Peptide-modified liposomes for selective targeting of bombesin receptors overexpressed by cancer cells: A potential theranostic agent(381 views) Accardo A, Salsano G, Morisco A, Aurilio M, Parisi A, Maione F, Cicala C, Tesauro D, Aloj L, De Rosa G, Morelli G
Int J Nanomed (ISSN: 1176-9114, 1178-2013, 1178-2013electronic), 2012; 7: 2007-2017.
Keywords: Bombesin Peptide, Doxorubicin Delivery, Gastrin-Releasing Peptide Receptors, Pc-3 Cells, Theranostic Applications, 2 Distearoyl Sn Glycero 3 Phosphocholine, Bombesin Receptor, Macrogol, Monomer, Mony Bn, Phospholipid, Unclassified Drug, 2 Distearoyllecithin, 2-Distearoyllecithin, Antineoplastic Agent, Bombesin (7 14), Bombesin (7-14), Drug Carrier, Drug Derivative, Liposome, Pentetic Acid, Peptide Fragment, Phosphatidylcholine, Surfactant, Animal Experiment, Animal Model, Antineoplastic Activity, Article, Binding Affinity, Cancer Cell Culture, Cancer Cell Destruction, Cancer Inhibition, Cell Adhesion, Cell Survival, Chemical Composition, Controlled Study, Cytotoxicity Test, Encapsulation, Female, Human, Human Cell, In Vitro Study, In Vivo Study, Liposomal Delivery, Mouse, Nonhuman, Prostate Cancer, Protein Expression, Protein Localization, Protein Targeting, Tumor Xenograft, Upregulation, Bagg Albino Mouse, Chemistry, Drug Antagonism, Drug Delivery System, Drug Screening, Metabolism, Nanomedicine, Nude Mouse, Pathology, Prostate Tumor, Tumor Cell Line, Inbred Balb C, Prostatic Neoplasms, Surface-Active Agents, Xenograft Model Antitumor Assays,
Affiliations: *** IBB - CNR ***
CIRPeB, Department of Biological Sciences and IBB CNR, University of Naples 'Federico II', Napoli, Italy
Department of Pharmaceutical Chemistry, University of Naples 'Federico II', Italy
Department of Nuclear Medicine, Istituto Nazionale per lo Studio e la Cura dei Tumori, Fondazione 'G. Pascale', Italy
Department of Experimental Pharmacology, University of Naples 'Federico II', Napoli, Italy
References: Chabner, B.A., Allegra, C.J., Curt, G.A., Calabresi, P., Antineoplastic agents (1996) Goodman and Gillman's The Pharmacological Basis of Therapeutics, p. 1265. , Hardman JG, Limbird LE, editors. 9th ed. New York: McGraw-Hil
Hortobagyi, G.N., Anthracyclines in the treatment of cancer: An overview (1997) Drugs., 54 (SUPPL. 4), pp. 1-7
Gabizon, A., Martin, F., Polyethylene glycol-coated (pegylated) liposomal doxorubicin: Rationale for use in solid tumours (1997) Drugs., 54 (SUPPL. 4), pp. 15-21
Gabizon, A., Pharmacokinetics of PEGylated liposomal doxorubicin (2003) Clin Pharmacokinet., 42, pp. 419-436
Abraham, S.A., Waterhouse, D.N., Lawrence, D., The liposomal formulation of doxorubicin (2005) Methods Enzymol., 391, pp. 71-97
Tardi, P.G., Boman, N.L., Cullis, P.R., Liposomal doxorubicin (1996) J Drug Target., 4, pp. 129-140
Brown, J.M., Giaccia, A.J., The unique physiology of solid tumours: Opportunities (and problems) for cancer therapy (1998) Cancer Res., 58, pp. 408-1416
Gabizon, A., Catane, R., Uziely, B., Prolonged circulation time and enhanced accumulation in malignant exudates of doxorubicin encapsulated in poly-ethylene-glycol coated liposomes (1994) Cancer Res., 54, pp. 987-992
Gaber, M.H., Wu, N.Z., Hong, K., Huang, S.K., Dewhirst, M.W., Papahadjopoulos, D., Thermosensitive liposomes: Extravasation and release of contents in tumor microvascular networks (1996) Int J Radiat Oncol Biol Phys., 36, pp. 1177-1187
Matsumura, Y., Maeda, H., A new concept for macromolecular therapeutics in cancer chemotherapy: Mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs (1986) Cancer Res., 46, pp. 6387-6392
Marcucci, F., Lefoulon, F., Active targeting with particulate drug carriers in tumor therapy: Fundamentals and recent progress (2004) Drug Discov Today., 9 (5), pp. 219-228
Torchilin, V.P., Antibody-modified liposomes for cancer chemotherapy (2008) Expert Opin Drug Deliv., 5 (9), pp. 1003-1025
Sofou, S., Sgouros, G., Antibody-targeted liposomes in cancer therapy and imaging (2008) Expert Opin Drug Deliv., 5 (2), pp. 189-204
Wu, H.-C., Chang, D.-K., Peptide-mediated liposomal drug delivery system targeting tumor blood vessels in anticancer therapy (2010) J Oncol., 2010, pp. 1-8
Reubi, J.C., Waser, B., Schaer, J.C., Laissue, J.A., Somatostatin receptor sst1-sst5 expression in normal and neoplastic human tissues using receptor autoradiography with subtype-selective ligands (2001) Eur J Nucl Med., 28 (7), pp. 836-846
Virgolini, I., Raderer, M., Kurtaran, A., Vasoactive intestinal peptidereceptor imaging for the localization of intestinal adenocarcinomas and endocrine tumors (1994) N Engl J Med., 331, pp. 1116-1121
Behr, T.M., Jenner, N., Radetzky, S., Targeting of cholecystokinin-B/ gastrin receptors in vivo: Preclinical and initial clinical evaluation of the diagnostic and therapeutic potential of radiolabelled gastrin (1998) Eur J Nucl Med., 25 (4), pp. 424-430
Breeman, W.A., de Jong, M., Erion, J.L., Preclinical comparison of 111 In-labeled DTPA-or DOTA-bombesin analogs for receptortargeted scintigraphy and radionuclide therapy (2002) J Nucl Med., 43, pp. 1650-1656
Behr, T.M., Gotthardt, M., Barth, A., Behe, M., Imaging tumors with peptidebased radioligands (2001) Q J Nucl Med., 45 (2), pp. 189-200
Accardo, A., Morisco, A., Tesauro, D., Pedone, C., Morelli, G., Naposomes: A new class of peptide derivatized target selective multimodal nanoparticles for imaging and therapeutic applications (2011) Ther Deliv., 2 (2), pp. 235-257
Accardo, A., Tesauro, D., Aloj, L., Peptide containing aggregates as selective nanocarriers for therapeutics (2008) Chem Med Chem., 3, pp. 594-602
Morisco, A., Accardo, A., Tesauro, D., Palumbo, R., Benedetti, E., Morelli, G., Peptide-labeled supramolecular aggregates as selective doxorubicin carriers for delivery to tumor cells (2011) Biopolymers., 96 (1), pp. 88-96
Vaccaro, M., Mangiapia, G., Paduano, L., Structural and relaxometric characterization of peptide aggregates containing gadolinium complexes as potential selective contrast agents in MRI (2007) Chem Phys Chem., 8, pp. 2526-2538
Ding, N., Lu, Y., Lee, R.J., Folate receptor-targeted fluorescent paramagnetic bimodal liposomes for tumor imaging (2011) Int J Nanomedicine., 6, pp. 2513-2520
Accardo, A., Mansi, R., Morisco, A., Peptide modified nanocarriers for selective targeting of bombesin receptors (2010) Mol Biosyst., 6, pp. 878-887
Markwalder, R., Reubi, J.C., Gastrin-releasing peptide receptors in the human prostate: Relation to neoplastic transformation (1999) Cancer Res., 59, pp. 1152-1159
Gugger, M., Reubi, J.C., GRP receptors in non-neoplastic and neoplastic human breast (1999) Am J Pathol., 155, pp. 2067-2076
Fleischmann, A., Waser, B., Reubi, J.C., Overexpression of gastrin-releasing peptide receptors in tumor-associated blood vessels of human ovarian neoplasms (2007) Cell Oncol., 29, pp. 421-433
Smith, C.J., Volkert, W.A., Hoffman, T.J., Radiolabeled peptide conjugates for targeting of the bombesin receptor superfamily subtypes (2005) Nucl Med Biol., 32, pp. 733-740
Rogers, B.E., Bigott, H.M., McCarthy, D.W., MicroPET Imaging of a gastrin-releasing peptide receptor-positive tumor in a mouse model of human prostate cancer using a 64Cu-labeled bombesin analogue (2003) Bioconjugate Chem., 14 (4), pp. 756-763
Parry, J.J., Kelly, T.S., Andrews, R., Rogers, B.E., In vitro and in vivo evaluation of 64Cu-labeled DOTA-linker-bombesin(7-14) analogues containing different amino acid linker moieties (2007) Bioconjugate Chem., 18 (4), pp. 1110-1117
Schmitt, L., Dietrich, C., Synthesis and characterization of chelator-lipids for reversible immobilization of engineered proteins at self-assembled lipid interfaces (1994) J Am Chem Soc., 116 (19), pp. 8485-8491
Stewart, J.C.M., Colorimetric determination of phospholipids with ammonium ferrothiocyanate (1980) Anal Biochem., 104, pp. 10-14
Allen, T.M., Hansen, C., Martin, F., Redemann, C., Yau-Young, A., Liposomes containing synthetic lipid derivatives of poly(ethylene glycol) show prolonged circulation half-lives in vivo (1991) Biochim Biophys Acta Biomembranes., 1066 (1), pp. 29-36
Fritze, A., Hens, F., Kimpfler, A., Schubert, R., Peschka-Süss, R., Remote loading of doxorubicin into liposomes driven by a transmembrane phosphate gradient (2006) Biochimica et Biophysica Acta., 1758 (10), pp. 1633-1640
An, Z., Wang, X., Geller, J., Moossa, A.R., Hoffman, R.M., Surgical orthotopic implantation allows high lung and lymph node metastatic expression of human prostate carcinoma cell line PC-3 in nude mice (1998) Prostate., 34 (3), pp. 169-174
Fridman, R., Kibbey, M.C., Royce, L.S., Enhanced tumor growth of both primary and established human and murine tumor cells in athymic mice after coinjection with Matrigel (1991) J Natl Cancer Inst., 83 (11), pp. 769-774
Xie, J., Lee, S., Chen, X., Nanoparticle-based theranostic agents (2010) Adv Drug Deliv Rev., 62, pp. 1064-1079
Chabner, B. A., Allegra, C. J., Curt, G. A., Calabresi, P., Antineoplastic agents (1996) Goodman and Gillman's The Pharmacological Basis of Therapeutics, p. 1265. , Hardman JG, Limbird LE, editors. 9th ed. New York: McGraw-Hil
Hortobagyi, G. N., Anthracyclines in the treatment of cancer: An overview (1997) Drugs., 54 (SUPPL. 4), pp. 1-7
Abraham, S. A., Waterhouse, D. N., Lawrence, D., The liposomal formulation of doxorubicin (2005) Methods Enzymol., 391, pp. 71-97
Tardi, P. G., Boman, N. L., Cullis, P. R., Liposomal doxorubicin (1996) J Drug Target., 4, pp. 129-140
Brown, J. M., Giaccia, A. J., The unique physiology of solid tumours: Opportunities (and problems) for cancer therapy (1998) Cancer Res., 58, pp. 408-1416
Gaber, M. H., Wu, N. Z., Hong, K., Huang, S. K., Dewhirst, M. W., Papahadjopoulos, D., Thermosensitive liposomes: Extravasation and release of contents in tumor microvascular networks (1996) Int J Radiat Oncol Biol Phys., 36, pp. 1177-1187
Torchilin, V. P., Antibody-modified liposomes for cancer chemotherapy (2008) Expert Opin Drug Deliv., 5 (9), pp. 1003-1025
Wu, H. -C., Chang, D. -K., Peptide-mediated liposomal drug delivery system targeting tumor blood vessels in anticancer therapy (2010) J Oncol., 2010, pp. 1-8
Reubi, J. C., Waser, B., Schaer, J. C., Laissue, J. A., Somatostatin receptor sst1-sst5 expression in normal and neoplastic human tissues using receptor autoradiography with subtype-selective ligands (2001) Eur J Nucl Med., 28 (7), pp. 836-846
Behr, T. M., Jenner, N., Radetzky, S., Targeting of cholecystokinin-B/ gastrin receptors in vivo: Preclinical and initial clinical evaluation of the diagnostic and therapeutic potential of radiolabelled gastrin (1998) Eur J Nucl Med., 25 (4), pp. 424-430
Breeman, W. A., de Jong, M., Erion, J. L., Preclinical comparison of 111 In-labeled DTPA-or DOTA-bombesin analogs for receptortargeted scintigraphy and radionuclide therapy (2002) J Nucl Med., 43, pp. 1650-1656
Behr, T. M., Gotthardt, M., Barth, A., Behe, M., Imaging tumors with peptidebased radioligands (2001) Q J Nucl Med., 45 (2), pp. 189-200
Smith, C. J., Volkert, W. A., Hoffman, T. J., Radiolabeled peptide conjugates for targeting of the bombesin receptor superfamily subtypes (2005) Nucl Med Biol., 32, pp. 733-740
Rogers, B. E., Bigott, H. M., McCarthy, D. W., MicroPET Imaging of a gastrin-releasing peptide receptor-positive tumor in a mouse model of human prostate cancer using a 64Cu-labeled bombesin analogue (2003) Bioconjugate Chem., 14 (4), pp. 756-763
Parry, J. J., Kelly, T. S., Andrews, R., Rogers, B. E., In vitro and in vivo evaluation of 64Cu-labeled DOTA-linker-bombesin (7-14) analogues containing different amino acid linker moieties (2007) Bioconjugate Chem., 18 (4), pp. 1110-1117
Chang, W. C., White, P. D., (2000) Fmoc Solid Phase Peptide Synthesis., , Oxford, UK: Oxford Univ Press
Stewart, J. C. M., Colorimetric determination of phospholipids with ammonium ferrothiocyanate (1980) Anal Biochem., 104, pp. 10-14
Allen, T. M., Hansen, C., Martin, F., Redemann, C., Yau-Young, A., Liposomes containing synthetic lipid derivatives of poly (ethylene glycol) show prolonged circulation half-lives in vivo (1991) Biochim Biophys Acta Biomembranes., 1066 (1), pp. 29-36
Peptide-modified liposomes for selective targeting of bombesin receptors overexpressed by cancer cells: A potential theranostic agent