospective derivation and validation of QRISK2 (2008) BMJ, 336 (7659), pp. 1475-1482. , DOI 10.1136/bmj.39609.449676.25
Collins, G.S., Altman, D.G., An independent and external validation of QRISK2 cardiovascular disease risk score: A prospective open cohort study (2010) Br Med J., 340, pp. c2442
Ridker, P.M., Buring, J.E., Rifai, N., Cook, N.R., Development and validation of improved algorithms for the assessment of global cardiovascular risk in women: The Reynolds Risk Score (2007) JAMA, 297, pp. 611-619
Ridker, P.M., Paynter, N.P., Rifai, N., Gaziano, J.M., Cook, N.R., C-reactive protein and parental history improve global cardiovascular risk prediction: The Reynolds Risk Score for men (2008) Circulation, 118, pp. 2243-2251
Gaziano, T.A., Young, C.R., Fitzmaurice, G., Atwood, S., Gaziano, J.M., Laboratory-based versus non-laboratory-based method for assessment of cardiovascular disease risk: The NHANES I Follow-up Study cohort (2008) The Lancet, 371 (9616), pp. 923-931. , DOI 10.1016/S0140-6736(08)60418-3, PII S0140673608604183
Ferrario, M., Chiodini, P., Chambless, L.E., Cesana, G., Vanuzzo, D., Panico, S., Sega, R., Seccareccia, F., Prediction of coronary events in a low incidence population. Assessing accuracy of the CUORE Cohort Study prediction equation (2005) International Journal of Epidemiology, 34 (2), pp. 413-421. , DOI 10.1093/ije/dyh405
Hartz, I., Njolstad, I., Eggen, A.E., Does implementation of the European guidelines based on the SCORE model double the number of Norwegian adults who need cardiovascular drugs for primary prevention? The Tromsø study 2001 (2005) European Heart Journal, 26 (24), pp. 2673-2680. , DOI 10.1093/eurheartj/ehi556
Marques-Vidal, P., Rodondi, N., Bochud, M., Pécoud, A., Hayoz, D., Paccaud, F., Predictive accuracy and usefulness of calibration of the ESC SCORE in Switzerland (2008) Eur J Cardiovasc Prev Rehabil., 15, pp. 402-408
Woodward, M., Brindle, P., Tunsfall-Pedoe, H., Adding social deprivation and family history to cardiovascular risk assessment: The ASSIGN score from the Scottish Heart Health Extended Cohort (SHHEC) (2007) Heart, 93 (2), pp. 172-176. , DOI 10.1136/hrt.2006.108167
Silber, S., Jarre, F., Pittrow, D., Klotsche, J., Pieper, L., Zeiher, A.M., DETECT-Studiengruppe. Cardiovascular risk assessment by primary-care physicians in Germany and its lack of agreement with the Established Risk Scores (DETECT) (2008) Med Klin (Munich), 103, pp. 638-645
Sniderman, A.D., Furberg, C.D., Age as a modifiable risk factor for cardiovascular disease (2008) Lancet, 371, pp. 1547-1549
Carroll, M.D., Lacher, D.A., Sorlie, P.D., Cleeman, J.I., Gordon, D.J., Wolz, M., Grundy, S.M., Johnson, C.L., Trends in serum lipids and lipoproteins of adults, 1960-2002 (2005) Journal of the American Medical Association, 294 (14), pp. 1773-1781. , http://jama.ama-Assn.org/cgi/reprint/294/14/1773, DOI 10.1001/jama.294.14.1773
Cooney, M.T., Dudina, A., D'Agostino, R., Graham, I.M., Cardiovascular risk-estimation systems in primary prevention: Do they differ? Do they make a difference? Can we see the future? (2010) Circulation, 122, pp. 300-310
Harrell Jr., F.E., Califf, R.M., Pryor, D.B., Evaluating the yield of medical tests (1982) Journal of the American Medical Association, 247 (18), pp. 2543-2546. , DOI 10.1001/jama.247.18.2543
Gonen, M., Heller, G., Concordance probability and discriminatory power in proportional hazards regression (2005) Biometrika, 92 (4), pp. 965-970. , DOI 10.1093/biomet/92.4.965
Heagerty, P.J., Lumley, T., Pepe, M.S., Time-dependent ROC curves for censored survival data and a diagnostic marker (2000) Biometrics, 56 (2), pp. 337-344
Antolini, L., Boracchi, P., Biganzoli, E., A time-dependent discrimination index for survival data (2005) Statistics in Medicine, 24 (24), pp. 3927-3944. , DOI 10.1002/sim.2427
Cook, N.R., Use and misuse of the receiver operating characteristic curve in risk prediction (2007) Circulation, 115 (7), pp. 928-935. , DOI 10.1161/CIRCULATIONAHA.106.672402, PII 0000301720070220000018
Janes, H., Pepe, M.S., Gu, W., Assessing the value of risk predictions using risk stratification tables (2008) Ann Intern Med., 149, pp. 751-760
Royston, P., Sauerbrei, W., A new measure of prognostic separation in survival data (2004) Statistics in Medicine, 23 (5), pp. 723-748. , DOI 10.1002/sim.1621
Cook, N.R., Paynter, N.P., Performance of reclassification statistics in comparing risk prediction models (2011) Biom J., 53, pp. 237-258
Cook, N.R., Comments on 'Evaluating the added predictive ability of a new marker: From area under the ROC curve to reclassification and beyond' by M.J. Pencina et al., Statistics in Medicine (DOI: 10.1002/sim.2929) (2008) Statistics in Medicine, 27 (2), pp. 191-195. , DOI 10.1002/sim.2987
Nelson, C.P., Lambert, P.C., Squire, I.B., Jones, D.R., Flexible parametric models for relative suvival, with application in coronary heart disease (2007) Statistics in Medicine, 26 (30), pp. 5486-5498. , DOI 10.1002/sim.3064
Vickers, A.J., Cronin, A.M., Begg, C.B., One statistical test is sufficient for assessing new predictive markers (2011) BMC Med Res Methodol., 11, p. 13
Steyerberg, E.W., Van Calster, B., Pencina, M.J., Performance measures for prediction models and markers: Evaluation of predictions and classifications (2011) Rev Esp Cardiol., 64, pp. 788-794
Peirce, C.S., The numerical measure of the success of predictions (1884) Science., 4, pp. 453-454
Vickers, A.J., Elkin, E.B., Decision curve analysis: A novel method for evaluating prediction models (2006) Medical Decision Making, 26 (6), pp. 565-574. , DOI 10.1177/0272989X06295361
Rousson, V., Zumbrunn, T., Decision curve analysis revisited: Overall net benefit, relationships to ROC curve analysis, and application to case-control studies (2011) BMC Med Inform Decis Mak., 11, p. 45
Kallogjeri, D., Piccirillo, J.F., Spitznagel Jr., E.L., Steyerberg, E.W., Comparison of scoring methods for ACE-27: Simpler is better (2012) Geriatr Oncol., 3, pp. 238-245
Shaw, L.J., The new era of risk reclassification in cardiovascular imaging (2011) J Nucl Cardiol., 18, pp. 536-537
Acampa, W., Petretta, M., Evangelista, L., Daniele, S., Xhoxhi, E., De Rimini, M.L., The IDIS study: A prospective, multicentre trial. Myocardial perfusion imaging and risk classification for coronary heart disease in diabetic patients (2012) Eur J Nucl Med Mol Imaging, 39, pp. 387-395
Prediction models for risk classification in cardiovascular disease
Risk stratification is an increasingly important tool for the management of patients with different diseases and also for decision making in subjects not yet with overt disease but who are at risk of disease in the short or long term or during their lifetime. Careful risk assessment in the individual patient, based on clinical, laboratory and imaging data, can be helpful for making decisions about treatment or other prevention strategies. As regards cardiovascular disease, many models have been suggested and are available for the prediction of diagnosis and prognosis and there are several algorithms for risk prediction. However, current risk screening methods are not perfect. This review evaluates relative strengths and limitations of traditional and more recent methods for assessing the performance of prediction models.
Prediction models for risk classification in cardiovascular disease
Santulli G, Cipolletta E, Sorriento D, Del Giudice C, Anastasio A, Monaco S, Maione AS, Condorelli G, Puca A, Trimarco B, Illario M, Iaccarino G * CaMK4 gene deletion induces hypertension(349 views) J Am Heart Assoc Journal Of The American Heart Association (ISSN: 2047-9980), 2012; 1(4): N/D-N/D. Impact Factor:2.882 ViewExport to BibTeXExport to EndNote