Destabilization of Lipid Membranes by a Peptide Derived from Glycoprotein gp36 of Feline Immunodeficiency Virus: A Combined Molecular Dynamics/Experimental Study
Destabilization of Lipid Membranes by a Peptide Derived from Glycoprotein gp36 of Feline Immunodeficiency Virus: A Combined Molecular Dynamics/Experimental Study(540 views) Merlino A, Vitiello G, Grimaldi M, Sica F, Busi E, Basosi R, D’Ursi A, Fragneto G, Paduano L, D’Errico G
J Phys Chem B (ISSN: 1520-6106, 1520-5207, 1520-5207electronic), 2012 Jan 12; 116(1): 401-412.
Department of Chemistry, University of Naples Federico II, Complesso di Monte S. Angelo, Via Cinthia, I-80126 Naples, Italy
Istituto di Biostrutture e Bioimmagini, CNR, Naples, Italy
CSGI (Consorzio per Lo Sviluppo Dei Sistemi A Grande Interfase), Florence, Italy
Department of Pharmaceutical Science, University of Salerno, Fisciano, Italy
Institut Laue-Langevin, Grenoble, France
References: Wickner, W., Schekman, R., (2008) Nat. Struct. Mol. Biol., 15, pp. 658-66
Harrison, S.C., (2008) Nat. Struct. Mol. Biol., 15, pp. 690-698
White, J.M., Delos, S.E., Brecher, M., Schornberg, K., (2008) Crit. Rev. Biochem. Mol. Biol., 43, pp. 189-219
Chernomordik, L.V., Kozlov, M., (2008) Nat. Struct. Mol. Biol., 15, pp. 675-683
Lorizate, M., Huarte, N., Saez-Cirion, A., Nieva, J.L., (2008) Biochim. Biophys. Acta, 1778, pp. 1624-1639
Pancino, G., Camoin, L., Sonigo, P., (1995) J. Virol., 69, pp. 2110-2118
Serres, P.F., (2000) C. R. Acad. Sci. III, 323, pp. 1019-1029
Frey, S.C., Hoover, E.A., Mullins, J.I., (2001) J. Virol., 75, pp. 5433-5440
Giannecchini, S., Bonci, F., Pistello, M., Matteucci, D., Sichi, O., Rovero, P., Bendinelli, M., (2004) Virology, 320, pp. 156-166
Barbato, G., Bianchi, E., Ingallinella, P., Hurni, W.H., Miller, M.D., Ciliberto, G., Cortese, R., Pessi, A., (2003) J. Mol. Biol., 330, pp. 1101-1115
Suarez, T., Nir, S., Goni, F.M., Saez-Cirion, A., Nieva, J.L., (2000) FEBS Lett., 477, pp. 145-149
Salzwedel, K., West, J.T., Hunter, E., (1999) J. Virol., 73, pp. 2469-2480
D'Errico, G., D'Ursi, A.M., Marsh, D., (2008) Biochemistry, 47, pp. 5317-5327
Giannecchini, S., D'Ursi, A.M., Esposito, C., Scrima, M., Zabogli, E., Freer, G., Rovero, P., Bendinelli, M., (2007) Clin. Vaccine Immunol., 14, pp. 944-951
D'Errico, G., Vitiello, G., D'Ursi, A.M., Marsh, D., (2009) Eur. Biophys. J., 38, pp. 873-882
Mitchell, T.W., Ekroos, K., Blanksby, S.J., Hulbert, A.J., Else, P.L., (2007) J. Exp. Biol., 210, pp. 3440-3450
Grossfield, A., Woolf, T.B., (2002) Langmuir, 18, pp. 198-210
Cordomi, A., Perez, J.J., (2007) J. Phys. Chem. B, 111, pp. 7052-7063
Merlino, A., Varriale, S., Coscia, M.R., Mazzarella, L., Oreste, U., (2008) J. Mol. Graph. Model, 27, pp. 401-407
Varriale, S., Merlino, A., Coscia, M.R., Mazzarella, L., Oreste, U., (2010) Mol. Phylogenet. Evol., 57, pp. 1238-1244
Anezo, C., Devries, A.H., Holtje, H.D., Tieleman, D.P., Marrink, S.J., (2003) J. Phys. Chem. B., 107, pp. 9424-9433
Kandt, C., Mátyus, E., Tieleman, D.P., (2007) Structure & Dynamics of Membranous Interfaces, , CRC Press, Taylor and Francis Group: Boca Raton, FL
Mátyus, E., Kandt, C., Tieleman, D.P., (2007) Curr. Med. Chem., 14, pp. 2789-2798
Marsh, D., Watts, A., (1982) Lipid-Protein Interactions, 2, pp. 53-126. , Jost, P. C. Griffith, O. H. Wiley Interscience: New York
Marsh, D., (1997) Curr. Opin. Colloid Interface Sci., 2, pp. 4-14
Wacklin, H.P., Thomas, R.K., (2007) Langmuir, 23, pp. 7644-7651
Kaiser, E., Colescott, R.L., Bossinger, C.D., Cook, P.I., (1970) Anal. Biochem., 34, pp. 595-598
Van Der Wel, P.C.A., Reed, N.D., Greathouse, D.V., Koeppe, R.E., (2007) Biochemistry, 46, pp. 7514-7524
Koeppe, R.E., Sun, H., Van Der Wel, P.C.A., Scherer, E.M., Pulay, P., Greathouse, D.V., (2003) J. Am. Chem. Soc., 125, pp. 12268-12276
Koenig, B.W., Kruger, S., Orts, W.J., Majkrzak, C.F., Berk, N.F., Silverton, J.V., Gawrisch, K., (1996) Langmuir, 12, pp. 1343-1350
Cubitt, R., Fragneto, G., (2004) Appl. Phys. A (Suppl.), 74, pp. 329-S331
Higgins, J.S., Benoitt, H.C., (1994) Polymers and Neutron Scattering, , Clarendon Press: Oxford, UK
Kinoshita, K., Furuike, S., Yamazaki, M., (1998) Biophys. Chem., 74, pp. 237-249
Harrison, S. C., (2008) Nat. Struct. Mol. Biol., 15, pp. 690-698
White, J. M., Delos, S. E., Brecher, M., Schornberg, K., (2008) Crit. Rev. Biochem. Mol. Biol., 43, pp. 189-219
Chernomordik, L. V., Kozlov, M., (2008) Nat. Struct. Mol. Biol., 15, pp. 675-683
Serres, P. F., (2000) C. R. Acad. Sci. III, 323, pp. 1019-1029
Frey, S. C., Hoover, E. A., Mullins, J. I., (2001) J. Virol., 75, pp. 5433-5440
Mitchell, T. W., Ekroos, K., Blanksby, S. J., Hulbert, A. J., Else, P. L., (2007) J. Exp. Biol., 210, pp. 3440-3450
Kandt, C., M tyus, E., Tieleman, D. P., (2007) Structure & Dynamics of Membranous Interfaces, , CRC Press, Taylor and Francis Group: Boca Raton, FL
M tyus, E., Kandt, C., Tieleman, D. P., (2007) Curr. Med. Chem., 14, pp. 2789-2798
Wacklin, H. P., Thomas, R. K., (2007) Langmuir, 23, pp. 7644-7651
Van Der Wel, P. C. A., Reed, N. D., Greathouse, D. V., Koeppe, R. E., (2007) Biochemistry, 46, pp. 7514-7524
Koeppe, R. E., Sun, H., Van Der Wel, P. C. A., Scherer, E. M., Pulay, P., Greathouse, D. V., (2003) J. Am. Chem. Soc., 125, pp. 12268-12276
Koenig, B. W., Kruger, S., Orts, W. J., Majkrzak, C. F., Berk, N. F., Silverton, J. V., Gawrisch, K., (1996) Langmuir, 12, pp. 1343-1350
Higgins, J. S., Benoitt, H. C., (1994) Polymers and Neutron Scattering, , Clarendon Press: Oxford, UK
Thirtle, P. N., (1997) Afit Simulation Program, V. 3. 1, , Oxford University: Oxford, UK
Kelly, S. M., Jess, T. J., Price, N. C., (2005) Biochim. Biophys. Acta, 1751, pp. 119-139
Berendsen, H. J. C., Postma, J. P. M., Van Gusteren, W. F., Di Nola, A., Haak, J. R., (1984) J. Chem. Phys., 81, pp. 3684-3690
Vacklin, H. P., Tiberg, F., Fragneto, G., Thomas, R. K., (2005) Biochemistry, 44, pp. 2811-2821
Gordon, L. M., Curtain, C. C., Zhong, Y. C., Kirkpatrick, A., Mobley, P. W., Waring, A. J., (1992) Biochim. Biophys. Acta, 1139, pp. 257-274
Feller, S. E., (2000) Curr. Opin. Colloid Interface Sci., 5, pp. 217-223
Yau, W. C., Wimley, W. C., Gawrisch, K., White, S. H., (1998) Biochemistry, 37, pp. 14713-14718
Mishra, V. K., Palgunachari, M. N., Segrest, J. P., Anantharamaiah, G. M., (1994) J. Biol. Chem., 269, pp. 7185-7191
Esbj rner, E. K., Caesar, C. E. B., Albinsson, N., Lincoln, P., Nord n, B., (2007) Biochem. Biophys. Res. Commun., 361, pp. 645-650
MacCallum, J. L., Tieleman, P., (2003) J. Comput. Chem., 24, pp. 1930-1935
Scherer, E. M., Leaman, D. P., Zwick, M. B., McMichael, A. J., Burton, D. R., (2010) Proc. Natl. Acad. Sci. U. S. A., 107, pp. 1529-1534
Peter, P. M., Lindhal, E., Pande, V. S., (2011) J. Am. Chem. Soc., 133, pp. 3812-3815
Zamyatin, A. A., (1972) Prog. Biophys. Mol. Biol., 24, pp. 107-123
Destabilization of Lipid Membranes by a Peptide Derived from Glycoprotein gp36 of Feline Immunodeficiency Virus: A Combined Molecular Dynamics/Experimental Study
Viral fusion glycoproteins present a membrane-proximal external region (MPER) which is usually rich in aromatic residues and exhibits a marked tendency to stably reside at the membrane interfaces, leading, through unknown mechanisms, to a destabilization of the bilayer structure. This step has been proposed to be fundamental for the fusion process between target membrane and viral envelope. In the present work, we investigate the interaction between an octapeptide (C8) deriving from the MPER domain of gp36 of feline immunodeficiency virus and POPC bilayers by combining experimental results obtained by neutron reflectivity, electron spin resonance, circular dichroism, and fluorescence spectroscopy with molecular dynamics simulations. Our data indicate that C8 binds to the lipid bilayer adsorbing onto the membrane surface without deep penetration. As a consequence of this interaction, the bilayer thickness decreases. The association of the peptide with the lipid membrane is driven by hydrogen bonds as well as hydrophobic interactions that the Trp side chains form with the lipid headgroups. Upon peptide-bilayer interaction, C8 forms transient secondary structures ranging from 3(10) helices to turn conformations, while acyl chains of the peptide-exposed POPC molecules assume a more ordered packing. At the same time, lipid headgroups' hydration increases. The asymmetric lipid bilayer perturbation is proposed to play a fundamental role in favoring the membrane fusion process.
Destabilization of Lipid Membranes by a Peptide Derived from Glycoprotein gp36 of Feline Immunodeficiency Virus: A Combined Molecular Dynamics/Experimental Study
Destabilization of Lipid Membranes by a Peptide Derived from Glycoprotein gp36 of Feline Immunodeficiency Virus: A Combined Molecular Dynamics/Experimental Study