Acetylation on critical lysine residues of Apurinic/apyrimidinic endonuclease 1 (APE1) in triple negative breast cancers(482 views) Poletto M, Di Loreto C, Marasco D, Poletto E, Puglisi F, Damante G, Tell G
Biochemical And Biophysical Research Communications (ISSN: 0006-291x), 2012 Jul 20; 424(1): 34-39.
Keywords: Acetylation, Apurinic Apyrimidinic Endonuclease Redox Effector Factor 1 (ape1 Ref-1), Base Excision Repair (ber), Triple Negative Breast Cancer (tnbc), Lysine Derivative, Polyclonal Antibody, Article, Cancer Prognosis, Cohort Analysis, Controlled Study, Female, Human, Human Cell, Immunofluorescence, Immunohistochemistry, Priority Journal, Protein Synthesis, Amino Acid Sequence, Breast Neoplasms, Dna-(apurinic Or Apyrimidinic Site) Lyase, Molecular Sequence Data, Protein Processing, Post-Translational, Tumor Cells, Cultured, Mammalia,
Affiliations: *** IBB - CNR ***
Department of Medical and Biological Sciences, University of Udine, 33100 Udine, Italy
Department of Biological Sciences, University of Naples Federico II, 80134 Naples, Italy
Institute of Biostructures and Bioimaging, National Research Council, 80134 Naples, Italy
References: Walsh, C.T., Garneau-Tsodikova, S., Gatto, G.J., Protein posttranslational modifications: the chemistry of proteome diversifications (2005) Angew. Chem. Int. Ed. Engl., 44, pp. 7342-737
Yang, X.J., Seto, E., Lysine acetylation: codified crosstalk with other posttranslational modifications (2008) Mol. Cell, 31, pp. 449-461
Close, P., Creppe, C., Gillard, M., The emerging role of lysine acetylation of non-nuclear proteins (2010) Cell. Mol. Life Sci., 67, pp. 1255-1264
Tell, G., Damante, G., Caldwell, D., The intracellular localization of APE1/Ref-1: more than a passive phenomenon? (2005) Antioxid. Redox Signal., 7, pp. 367-384
Vascotto, C., Cesaratto, L., Zeef, L.A., Genome-wide analysis and proteomic studies reveal APE1/Ref-1 multifunctional role in mammalian cells (2009) Proteomics, 9, pp. 1058-1074
Tell, G., Fantini, D., Quadrifoglio, F., Understanding different functions of mammalian AP endonuclease (APE1) as a promising tool for cancer treatment (2010) Cell. Mol. Life Sci., 67, pp. 3589-3608
Tell, G., Wilson, D.M., Lee, C.H., Intrusion of a DNA repair protein in the RNome world: is this the beginning of a new era? (2010) Mol. Cell. Biol., 30, pp. 366-371
Busso, C.S., Lake, M.W., Izumi, T., Posttranslational modification of mammalian AP endonuclease (APE1) (2010) Cell. Mol. Life Sci., 67, pp. 3609-3620
Bhakat, K.K., Izumi, T., Yang, S.H., Role of acetylated human AP-endonuclease (APE1/Ref-1) in regulation of the parathyroid hormone gene (2003) EMBO J., 22, pp. 6299-6309
Yamamori, T., DeRicco, J., Naqvi, A., SIRT1 deacetylates APE1 and regulates cellular base excision repair (2010) Nucleic Acids Res., 38, pp. 832-845
Sengupta, S., Mantha, A.K., Mitra, S., Human AP endonuclease (APE1/Ref-1) and its acetylation regulate YB-1-p300 recruitment and RNA polymerase II loading in the drug-induced activation of multidrug resistance gene MDR1 (2011) Oncogene, 30, pp. 482-493
Fantini, D., Vascotto, C., Marasco, D., Critical lysine residues within the overlooked N-terminal domain of human APE1 regulate its biological functions (2010) Nucleic Acids Res., 38, pp. 8239-8256
Kakolyris, S., Kaklamanis, L., Engels, K., Human AP endonuclease I (HAPI) protein expression inbreast cancer correlates with lymph node status and angiogenesis (1998) Br. J. Cancer, 77, pp. 1169-1173
Robertson, K.A., Bullock, H.A., Xu, Y., Altered expression of Ape1/ref-1 in germ cell tumors and overexpression in NT2 cells confers resistance to bleomycin and radiation (2001) Cancer Res., 61, pp. 2220-2225
Di Maso, V., Avellini, C., Crocè, L.S., Subcellular localization of APE1/Ref-1 in human hepatocellular carcinoma: possible prognostic significance (2007) Mol. Med., 13, pp. 89-96
Sheng, Q., Zhang, Y., Wang, R., Prognostic significance of APE1 cytoplasmic localization in human epithelial ovarian cancer (2012) Med. Oncol., 29, pp. 1265-1271
Fields, G.B., Noble, R.L., Solid phase peptide synthesis utilizing 9-fluorenylmethoxycarbonyl amino acids (1990) Int. J. Pept. Protein Res., 35, pp. 161-214
Garbutt, G.J., Abraham, E.C., Non-enzymatic acetylation of human hemoglobins (1981) Biochim. Biophys. Acta, 670, pp. 190-194
Schägger, H., Tricine-SDS-PAGE (2006) Nat. Protoc., 1, pp. 16-22
Vascotto, C., Fantini, D., Romanello, M., APE1/Ref-1 interacts with NPM1 within nucleoli and plays a role in the rRNA quality control process (2009) Mol. Cell. Biol., 29, pp. 1834-1854
Johnsson, B., Lofas, S., Lindquist, G., Immobilization of proteins to a carboxymethyldextran-modified gold surface for biospecific interaction analysis in surface plasmon resonance sensors (1991) Anal. Biochem., 198, pp. 268-277
Foulkes, W.D., Smith, I.E., Reis-Filho, J.S., Triple-negative breast cancer (2010) N. Engl. J. Med., 363, pp. 1938-1948
Rakha, E.A., Reis-Filho, J.S., Ellis, I.O., Basal-like breast cancer: a critical review (2008) J. Clin. Oncol., 26, pp. 2568-2581
Reis-Filho, J.S., Tutt, A.N., Triple negative tumours: a critical review (2008) Histopathology, 52, pp. 108-118
Andreetta, C., Minisini, A.M., Miscoria, M., First-line chemotherapy with or without biologic agents for metastatic breast cancer (2010) Crit. Rev. Oncol. Hematol., 76, pp. 99-111
Liedtke, C., Mazouni, C., Hess, K.R., Response to neoadjuvant therapy and long-term survival in patients with triple-negative breast cancer (2008) J. Clin. Oncol., 26, pp. 1275-1281
Dent, R., Trudeau, M., Pritchard, K.I., Triple-negative breast cancer: clinical features and patterns of recurrence (2007) Clin. Cancer Res., 13, pp. 4429-4434
Oakman, C., Moretti, E., Pacini, G., Triple negative breast cancer: a heterogeneous subgroup defined by what it is not (2011) Eur. J. Cancer, 47 (SUPPL. 3), pp. S370-S372
Ma, C.X., Luo, J., Ellis, M.J., Molecular profiling of triple negative breast cancer (2010) Breast Dis., 32, pp. 73-84
Puglisi, F., Barbone, F., Tell, G., Prognostic role of Ape/Ref-1 subcellular expression in stage I-III breast carcinomas (2002) Oncol. Rep., 9, pp. 11-17
Kelley, M.R., DNA Repair In Cancer Therapy (2012) Molecular Targets and Clinical Applications, , Academic Press
Sultana, R., McNeill, D.R., Abbotts, R., Synthetic lethal targeting of DNA double-strand break repair deficient cells by human apurinic/apyrimidinic endonuclease inhibitors (2012) Int. J. Cancer
Saha, T., Smulson, M., Rosen, E.M., BRCA1 regulation of base excision repair pathway (2010) Cell Cycle, 9, pp. 2471-2472
Walsh, C. T., Garneau-Tsodikova, S., Gatto, G. J., Protein posttranslational modifications: the chemistry of proteome diversifications (2005) Angew. Chem. Int. Ed. Engl., 44, pp. 7342-737
Yang, X. J., Seto, E., Lysine acetylation: codified crosstalk with other posttranslational modifications (2008) Mol. Cell, 31, pp. 449-461
Busso, C. S., Lake, M. W., Izumi, T., Posttranslational modification of mammalian AP endonuclease (APE1) (2010) Cell. Mol. Life Sci., 67, pp. 3609-3620
Bhakat, K. K., Izumi, T., Yang, S. H., Role of acetylated human AP-endonuclease (APE1/Ref-1) in regulation of the parathyroid hormone gene (2003) EMBO J., 22, pp. 6299-6309
Robertson, K. A., Bullock, H. A., Xu, Y., Altered expression of Ape1/ref-1 in germ cell tumors and overexpression in NT2 cells confers resistance to bleomycin and radiation (2001) Cancer Res., 61, pp. 2220-2225
Fields, G. B., Noble, R. L., Solid phase peptide synthesis utilizing 9-fluorenylmethoxycarbonyl amino acids (1990) Int. J. Pept. Protein Res., 35, pp. 161-214
Garbutt, G. J., Abraham, E. C., Non-enzymatic acetylation of human hemoglobins (1981) Biochim. Biophys. Acta, 670, pp. 190-194
Sch gger, H., Tricine-SDS-PAGE (2006) Nat. Protoc., 1, pp. 16-22
Foulkes, W. D., Smith, I. E., Reis-Filho, J. S., Triple-negative breast cancer (2010) N. Engl. J. Med., 363, pp. 1938-1948
Rakha, E. A., Reis-Filho, J. S., Ellis, I. O., Basal-like breast cancer: a critical review (2008) J. Clin. Oncol., 26, pp. 2568-2581
Ma, C. X., Luo, J., Ellis, M. J., Molecular profiling of triple negative breast cancer (2010) Breast Dis., 32, pp. 73-84
Curtis, C. D., Thorngren, D. L., Ziegler, Y. S., Apurinic/apyrimidinic endonuclease 1 alters estrogen receptor activity and estrogen-responsive gene expression (2009) Mol. Endocrinol., 23, pp. 1346-1359
Kelley, M. R., DNA Repair In Cancer Therapy (2012) Molecular Targets and Clinical Applications, , Academic Press
Acetylation on critical lysine residues of Apurinic/apyrimidinic endonuclease 1 (APE1) in triple negative breast cancers
Protein acetylation plays many roles within living cells, modulating metabolism, signaling and cell response to environmental stimuli, as well as having an impact on pathological conditions, such as cancer pathogenesis and progression. The Apurinic/apyrimidinic endonuclease APE1 is a vital protein that exerts many functions in mammalian cells, acting as a pivotal enzyme in the base excision repair (BER) pathway of DNA lesions, as transcriptional modulator and being also involved in RNA metabolism. As an eclectic and abundant protein, APE1 is extensively modulated through post-translational modifications, including acetylation. Many findings have linked APE1 to cancer development and onset of chemo- and radio-resistance. Here, we focus on APE1 acetylation pattern in triple negative breast cancer (TNBC). We describe the validation and characterization of a polyclonal antibody that is specific for the acetylation on lysine 35 of the protein. Finally, we use the new antibody to analyze the APE1 acetylation pattern on a cohort of TNBC specimens, exploiting immunohistochemistry. Our findings reveal a profound deregulation of APE1 acetylation status in TNBC, opening new perspectives for future improvements on treatment and prognosis of this molecular subtype of breast carcinomas. (C) 2012 Elsevier Inc. All rights reserved.
Acetylation on critical lysine residues of Apurinic/apyrimidinic endonuclease 1 (APE1) in triple negative breast cancers
No results.
Acetylation on critical lysine residues of Apurinic/apyrimidinic endonuclease 1 (APE1) in triple negative breast cancers
Petraglia F, Singh AA, Carafa V, Nebbioso A, Conte M, Scisciola L, Valente S, Baldi A, Mandoli A, Petrizzi VB, Ingenito C, De Falco S, Cicatiello V, Apicella I, Janssen-megens EM, Kim B, Yi G, Logie C, Heath S, Ruvo M, Wierenga ATJ, Flicek P, Yaspo ML, Della Valle V, Bernard O, Tomassi S, Novellino E, Feoli A, Sbardella G, Gut I, Vellenga E, Stunnenberg HG, Mai A, Martens JHA, Altucci L * Combined HAT/EZH2 modulation leads to cancer-selective cell death(284 views) Oncotarget (ISSN: 1949-2553electronic, 1949-2553linking), 2018 May 22; 9(39): 25630-25646. Impact Factor:5.008 ViewExport to BibTeXExport to EndNote