Department of Biological Sciences, IBB CNR, University of Naples 'Federico II', Via Mezzocannone, 16, Napoli 80134, Italy
References: Byrne, J.D., Betancourt, T., Brannon-Pppas, L., Active targeting schemes for nanoparticle systems in cancer therapeutics (2008) Adv. Drug Delivery Rev., 60, pp. 1615-162
Janib, S.M., Moses, A.S., MacKay, J.A., Imaging and drug delivery using theranostic nanoparticles (2010) Adv. Drug. Delivery Rev., 62, pp. 1052-1063
Smith-Jones, P.M., Bischof, C., Leimer, M., Gludovacz, D., Angelberger, P., Pangerl, T., Peck-Radosavljevic, M., Virgolini, I., DOTA-lanreotide: A novel somatostatin analog for tumor diagnosis and therapy (1999) Endocrinology, 140, pp. 5136-5148
Aloj, L., Panico, M., Caraco, C., Del Vecchio, S., Arra, C., Affuso, A., Tesauro, D., Salvatore, M., In vitro and in vivo evaluation of 111In-DTPAGlu-G-CCK8 for cholecystokinin-B receptor imaging (2004) Journal of Nucl. Med., 45, pp. 485-494
Rogers, B.E., Bigott, H.M., McCarthy, D.W., Della Manna, D., Kim, J., Sharp, T.L., Welch, M.J., MicroPET imaging of a gastrin-releasing peptide receptor-positive tumor in a mouse model of human prostate cancer using a 64Cu-labeled bombesin analogue (2003) Bioconjug. Chem., 14, pp. 756-763
Farokhzad, O.C., Karp, J.M., Langer, R., Nanoparticle aptamer bioconjugates for cancer targeting (2006) Expert Opinion Drug Delivery, 3, pp. 311-324
Torchilin, V., Antibody-modified liposomes for cancer chemotherapy (2008) Expert Opinion on Drug Delivery, 5, pp. 1003-1025
Sofou, S., Sgouros, G., Antibody-targeted liposomes in cancer therapy and imaging (2008) Expert Opinion on Drug Delivery, 5, pp. 189-204
Wu, H., Chang, D.-K., Peptide-mediated liposomal drug delivery system targeting tumor blood vessels in anticancer therapy (2010) Journal of Oncology, 2010, pp. 723-798
James, J.S., Dubs, G., FDA approves new kind of lymphoma treatment (1997) AIDS Treat News, 284, pp. 2-3
Albanell, J., Baselga, J., Trastuzumab: A humanized anti-HER2 monoclonal antibody, for the treatment of breast cancer (1999) Drugs Today, 35, pp. 931-946
Ferrara, N., VEGF as a therapeutic target in cancer (2005) Oncology, 69, pp. 11-16
Van Cutsem, E., Kohne, C.H., Hitre, E., Zaluski, J., Chang Chien, C.-R., Makhson, A., D'Haens, G., Rougier, P., Cetuximab and chemotherapy as initial treatment for metastatic colorectal cancer (2009) N. Engl. J. Med., 360, pp. 1408-1417
Murdaca, G., Colombo, B.M., Puppo, F., Adalimumab for the treatment of immunemediated diseases: An update on old and recent indications (2011) Drugs of Today, 47, pp. 277-288
Wilson, D.S., Szostak, J.W., In vitro selection of functional nucleic acids (1999) Ann. Rev. Biochem., 68, pp. 611-647
Bates, P.J., Kahlon, J.B., Thomas, S.D., Trent, J.O., Miller, D.M., Antiproliferative activity of G-rich oligonucleotides correlates with protein binding (1999) J. Biol. Chem., 274, pp. 26369-26377
Bates, P.J., Laber, D.A., Miller, D.M., Thomas, S.D., Trent, J.O., Discovery and development of the G-rich oligonucleotide AS1411 as a novel treatment for cancer (2009) Exp. Mol. Pathol., 86, pp. 151-164
Mongelard, F., Bouvet, P., AS-1411, a guanosine-rich oligonucleotide aptamer targeting nucleolin for the potential treatment of cancer, including acute myeloid leukemia (2010) Curr. Opin. Mol. Ther., 12, pp. 107-114
Bouchard, P.R., Hutabarat, R.M., Thompson, K.M., Discovery and development of therapeutic aptamers (2010) Annu Rev Pharmacol. Toxicol., 50, pp. 237-257
Beekman, K.W., Colevas, A.D., Cooney, K., Dipaola, R., Dunn, R.L., Gross, M., Keller, E.T., Hussain, M., Phase II evaluations of cilengitide in asymptomatic patients with androgen-independent prostate cancer: Scientific rationale and study design (2006) Clin. Genitourin. Cancer, 4, pp. 299-302
Wang, A.Z., Gu, F., Zhang, L., Chan, J.M., Radovic-Moreno, A., Shaikh, M.R., Farokhzad, O.C., Biofunctionalized targeted nanoparticles for therapeutic applications (2008) Expert Opin. Biol. Ther., 8, pp. 1063-1070
Ladner, R.C., Sato, A.K., Gorzelany, J., De Souza, M., Phage display-derived peptides as therapeutic alternatives to antibodies (2004) Drug Discovery Today, 9, pp. 525-529
Mulder, W.J., Castermans, K., Van Beijnum, J.R., Oude Egbrink, M.G., Chin, P.T., Fayad, Z.A., Lowik, C.W., Nicolay, K., Molecular imagingof tumor angiogenesis using alphavbeta3-integrin targeted multimodal quantum dots (2009) Angiogenesis, 12, pp. 17-24
Willmann, J.K., Van Bruggen, N., Dinkelborg, L.M., Gambhir, S.S., Molecular imaging in drug development (2008) Nat. Rev. Drug Discovery, 7, pp. 591-607
Thakare, V.S., Das, M., Jain, A.K., Patil, S., Jain, S., Carbon nanotubes in cancer theragnosis (2010) Nanomedicine, 5, pp. 1277-1301
Liu, Y., Miyoshi, H., Nakamura, M., Nanomedicine for drug delivery and imaging: A promising avenue for cancer therapy and diagnosis using targeted functional nanoparticles (2007) Int. J. Cancer, 120, pp. 2527-2537
Williams, D.F., On the nature of biomaterials (2009) Biomaterials, 30, pp. 5897-5909
Kim, K., Kim, J.H., Park, H., Kim, Y.S., Park, K., Nam, H., Lee, S., Kwon, I.C., Tumor-homing multifunctional nanoparticles for cancer theragnosis: Simultaneous diagnosis, drug delivery, and therapeutic monitoring (2010) J. Control. Release, 146, pp. 219-227
Yang, X., Hong, H., Grailer, J.J., Rowland, I.J., Javadi, A., Hurley, S.A., Xiao, Y., Gong, S., CRGD-functionalized, DOX-conjugated, and 64Cu-labeled superparamagnetic iron oxide nanoparticles for targeted anticancer drug delivery and PET/MR imaging (2011) Biomaterials, 32, pp. 4151-4160
Singh, R., Lillard, J.W., Nanoparticles-based targeted drug delivery (2009) Exper. Mol. Pathol., 86, pp. 215-223
Yu, M.K., Park, J., Jon, S., Targeting strategies for multifunctional nanoparticles in cancer imaging and therapy (2012) Theranostic, 2, pp. 3-44
Park, K., Lee, S., Kang, E., Kim, K., Choi, K., Kwon, I.C., New generation of multifunctional nanoparticles for cancer imaging and therapy (2009) Adv. Funct. Mater., 19, pp. 1553-1566
Petros, R.A., Desimone, J.M., Strategies in the design of nanoparticles for therapeutic applications (2010) Nat. Rev. Drug Discovery, 9, pp. 615-627
Greish, K., Enhanced permeability and retention (EPR) effect for anticancer nanomedicine drug targeting (2010) Cancer Nanotechnology Methods in Molecular Biology, 624, pp. 25-37. , eds. (Stephen R. Grobmyer, B. M. M.) Springer, Univ Florida
Maeda, H., Wu, J., Sawa, T., Hori, K., Tumor vascular permeability and the EPR effect in macromolecular therapeutics: A review (2000) J. Control. Release, 65, pp. 271-284
Matsumura, Y., Maeda, H., A new concept for macromolecular therapies in cancer chemotherapy: Mechanisms of tumor tropic accumulation of proteins and the antitumor agents smancs (1986) Cancer Res., 6, pp. 6397-6392
Danhier, F., Feron, O., Preat, V., To exploit the tumor microenvironment: Passive and active tumor targeting of nanocarriers for anti-cancer drug delivery (2010) J. Control. Release, 148, pp. 135-146
Lasic, D.D., Papahadjopoulos, D., (1998) Medical Applications of Liposomes, , Elsevier Science, Amsterdam
Hortobagyi, G.N., Anthracyclines in the treatment of cancer: An overview (1997) Drugs, 54, pp. 1-7
Gabizon, A., Martin, F., Polyethylene glycol-coated (pegylated) liposomal Doxorubicin: Rationale for use in solid tumors (1997) Drugs, 54, pp. 15-21
Gabizon, A., Pharmacokinetics of PEGylated liposomal Doxorubicin (2003) Clin. Pharmacokinet., 42, pp. 419-436
Abraham, S.A., Waterhouse, D.N., Lawrence, D., Cullis, P.R., Madden, T.D., Bally, M.B., The liposomal formulation of doxorubicin (2005) Methods Enzymol., 391, pp. 71-97
Murphy, E.A., Majeti, B.K., Barnes, L.A., Makale, M., Weis, S.M., Lutu-Fuga, K., Wrasidlo, W., Cheresh, D.A., Nanoparticle-mediated drug delivery to tumor vasculature suppresses metastasis (2008) PNAS, 105, pp. 9343-9348
Gasparini, G., Brooks, P.C., Biganzoli, E., Vermeulen, P.B., Bonoldi, E., Dirix, L.Y., Ranieri, G., Cheresh, D.A., Vascular integrin avb3: A new prognostic indicator in breast cancer (1998) Clin. Cancer Res., 4, pp. 2625-2634
He, X., Na, M.H., Kim, J.S., Lee, G.-Y., Park, J.Y., Hoffman, A.S., Nam, J.O., Lee, B.-H., A novel peptide probe for imaging and targeted delivery of liposomal doxorubicin to lung tumor (2011) Mol. Pharmaceutics, 8, pp. 430-438
Accardo, A., Morisco, A., Tesauro, D., Pedone, C., Morelli, G., Naposomes: A new class of peptide derivatized target selective multimodal nanoparticles for imaging and therapeutic applications (2011) Therapeutic Delivery, 2, pp. 235-257
Vaccaro, M., Mangiapia, G., Radulescu, A., Schille'N, K., D'Errico, G., Morelli, G., Paduano, L., Colloidal particles composed of amphiphilic molecules binding gadolinium complexes and peptides as tumor-specific contrast agents in MRI: Physico-chemical characterization (2009) Soft Matter, 5, pp. 2504-2512
Reubi, J.C., Schaer, J.C., Waser, B., Cholecystokinin (CCK) -A and CCK-B/gastrin receptors in human tumors (1997) Cancer Res., 57, pp. 1377-1386
Dufresne, M., Seva, C., Fourmy, D., Cholecystokinin and gastrin receptors (2006) Physiol. Rev., 86, pp. 805-847
Markwalder, R., Reubi, J.C., Gastrin-releasing peptide receptors in the human prostate: Relation to neoplastic transformation (1999) Cancer Res., 59, pp. 1152-1159
Gugger, M., Reubi, J.C., Gastrin-releasing peptide receptors in non-neoplastic and neoplastic tuman breast (1999) Am. J. Pathol., 155, pp. 2067-2076
Fleischmann, A., Waser, B., Reubi, J.C., Overexpression of gastrin-releasing peptide receptors in tumor-associated blood vessels of human ovarian neoplasms (2007) Cell. Oncol., 29, pp. 421-433
Reubi, J.C., Waser, B., Schaer, J.C., Laissue, J.A., Somatostatin receptor sst1-sst5 expression in normal and neoplastic human tissues using receptor autoradiography with subtype-selective ligands (2001) Eur. J. Nucl. Med., 28, pp. 836-846
Bell, G., Reisine, T., Molecular biology of somatostatin receptors (1993) Trends Neurosci., 16, pp. 34-38
Reubi, J.C., Horisberger, U., Laissue, J., High density of somatostatin receptors in veins surrounding human cancer tissue: Role in tumor host interaction? (1994) Int. J. Cancer, 56, pp. 681-688
Accardo, A., Tesauro, D., Aloj, L., Tarallo, L., Arra, C., Mangiapia, G., Vaccaro, M., Morelli, G., Peptide containing aggregates as selective nanocarriers for therapeutics (2008) ChemMedChem, 3, pp. 594-602
Morisco, A., Accardo, A., Tesauro, D., Palumbo, R., Benedetti, E., Morelli, G., Peptidelabeled supramolecular aggregates as selective doxorubicin carriers for delivery to tumor cells (2011) Biopolymers (Peptide Sciences), 96, pp. 88-96
Accardo, A., Salzano, G., Morisco, A., Aurilio, M., Parisi, A., Maione, F., Cicala, C., Morelli, G., Peptide modified liposomes for selective targeting of bombesin receptors overexpressed by cancer cells: A potential theranostic agent (2012) Int. J. Nanomed., 7, pp. 2007-2017
Jones, M., Leroux, J., Polymeric micelles - A new generation of colloidal drug carriers (1999) Eur. J. Pharm. Biopharm., 48, pp. 101-111
Sutton, D., Nasongkla, N., Blanco, E., Gao, J., Functionalized micellar systems for cancer targeted drug delivery (2007) Pharm. Res., 24, pp. 1029-1046
Shuai, X., Ai, H., Nasongkla, N., Kim, S., Gao, J., Micellar carriers based on block copolymers of poly(epsilon-caprolactone) and poly(ethylene glycol) for doxorubicin delivery (2004) J. Control. Release, 98, pp. 415-426
Rowe, M.D., Thamm, D.H., Kraft, S.L., Boyes, S.G., Polymer-modified gadolinium metal-organic framework nanoparticles used as multifunctional nanomedicines for the targeted imaging and treatment of cancer (2009) Biomacromolecules, 10, pp. 983-993
Xiao, Y., Hong, H., Javadi, A., Engle, J.W., Xu, W., Yang, Y., Zhang, Y., Gong, S., Multifunctional unimolecular micelles for cancer-targeted drug delivery and positron emission tomography imaging (2012) Biomaterials, 33, pp. 3071-3082
Hong, H.-Y., Lee, H.Y., Kwak, W., Yoo, J., Na, M.-H., So, I.S., Kwon, T.-H., Lee, B.-H., Phage display selection of peptides that home to atherosclerotic plaques: IL-4 receptor as a candidate target in atherosclerosis (2008) J. Cell. Mol. Med., 12, pp. 2003-2014
Park, K., Hong, H.-Y., Moon, H.J., Lee, B.-H., Kim, I.-S., Kwon, I.C., Rhee, K., A new atherosclerotic lesion probe based on hydrophobically modified chitosan nanoparticles functionalized by the atherosclerotic plaque targeted peptides (2008) J. Control. Release, 128, pp. 217-223
Wu, X.L., Kim, J.H., Koo, H., Bae, S.M., Shin, H., Kim, M.S., Lee, B.-H., Lee, D.S., Tumor-targeting peptide conjugated pH responsive micelles as a potential drug carrier for cancer therapy (2010) Bioconjugate Chem., 21, pp. 208-213
Christian, S., Pilch, J., Akerman, M.E., Porkka, K., Laakkonen, P., Ruoslahti, E., Nucleolin expressed at the cell surface is a marker of endothelial cells in angiogenic blood vessels (2003) J. Cell. Biol., 163, pp. 871-878
Reddy, G.R., Bhojani, M.S., McConville, P., Moody, J., Moffat, B.A., Hall, D.E., Kim, G., Ross, B.D., Vascular targeted nanoparticles for imaging and treatment of brain tumors (2006) Clin. Cancer Res., 12, pp. 6677-6686
Nasongkla, N., Bey, E., Ren, J., Ai, H., Khemtong, C., Guthi, J.S., Chin, S.-F., Gao, J., Multifunctional polymeric micelles as cancertargeted, MRI-ultrasensitive drug delivery systems (2006) Nano Lett., 6, pp. 2427-2430
Blanco, E., Kessinger, C.W., Sumer, B.D., Gao, J., Multifunctional micellar nanomedicine for cancer therapy (2009) Experimental Biology and Medicine, 234, pp. 123-131
Guthi, J.S., Yang, S.-G., Huang, G., Li, S., Khemtong, C., Kessinger, C.W., Peyton, M., Gao, J., MRI-visible micellar nanomedicine for targeted drug delivery tolung cancer cells (2010) Mol. Pharmaceutics, 7, pp. 32-40
Gianella, A., Jarzyna, P.A., Mani, V., Ramachandran, S., Calcagno, C., Tang, J., Kann, B., Mulder, W.J.M., Multifunctional nanoemulsion platform for imaging guided therapy evaluated in experimental cancer (2011) Nano Acs, 5, pp. 4422-4433
Simberg, D., Duza, T., Park, J.H., Essler, M., Pilch, J., Zhang, L., Derfus, A.M., Ruoslahti, E., Biomimetic amplification of nanoparticle homing to tumors (2007) PNAS, 104, pp. 932-936
Agemy, L., Sugahara, K.N., Kotamraju, V.R., Gujraty, K., Girard, O.M., Kono, Y., Mattrey, R.F., Ruoslahti, E., Nanoparticle-induced vascular blockade in human prostate cancer (2010) Blood, 116, pp. 2847-2856
Agemy, L., Friedmann-Morvinski, D., Kotamraju, V.R., Roth, L., Sugahara, K.N., Girard, O.M., Mattrey, R.F., Ruoslahti, E., Targeted nanoparticle enhanced proapoptotic peptide as potential therapy for glioblastoma (2011) PNAS, 108, pp. 17450-17455
Wang, Y., Leaf, H., Multifunctional theranostic nanoparticles for brain tumors (2012) Molecular Therapy, 20, pp. 10-11
Mok, H., Veiseh, O., Fang, C., Kievit, F.M., Wang, F.Y., Park, J.O., Zhang, M., PHSensitive SiRNA nanovector for targeted gene silencing and cytotoxic effect in cancer cells (2010) Mol. Pharm., 7, pp. 1930-1939
Lyons, S.A., O'Neal, J., Sontheimer, H., Chlorotoxin a scorpion-derived peptide, specifically binds to gliomas and tumors of neuroectodermal origin (2002) Glia, 39, pp. 162-173
Kumar, M., Yigit, M., Dai, G., Moore, A., Medarova, Z., Image-guided breast tumor therapy using a small interfering RNA nanodrug (2010) Cancer Res., 70, pp. 7553-7561
Von Maltzahn, G., Park, J.H., Lin, K.Y., Singh, N., Schwoppe, C., Mesters, R., Berdel, W.E., Bhatia, S.N., Nanoparticles that communicate in vivo to amplify tumor targeting (2011) Nat. Mater., 10, pp. 545-552
Park, J.H., Von Maltzahn, G., Zhang, L., Schwartz, M.P., Ruoslahtim, E., Bhatia, S.N., Sailor, M.J., Magnetic iron oxide nanoworms for tumor targeting and imaging (2008) Adv. Mater., 20, pp. 1630-1715
Alivisatos, A.P., Semiconductor clusters, nanocrystals, and quantum dots (1996) Science, 271, pp. 933-937
Bruchez, M., Moronne, M., Gin, P., Weiss, S., Alivisatos, A.P., Semiconductor nanocrystals as fluorescent biological labels (1998) Science, 281, pp. 2013-2016
Hu, R., Yong, K.-T., Roy, I., Ding, H., Law, W.-C., Cai, H., Zhang, X., Prasad, P.N., Functionalized near-infrared quantum dots for in vivo tumor vasculature imaging (2010) Nanotechnology, 21, p. 145105
Cheng, S.-H., Lee, C.-H., Chen, M.-C., Souris, J.S., Tseng, F.-G., Yang, C.-S., Mou, C.-Y., Lo, L.-W., Tri-functionalization of mesoporous silica nanoparticles for comprehensive cancer theranostics - The trio of imaging, targeting and therapy (2010) J. Mater. Chem., 20, pp. 6149-6157
Ashley, C.E., Carnes, E.C., Phillips, G.K., Padilla, D., Durfee, P.N., Brown, P.A., Hanna, T.N., Brinker, C.J., The targeted delivery of multicomponent cargos to cancer cells by nanoporous particle-supported lipid bilayers (2011) Nature Materials, 10, pp. 389-397
Byrne, J. D., Betancourt, T., Brannon-Pppas, L., Active targeting schemes for nanoparticle systems in cancer therapeutics (2008) Adv. Drug Delivery Rev., 60, pp. 1615-162
Janib, S. M., Moses, A. S., MacKay, J. A., Imaging and drug delivery using theranostic nanoparticles (2010) Adv. Drug. Delivery Rev., 62, pp. 1052-1063
Smith-Jones, P. M., Bischof, C., Leimer, M., Gludovacz, D., Angelberger, P., Pangerl, T., Peck-Radosavljevic, M., Virgolini, I., DOTA-lanreotide: A novel somatostatin analog for tumor diagnosis and therapy (1999) Endocrinology, 140, pp. 5136-5148
Rogers, B. E., Bigott, H. M., McCarthy, D. W., Della Manna, D., Kim, J., Sharp, T. L., Welch, M. J., MicroPET imaging of a gastrin-releasing peptide receptor-positive tumor in a mouse model of human prostate cancer using a 64Cu-labeled bombesin analogue (2003) Bioconjug. Chem., 14, pp. 756-763
Farokhzad, O. C., Karp, J. M., Langer, R., Nanoparticle aptamer bioconjugates for cancer targeting (2006) Expert Opinion Drug Delivery, 3, pp. 311-324
Wu, H., Chang, D. -K., Peptide-mediated liposomal drug delivery system targeting tumor blood vessels in anticancer therapy (2010) Journal of Oncology, 2010, pp. 723-798
James, J. S., Dubs, G., FDA approves new kind of lymphoma treatment (1997) AIDS Treat News, 284, pp. 2-3
Wilson, D. S., Szostak, J. W., In vitro selection of functional nucleic acids (1999) Ann. Rev. Biochem., 68, pp. 611-647
Bates, P. J., Kahlon, J. B., Thomas, S. D., Trent, J. O., Miller, D. M., Antiproliferative activity of G-rich oligonucleotides correlates with protein binding (1999) J. Biol. Chem., 274, pp. 26369-26377
Bates, P. J., Laber, D. A., Miller, D. M., Thomas, S. D., Trent, J. O., Discovery and development of the G-rich oligonucleotide AS1411 as a novel treatment for cancer (2009) Exp. Mol. Pathol., 86, pp. 151-164
Bouchard, P. R., Hutabarat, R. M., Thompson, K. M., Discovery and development of therapeutic aptamers (2010) Annu Rev Pharmacol. Toxicol., 50, pp. 237-257
Beekman, K. W., Colevas, A. D., Cooney, K., Dipaola, R., Dunn, R. L., Gross, M., Keller, E. T., Hussain, M., Phase II evaluations of cilengitide in asymptomatic patients with androgen-independent prostate cancer: Scientific rationale and study design (2006) Clin. Genitourin. Cancer, 4, pp. 299-302
Wang, A. Z., Gu, F., Zhang, L., Chan, J. M., Radovic-Moreno, A., Shaikh, M. R., Farokhzad, O. C., Biofunctionalized targeted nanoparticles for therapeutic applications (2008) Expert Opin. Biol. Ther., 8, pp. 1063-1070
Ladner, R. C., Sato, A. K., Gorzelany, J., De Souza, M., Phage display-derived peptides as therapeutic alternatives to antibodies (2004) Drug Discovery Today, 9, pp. 525-529
Jarzyna, P. A., Gianella, A., Skajaa, T., Knudsen, G., Deddens, L. H., Cormode, D. P., Fayad, Z. A., Mulder, W. J. M., Multifunctional imaging nanoprobes. Wiley Interdiscip (2010) Rev. Nanomed. Nanobiotechnol., 2, pp. 138-150
Mulder, W. J., Castermans, K., Van Beijnum, J. R., Oude Egbrink, M. G., Chin, P. T., Fayad, Z. A., Lowik, C. W., Nicolay, K., Molecular imagingof tumor angiogenesis using alphavbeta3-integrin targeted multimodal quantum dots (2009) Angiogenesis, 12, pp. 17-24
Willmann, J. K., Van Bruggen, N., Dinkelborg, L. M., Gambhir, S. S., Molecular imaging in drug development (2008) Nat. Rev. Drug Discovery, 7, pp. 591-607
Thakare, V. S., Das, M., Jain, A. K., Patil, S., Jain, S., Carbon nanotubes in cancer theragnosis (2010) Nanomedicine, 5, pp. 1277-1301
Williams, D. F., On the nature of biomaterials (2009) Biomaterials, 30, pp. 5897-5909
Kim, K., Kim, J. H., Park, H., Kim, Y. S., Park, K., Nam, H., Lee, S., Kwon, I. C., Tumor-homing multifunctional nanoparticles for cancer theragnosis: Simultaneous diagnosis, drug delivery, and therapeutic monitoring (2010) J. Control. Release, 146, pp. 219-227
Yu, M. K., Park, J., Jon, S., Targeting strategies for multifunctional nanoparticles in cancer imaging and therapy (2012) Theranostic, 2, pp. 3-44
Petros, R. A., Desimone, J. M., Strategies in the design of nanoparticles for therapeutic applications (2010) Nat. Rev. Drug Discovery, 9, pp. 615-627
Lasic, D. D., Papahadjopoulos, D., (1998) Medical Applications of Liposomes, , Elsevier Science, Amsterdam
Hortobagyi, G. N., Anthracyclines in the treatment of cancer: An overview (1997) Drugs, 54, pp. 1-7
Abraham, S. A., Waterhouse, D. N., Lawrence, D., Cullis, P. R., Madden, T. D., Bally, M. B., The liposomal formulation of doxorubicin (2005) Methods Enzymol., 391, pp. 71-97
Murphy, E. A., Majeti, B. K., Barnes, L. A., Makale, M., Weis, S. M., Lutu-Fuga, K., Wrasidlo, W., Cheresh, D. A., Nanoparticle-mediated drug delivery to tumor vasculature suppresses metastasis (2008) PNAS, 105, pp. 9343-9348
He, X., Na, M. H., Kim, J. S., Lee, G. -Y., Park, J. Y., Hoffman, A. S., Nam, J. O., Lee, B. -H., A novel peptide probe for imaging and targeted delivery of liposomal doxorubicin to lung tumor (2011) Mol. Pharmaceutics, 8, pp. 430-438
Reubi, J. C., Schaer, J. C., Waser, B., Cholecystokinin (CCK) -A and CCK-B/gastrin receptors in human tumors (1997) Cancer Res., 57, pp. 1377-1386
Reubi, J. C., Waser, B., Schaer, J. C., Laissue, J. A., Somatostatin receptor sst1-sst5 expression in normal and neoplastic human tissues using receptor autoradiography with subtype-selective ligands (2001) Eur. J. Nucl. Med., 28, pp. 836-846
Reubi, J. C., Horisberger, U., Laissue, J., High density of somatostatin receptors in veins surrounding human cancer tissue: Role in tumor host interaction? (1994) Int. J. Cancer, 56, pp. 681-688
Rowe, M. D., Thamm, D. H., Kraft, S. L., Boyes, S. G., Polymer-modified gadolinium metal-organic framework nanoparticles used as multifunctional nanomedicines for the targeted imaging and treatment of cancer (2009) Biomacromolecules, 10, pp. 983-993
Hong, H. -Y., Lee, H. Y., Kwak, W., Yoo, J., Na, M. -H., So, I. S., Kwon, T. -H., Lee, B. -H., Phage display selection of peptides that home to atherosclerotic plaques: IL-4 receptor as a candidate target in atherosclerosis (2008) J. Cell. Mol. Med., 12, pp. 2003-2014
Park, K., Hong, H. -Y., Moon, H. J., Lee, B. -H., Kim, I. -S., Kwon, I. C., Rhee, K., A new atherosclerotic lesion probe based on hydrophobically modified chitosan nanoparticles functionalized by the atherosclerotic plaque targeted peptides (2008) J. Control. Release, 128, pp. 217-223
Wu, X. L., Kim, J. H., Koo, H., Bae, S. M., Shin, H., Kim, M. S., Lee, B. -H., Lee, D. S., Tumor-targeting peptide conjugated pH responsive micelles as a potential drug carrier for cancer therapy (2010) Bioconjugate Chem., 21, pp. 208-213
Reddy, G. R., Bhojani, M. S., McConville, P., Moody, J., Moffat, B. A., Hall, D. E., Kim, G., Ross, B. D., Vascular targeted nanoparticles for imaging and treatment of brain tumors (2006) Clin. Cancer Res., 12, pp. 6677-6686
Guthi, J. S., Yang, S. -G., Huang, G., Li, S., Khemtong, C., Kessinger, C. W., Peyton, M., Gao, J., MRI-visible micellar nanomedicine for targeted drug delivery tolung cancer cells (2010) Mol. Pharmaceutics, 7, pp. 32-40
Lyons, S. A., O'Neal, J., Sontheimer, H., Chlorotoxin a scorpion-derived peptide, specifically binds to gliomas and tumors of neuroectodermal origin (2002) Glia, 39, pp. 162-173
Park, J. H., Von Maltzahn, G., Zhang, L., Schwartz, M. P., Ruoslahtim, E., Bhatia, S. N., Sailor, M. J., Magnetic iron oxide nanoworms for tumor targeting and imaging (2008) Adv. Mater., 20, pp. 1630-1715
Alivisatos, A. P., Semiconductor clusters, nanocrystals, and quantum dots (1996) Science, 271, pp. 933-937
Hu, R., Yong, K. -T., Roy, I., Ding, H., Law, W. -C., Cai, H., Zhang, X., Prasad, P. N., Functionalized near-infrared quantum dots for in vivo tumor vasculature imaging (2010) Nanotechnology, 21, p. 145105
Cheng, S. -H., Lee, C. -H., Chen, M. -C., Souris, J. S., Tseng, F. -G., Yang, C. -S., Mou, C. -Y., Lo, L. -W., Tri-functionalization of mesoporous silica nanoparticles for comprehensive cancer theranostics - The trio of imaging, targeting and therapy (2010) J. Mater. Chem., 20, pp. 6149-6157
Ashley, C. E., Carnes, E. C., Phillips, G. K., Padilla, D., Durfee, P. N., Brown, P. A., Hanna, T. N., Brinker, C. J., The targeted delivery of multicomponent cargos to cancer cells by nanoporous particle-supported lipid bilayers (2011) Nature Materials, 10, pp. 389-397
Peptide-based targeting strategies for simultaneous imaging and therapy with nanovectors